2019高考数学(理)试卷真题分类汇编(WORD版含解析)

合集下载

2019年高考真题——理科数学(全国卷)Word版含答案

2019年高考真题——理科数学(全国卷)Word版含答案

2019年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i (A )2i (B )2i (C )12i (D )12i(2)已知集合{1,3,}A m ,{1,}B m ,A B A ,则m (A )0或3(B )0或3(C )1或3(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x ,则该椭圆的方程为(A )2211612x y (B )221128x y (C )22184x y (D )221124x y (4)已知正四棱柱1111ABCD A BC D 中,2AB ,122CC ,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2(B )3(C )2(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a ,515S ,则数列11{}n n a a 的前100项和为(A )100101(B )99101(C )99100(D )101100。

2019年高考真题和模拟题分项汇编数学(理):专题03 导数及其应用 (含解析).docx

2019年高考真题和模拟题分项汇编数学(理):专题03 导数及其应用 (含解析).docx

专题03导数及其应用1. [2019年高考全国III 卷理数】已知曲线y = ae x +xlnx 在点(1, ae)处的切线方程为y=2x+b,贝9 A. a = e, b = —1 B. a=e, b=l C. a — e _1, b = lD. a = e"1 > b = -\【答案】D【解析】T y' = ae* + lnx+l,切线的斜率 k = y' |Y=1= ae+1 = 2,a = e _1, 将(1,1)代入 y = 2x + b,得 2 + b = l,b = -l. 故选D.【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a, b 的等式,从而求解,属于常考题 型.了2 O XTTV 2d V* V 12. [2019年高考天津理数】已知tzeR ,设函数/(%)=' _ '若关于X 的不等式/(x)>0在R 上x-alnx, x>l.恒成立,则a 的取值范围为A. [0,1]B. [0,2]C. [0,e]D. [l,e]【答案】C【解析】当兀=1时,/(1) = 1 —2a + 2a = l>0恒成立;当 x<l 时,/(%) = x 2-2ajc + 2a>0^ 2a>^-恒成立,x-1令g(x) =—7x-1(1 —兀―1)2_ (1—兀)2—2(1 —兀)+ 1 1 — X 1 — X当1 —兀=丄,即x = 0时取等号,1-X贝0g(x) = ——1-X2a= 0,则a>0.Y当 x 〉l 时,f(x) = x-a\nx>0,即a< ---------------- 11 成立,lnx当x>e 时,h'(x) >0,函数〃(x)单调递增, 当0<x<e 时,h'(x) <0,函数力(x)单调递减, 则x = e 时,〃(x)取得最小值A(e) = e,•■- a<h(x)nin =e,综上可知,a 的取值范围是[0,e ]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成 立问题.x,x<03. (2019浙江)已知a,bwR ,函数/(%) = < 1 1 2.若函数f(x)-ax-b 恰有3个零点, —X ——(Q + 1)兀 + ax, X > 0 13 2A. a<-\, b<0 C. tz>—1, Z?<0D. a>—1, Z?>0【答案】C【解析】当 x<0 时,y=f (x) -ax - b=x - ax - b= (1 - a) x - b=0,得 x= 丿丿 l-a则y=f (x) -ax-b 最多有一个零点;当 x>0 时,y=f (兀)-ax - b= -x 3—- (a+1) x^+ax - ax - b= -x 3—- (a+1) x 2 - b, —)J3 2 3 2y = x 2-(€l + l)x,当 a+lwo,即來-1 时,y>0, y=f (x) -ax-b 在[0, +oo)上单调递增, 则y =f -ax-b 最多有一个零点,不合题意;当a+l>0,即°>-1时,令y'>0得兀丘@+1, +oo),此时函数单调递增, 令WVO 得用[0, d+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y=f (x) -ax-b 恰有3个零点o 函数y=f (x) - ax - b 在(-oo, 0)上有一个零点,在[0, +oo)令〃(x)=—, lnx则 h\x)=lnx-1(In x)2 B. a<-l, b>0上有2个零点,如图:b—b>01-a (a + l)3 - j (a + l)(a + l)2- b<0解得b<0, 1 - a>0, b> -- (a+1) 3,6则a>-l, b<0.故选C・【名师点睛】本题考查函数与方程,导数的应用.当兀V0时,y=f (x) -ax - b=x - ax - b= (l-°) x~ b最多有一个零点;当空0时,y=/(x) -ax-b=^-\ (a+1) - b,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.[2019年高考全国I卷理数】曲线y = 3(x2+x)e x在点(0,0)处的切线方程为_________________ .【答案】3x-y-0【解析】y = 3(2x+l)e A + 3(x2 + x)e r = 3(x2 +3x+l)e r,所以切线的斜率k = y' |x=0=3,则曲线y = 3(x2 + x)^在点(0,0)处的切线方程为y = 3x,即3x — y = 0 .【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误•求导要“慢”, 计算要准,是解答此类问题的基本要求._ 45.[2019年高考江苏】在平面直角坐标系xOy中,P是曲线y = x + —(无>0)上的一个动点,则点P到直线x+ y = 0的距离的最小值是一▲•【答案】44 4【解析】由y = x (x〉0),得丁' = 1 ——,X X4 4设斜率为一1的直线与曲线_y = x + -(x>0)切于(x0,x0+—),x 勺由1一一 =一1得x0 = A/2(x0=-A/2舍去),x o曲线y = x + -(x>o)±,点P(V2,3A/2)到直线x+y = o的距离最小,最小值为故答案为4 .【名师点睛】本题考查曲线上任意一点到己知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.6.[2019年高考江苏】在平面直角坐标系中,点A在曲线y=lnr上,且该曲线在点A处的切线经过点(-e, -l)(e 为自然对数的底数),则点A的坐标是▲.【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点A(x0,y0),则y Q =lnx0.又# =丄,X则曲线y = InX在点A处的切线为y - %=丄(X —勺),即yin”。

