人教版八年级数学上册积的乘方

合集下载

积的乘方人教版数学八年级上学期(完整版)

积的乘方人教版数学八年级上学期(完整版)

板书设计
积的乘方
积的乘方的法则
语言叙述 积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.
符号叙述 (ab)n anbn (n是正整数)
.
作业布置【知识技能类作业】必做题:
1.计算:
(1)(ab)8; (2)(2m)3;
(3)(-xy)5;
(4)(5ab2)3; (5)(2×102)2; (6)(-3×103)3.
(4×3)2与42×32相等;(2×5)3与23×53相等.
新知讲解
看看运算过程中用到哪些运算律,从运算结果看能发现什么规律?
(1) (ab)2 =(ab)·(ab)=(a·a)·(b·b)2= a2( )b( ) (2) (ab)3 =_(_a_b_)_·__(_a_b_)_·__(_a_b_)__=(_a_·__a_·__a_)_·__(_b__·__b__·__b_)_3= a3( )b( )
(am)n=___a_m_n_ (m,n都是正整数).
幂的乘方,底数不变,指数相乘.
新知讲解
思考:
计算:(1) (4×3)2与42×32;(2) (2×5)3与23×53. 填空: ∵ (4×3)2 =1_2_2___=_1_4_4__ 42×3216=×__9___144=_____, ∴ (4×3)2=___42×32 ∵ (2×5)3 =1_0_3__1_0=0_0____ 23×538×=_1_2_5____1_0=0_0____, ∴ (2×5)3=___23×53 你发现了什么?
解:(1)原式=a8b8;
(2)原式=23•m3=8m3;
(3)原式=(-x)5•y5=-x5y5;
(4)原式=53•a3•(b2)3=125a3b6;

人教版数学八年级上册14.1.3积的乘方..教学设计

人教版数学八年级上册14.1.3积的乘方..教学设计
三、教学重难点和教学设想
(一)教学重难点
1.重点:积的乘方的概念及其性质的掌握,以及在实际问题中的应用。
2.难点:理解积的乘方的性质,并能将其灵活运用于简化计算过程和解决实际问题。
(二)教学设想
1.教学方法:
-采用情境教学法,通过实际问题引入积的乘方概念,让学生感受数学与生活的紧密联系。
-运用启发式教学法,引导学生主动探究积的乘方的性质,培养他们的观察、分析和归纳能力。
1.培养学生对数学学科的兴趣和热情,激发他们主动探究数学问题的积极性。
2.培养学生严谨、细致的学习态度,让他们认识到数学在日常生活和科学研究中的重要性。
3.通过积的乘方知识的学习,引导学生认识到事物之间的联系和规律,培养他们的创新意识和团队合作精神。
在教学过程中,教师应注重启发式教学,引导学生主动参与课堂,关注学生的个体差异,因材施教,使学生在掌握知识的同时,提高自己的综合素质。以下是具体的教学设计:
-学生活动:组织学生进行小组讨论,互相交流积的乘方的性质和应用,培养学生的合作意识和团队精神。
-课堂小结:对本节课的重点知识进行总结,强化学生对积的乘方的认识。
3.课后作业:
-设计分层次的课后作业,满足不同层次学生的学习需求,巩固所学知识。
-鼓励学生利用积的乘方知识解决生活中的实际问题,提高他们的数学应用能力。
4.教学评价:
-采用多元化评价方式,如课堂提问、课后作业、小组讨论等,全面了解学生的学习情况。
-关注学生的个体差异,对学生在学习过程中遇到的问题及时给予指导和帮助,提高他们的自信心。
5.教学拓展:
-结合数学史,介绍积的乘方在数学发展史上的地位,激发学生的学习兴趣。
-开展数学实践活动,如制作积的乘方知识卡片、编写积的乘方小故事等,培养学生的创新意识和动手能力。

八年级上册人教版数学积的乘方

八年级上册人教版数学积的乘方

八年级上册人教版数学积的乘方一、积的乘方的定义。

1. 文字表述。

- 积的乘方,先把积中的每一个乘数分别乘方,再把所得的幂相乘。

2. 公式表示。

- 对于(ab)^n(n为正整数),根据积的乘方的定义有(ab)^n = a^n× b^n。

- 这个公式可以推广到多个因数的积的乘方,例如(abc)^n=a^n× b^n× c^n(n 为正整数)。

二、积的乘方公式的推导。

1. 以(ab)^n为例(n为正整数)- 根据乘方的意义(ab)^n=⏟(ab)×(ab)×·s×(ab)_n个(ab)。

- 再根据乘法的交换律和结合律,可以将上式改写为⏟(a× a×·s× a)_n个a×⏟(b×b×·s× b)_n个b。

- 而⏟(a× a×·s× a)_n个a=a^n,⏟(b× b×·s× b)_n个b=b^n,所以(ab)^n = a^n×b^n。

三、积的乘方的应用。

(一)计算。

1. 简单计算示例。

- 计算(2x)^3。

- 根据积的乘方公式(ab)^n=a^n× b^n,这里a = 2,b=x,n = 3。

- 则(2x)^3=2^3× x^3=8x^3。

2. 多个因数积的乘方计算示例。

- 计算( - 3a^2b)^2。

- 这里a=-3,b = a^2b,n = 2。

- 根据公式(abc)^n=a^n× b^n× c^n,则( - 3a^2b)^2=( - 3)^2×(a^2)^2× b^2。

- 因为(-3)^2 = 9,(a^2)^2=a^2×2=a^4,所以( - 3a^2b)^2 = 9a^4b^2。

人教版数学八年级上册14.1.3积的乘方优秀教学案例

人教版数学八年级上册14.1.3积的乘方优秀教学案例
(二)讲授新知
1.结合生活实例,引导学生理解积的乘方的定义。如:两个相同的正方形相乘,可以理解为正方形的边长乘以边长,即2×2×2=8,这就是积的乘方。
2.讲解积的乘方的运算法则,通过举例、讲解、演示等方法,使学生理解和掌握运算法则。
3.运用平方差公式和完全平方公式,引导学生发现积的乘方与平方差、完全平方之间的关系,为解决实际问题打下基础。
二、教学目标
(一)知识与技能
1.理解积的乘方的概念,掌握积的乘方的运算法则。
2.能够运用积的乘方解决实际问题,提高运用数学知识解决实际问题的能力。
3.熟练运用平方差公式和完全平方公式,为学习更高阶的数学知识打下基础。
(二)过程与方法
1.通过小组合作、讨论交流的方式,培养学生自主探究、发现规律的能力。
三、教学策略
(一)情景创设
1.利用多媒体展示正方形的巧克力图片,引导学生关注实际问题,激发学生学习兴趣。
2.创设问题情境:小明的妈妈买了一块正方形的巧克力,每块巧克力的边长是4厘米,小明想知道这块巧克力一共有多少立方厘米。让学生感受到数学与生活的紧密联系,引发学生的思考。
3.设计富有挑战性的数学题目,让学生在解决问题的过程中自然引出积的乘方的概念。
3.教师对学生的学习情况进行评价,关注学生的成长和进步,及时调整教学策略。
(五)作业小结
1.布置具有层次性的作业,让学生在课后巩固所学知识。
2.要求学生在作业中运用积的乘方解决实际问题,提高学生的数学应用能力。
3.鼓励学生自主探索,尝试解决更复杂的数学问题,培养学生的创新能力。
作为一名特级教师,我将以以上教学内容与过程为指导,关注学生的个体差异,充分调动学生的学习积极性,使他们在本节课中获得全面的发展。同时,我也将注重教学评价,及时了解学生掌握情况,为下一节课的教学提供有力保障。通过本节课的教学,使学生在知识、能力和情感态度与价值观等方面都得到提升,为他们的全面发展奠定基础。

人教版八年级数学上册(教案).1.3积的乘方

人教版八年级数学上册(教案).1.3积的乘方
2.从学生的生活实际出发,设计更具吸引力和启发性的问题。
3.在讲解重点难点时,进一步举例和解释,帮助学生克服困难。
4.提高自己在引导学生讨论时的启发和指导能力。
5.培养学生的独立思考能力,提高他们在小组讨论中的参与度。
在今后的教学中,我将继续努力,不断调整和改进教学方法,以期提高学生的学习效果。
五、教学反思
在本次教学过程中,我发现学生们对积的乘方的概念和运算规则的理解存在一些差异。有的学生能够迅速掌握运算规则,而有的学生则在应用时感到困惑。这让我意识到,在今后的教学中,我需要更加关注学生的个体差异,因材施教。
在导入新课环节,通过提问方式引发学生的兴趣,这是一个很好的开始。然而,我发现在这个问题中,部分学生的参与度并不高,可能是因为问题与他们的生活实际联系不够紧密。在今后的教学中,我需要更多地从学生的生活实际出发,设计更具吸引力和启发性的问题。
三、教学难点与重点
1.教学重点
-重点一:(a·b)^n = a^n · b^n公式的理解和应用。这是积的乘方的核心知识,教师需引导学生通过具体例题掌握此公式的运算过程,明确乘方运算的先后顺序。
-重点二:运用积的乘方解决实际问题。通过实际问题的引入,让学生掌握如何将现实问题转化为积的乘方问题,并运用所学知识解决。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“积的乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
四、教学流程

人教版-积的乘方教学设计2024-2025学年八年级上册数学

人教版-积的乘方教学设计2024-2025学年八年级上册数学

《积的乘方》教学设计一、课题名称积的乘方二、课程课时1课时三、教材内容分析本节课是人教版八年级上册数学第十五章《整式的乘除与因式分解》中的内容。

积的乘方是整式乘法运算中的重要组成部分,它是在学习了同底数幂的乘法和幂的乘方之后进行的。

教材通过具体的实例引导学生观察、分析、归纳出积的乘方的运算法则,让学生体会从特殊到一般的数学思想方法。

四、课标目标1.理解积的乘方的运算法则。

2.能运用积的乘方的运算法则进行计算。

五、教学重点、难点1.教学重点积的乘方运算法则的推导过程。

运用积的乘方运算法则进行计算。

2.教学难点对积的乘方运算法则的理解。

法则中指数的运算及符号的确定。

六、课的类型及主要教学方法1.课的类型:新授课。

2.主要教学方法:讲授法、探究法、练习法。

七、教学过程1.导入新课教学环节:复习旧知。

教师活动:同学们,我们之前学习了同底数幂的乘法和幂的乘方,谁能来分别说一说它们的运算法则?学生活动:学生回答同底数幂的乘法法则是aᵐ×aⁿ=aᵐ⁺ⁿ(m、n都是正整数);幂的乘方法则是(aᵐ)ⁿ=aᵐⁿ(m、n都是正整数)。

设计意图:通过复习旧知,为学习积的乘方做铺垫。

目标达成预测:学生能够准确回答同底数幂的乘法和幂的乘方的运算法则。

2.讲授新课探索积的乘方运算法则教学环节:计算式子。

教师活动:现在我们来计算一下(ab)²和(2x)³,看看结果是多少?并观察式子的特点。

学生活动:(ab)²=ab×ab=a×a×b×b=a²b²;(2x)³=2x×2x×2x=2×2×2×x×x×x=8x³。

学生观察到式子是积的乘方形式。

设计意图:通过具体的计算,让学生初步感受积的乘方的特点。

目标达成预测:学生能够正确计算式子的结果,并观察到式子的特点。

人教版八年级数学上册第十四章 积的乘方

人教版八年级数学上册第十四章   积的乘方
解:∵x3n=3,∴原式=64(x3n)2-27(x3n)2=64×9-27×9=333.
变式:已知xn=2,yn=6,求(x2y)2n的值. 解:∵xn=2,yn=6, ∴(x2y)2n=x4n·y2n=(xn)4·(yn)2=24×62=16×36=576.
1.我们这节课学习了哪些知识? ①积的乘方法则;②幂的三种运算法则的综合运用
底数是2和103的乘积,虽然103是幂,但整体看不 是幂的乘方的形式 3.体积的结果如何计算?能不能找到一个运算性质?
活动导入 请同学们拿出你们的正方形折纸,沿着虚线剪开,裁剪前后的图形面 积会改变吗?
在草稿本上画出裁剪前的图形和裁剪后的图形, 并分别计算其面积.
你发现了什么?
情境导入
老师今天早上收到了一个神秘的礼物,大家看一下它是什么? 说起魔方,大家会想到哪些与它相关的数学知识呢? 大家都知道魔方的每一面都是正方形,现在已知老师的魔方棱 长为3a,它的体积怎么计算呢? 3a×3a×3a=27a3或(3a)3 请同学们观察这个式子((3a)3),它的底数是和、差、积、 商哪一种运算?
14.1整式的乘法
14.1.3 积的乘方
1. 通过探究积的乘方的运算法则,进一步体会和巩固幂的 意义,理解并准确掌握积的乘方的运算法则,培养学生 实事求是、严谨、认真、务实的学习态度.
2.通过练习巩固积的乘方的运算法则,进一步提高应用意 识和创新意识,增强学生解决问题的能力.
3.通过推导法则进一步训练学生的抽象思维能力,完成利 用幂的三种运算性质的混合运算,培养学生综合运用知 识的能力.
【题型二】积的乘方的逆用
例2:计算:2
0252
025×2
1
025
2 024.
解:2

人教版八年级数学上册14.1.3积的乘方教学设计

人教版八年级数学上册14.1.3积的乘方教学设计
3.提出问题:展示一个具体的数学问题,如计算一个长方体的体积,引导学生思考如何运用已有知识解决该问题,为新课的学习做好铺垫。
(二)讲授新知,500字
1.概念讲解:介绍积的乘方的定义,通过具体实例让学生理解积的乘方的意义。
2.运算法则:详细讲解积的乘方的运算法则,并通过典型例题演示运算步骤,强调注意事项。
8.教学评价
采用多元化的评价方式,关注学生在知识掌握、能力提升、情感态度等方面的全面发展。
四、教学内容与过程
(一)导入新课,500字
1.回顾旧知:请学生回顾有理数的乘方、幂的乘方等概念及运算法则,为新课的学习做好知识准备。
2.创设情境:通过生活中的实例,如面积的估算、体积的计算等,让学生感受积的乘方在实际问题中的应用,激发学生学习的兴趣。
例题:已知a^2+b^2=8,求(a+b)^4的值。
4.思考总结题:要求学生结合本节课的学习,总结积的乘方的运算规律及在实际问题中的应用,用自己的语言进行表述。
5.家长评价:请家长对孩子的作业完成情况进行评价,并在作业本上留言,以促进家校共育,共同关注学生的学习成长。
作业布置要求:
1.作业量适中,难度分层,使不同层次的学生都能得到锻炼和提高。
3.通过积的乘方学习,引导学生体会数学在现实生活中的广泛应用,增强学生的应用意识。
1.导入新课
通过回顾有理数乘方、幂的乘方等知识,为新课学习做好铺垫。
2.自主探究
学生自主探究积的乘方法则,教师进行指导。
3.合作交流
学生分组讨论,分享自己的发现,共同总结积的乘方规律。
4.例题讲解
教师选取典型例题,讲解积的乘方运算步骤,强调注意事项。
2.实践应用题:设计2-3道与生活实际相结合的题目,让学生运用积的乘方解决实际问题,提高学生学以致用的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
练习4:计算:
2(x3)2 ·x3-(3x3)3+(5x)2 ·x7
解:原式=2x6 ·x3-27x9+25x2 ·x7 =2x9-27x9+25x9 =0
注意:运算顺序是先乘方,再乘除, 最后算加减。
计算
2a3 ·a4·a+(a2)4+(-2a4)2
例:
计算
( 2)20 3
(1
1 )20 2
相同:底数不变 不同:同底数幂的乘法 指数相加
幂的乘方 指数相乘
积的乘方
(ab)n=?
计算: (3×4)2与32 × 42,你发现什么? 填空:
∵ (3×4)2= 122 = 144 32 ×42= 9×16 = 144
∴ (3×4)2 = 32 × 42
结论:(3×4)2与32 × 42相等
类比与猜想:
判断:
(1)(ab2)3=ab6
(× )
(2) (3xy)3=9x3y3
(× )
(3) (-2a2)2=-4a4
(× )
(4) (- 7)5 (3 )5 = (- 7× 3)5 = -1
37
37
(√ )
补充例题: 计算
[- 1 a2(a+b)]3 = (- 1 )3(a2)3(a+b)3
2
2
=- 1 a6(a+b)3
(5)原式=22 ×(102)2=4 ×104
(6)原式=(-3)3 ×(103)3=-27 ×109=-2.7 ×1010
练习3:计算:
(1)(-2x2y3)3 (2) (-3a3b2c)4
解:(1)原式=(-2)3 ·(x2)3 ·(y3)3 =-8x6y9
(2)原式=(-3)4 ·(a3)4 ·(b2)4 ·c4 = 81 a12b8c4

计 算
=1
= -1
(3)-82000×(-0.125)2001
= -82000×(-0.125)2000× (-0.125)
= -82000×0.1252000× (-0.125)
= (8×0.125)2000× (0.125) = 1× 0.125 = 0.125
⑴ (2 1 )2 42 4
(ab)3与a3b3 是什么关系呢?
(ab)3=(ab)·(ab)·(ab)= (aaa) ·(bbb) a3b3
=
乘方的意义 乘法交换律、乘方的意义 结合律
所以: (ab)3=a3b3
思考问题:积的乘方(ab)n =? 猜想结论:(ab)n=anbn (n为正整数)
n个ab
证明:(ab) n= (ab)·(ab)·····(ab)
n个a
n个b
=(a·a·····a)·(b·b·····b)
=anbn 因此可得:(ab)n=anbn (n为正整数)
积的乘方的运算法则: 积的乘方,把积的每个因式
分别乘方,再把所得的幂相乘。
(ab)n = anbn (n为正整数)
积积的的乘乘方方法法则则
你能说出法则中“因式”这 两个字的意义吗?
解:原式
=
2
20
3
20
3 2
= 2 3 20 3 2
= 120 =1
说明:逆用积 的乘方法则 anbn = (ab)n可 以解一些复杂 的计算。
探讨--如何计算简便?

用 (1)24×44×0.1254 (2)(-4)2005×(0.25)2005

则 进
= (2×4×0.125)4
= (-4×0.25)2005
⑵ - 0 2512 412
⑶ 0 52 25 0 125

1
2
3
23
3
2
(5)0.1256×26×46
练习5:探讨--如何计算简便?
(0.04)2004×[(-5)2004]2=?
解法一: (0.04)2004×[(-5)2004]2 =(0.22)2004 × 54008 =(0.2)4008 × 54008 =(0.2 ×5)4008 =14008 =1
练习:计算: (1) (ab)8
(2) (2m)3
(3) (-xy)5
(4) (5ab2)3
(5) (2×102)2 (6) (-3×103)3
解:(1)原式=a8·b8 (2)原式= 23 ·m3=8m3 (3)原式=(-x)5 ·y5=-x5y5 (4)原式=53 ·a3 ·(b2)3=125 a3 b6
1 3
)2010
×(-3)2010=?
课堂小结
am·an=am+n (am)n=amn (ab)n=anbn ( m、n都是正整数)
阅读 体验 ☞例题解析
例1计算:
(1)(3x)2 ;
(2)(-2b)5 ;
(3)(-2xy)4 ; (4)(3a2)n .
解:(1) (3x)2 =32x2 = 9x2 ;
(2) (-2b)5= (-2)5b5 = -32b5 ; (3) (-2xy)4 = (-2)4 x4 y4=16x4 y4 ; (4) (3a2)n = 3n (a2)n = 3n a2n 。
14.1.3积的乘方
回忆: 同底数幂的乘法法则:
am·an=am+n
其中m , n都是正整数
语言叙述:同底数幂相乘,底数不变, 指数相加
回忆: 幂的乘方法则:
(am)n=amn
其中m , n都是正整数
语言叙述:幂的乘方,底数不变, 指数相乘
同底数幂的乘法法则与幂的乘方法则有 什么相同之处和不同之处?
解法二: (0.04)2004×[(-5)2004]2
=(0.04)2004 × [(-5)2]2004
= (0.04)2004 ×(25)2004 =(0.04×25)2004 =12004
1
=1 都要转化为( a )n×an的形式
说明:逆用积的乘方法则 anbn = (ab)n可以
化简一些复杂的计算。如(
例2:计算:
(1) (-2a)2
(2) (-5ab)3
(3) (xy2)2
2 (2)原式= (-5)3a3b3 =-125a3b3 (3)原式= x2(y2)2 =x2y4 (4)原式=(-2)4x4(y3)4(z2)4 =16x4y12z8
(a+b)n,可以用积的 乘方法则计算吗? 即 (a+b)n= an·bn 成立吗? 又 (a+b)n= an+an 成立吗?
(ab)n = anbn (n为正整数)
提醒:1.积的因式可以是两个或多个:
(abc)n = anbncn (n为正整数)
2.公式可逆运用:
anbn = (ab)n (n为正整数)
相关文档
最新文档