2019年高考理科数学(全国1卷)答案详解(附试卷)

2019年高考理科数学(全国1卷)答案详解(附试卷)

P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)

sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为

2019年高考数学真题分类汇编:集合.doc

2019年高考数学真题分类汇编:集合.doc

2019 年高考数学真题分类汇编专题 01:集合一、单选题1.(2019?浙江)已知全集 U={-1 ,0,1,2,3} ,集合 A={0,1,2} ,B={-1 ,0,1} ,则=()A. {-1}B. {0 ,1}C. {-1 ,2,3}D. {-1 , 0,1,3}【答案】 A2.(2019?天津)设集合,则()A.{2}B.{2 ,3}C.{-1 ,2,3}D.{1 ,2,3,4}【答案】 D3.(2019?全国Ⅲ)已知集合 A={-1 ,0,1,2} ,B={x|x 2≤1} ,则 A∩B= ()A.{-1 ,0,1}B.{0,1}C.{-1 ,1}D.{0,1,2}【答案】 A4.(2019?卷Ⅱ)已知集合 A={x|x>-1} ,B={x|x<2} ,则 A∩B=()A. (-1 ,+∞)B. ( - ∞, 2)C.( -1 ,2)D.【答案】 C5. (2019?卷Ⅱ)设集合 A={x|x 2-5x+6>0} ,B={ x|x-1<0},则A∩B= ()A.(- ∞, 1)B.(-2,1)C.(-3 ,-1)D.(3,+∞)【答案】 A6. (2019?北京)已知集合A={x|-1<x<2} ,B={x|x>1} ,则 AUB= ()A. (-1 ,1)B. (1,2)C.(-1 ,+∞)D.(1,+∞)【答案】 C7.(2019?卷Ⅰ)已知集合 U=,A=,B=则=()A. B.C. D.【答案】 C8. (2019?卷Ⅰ)已知集合M=,N=,则M N=()A. B.C. D.【答案】 C9.(2019?全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著。

某中学为了了解本校学生阅读四大名著的情况,随机调查了 100 位学生,其中阅读过《西游记》或《红楼梦》的学生共有 90 位,阅读过《红楼梦》的学生共有 80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8【答案】 C二、填空题10. (2019?江苏)已知集合,,则________.【答案】。

2019年四川省高考数学理科试题含答案(Word版)

2019年四川省高考数学理科试题含答案(Word版)

2019年普通高等学校招生全国统一考试(四川卷)数学(理工类)本试卷分第I 卷(选择题)和第II 卷(非选择题),第I 卷1至2页,第II 卷3至4页,共4页,满分150分,考试时间120分钟,考生作答时,须将答案答在答题卡上,在本试题卷、草稿上答题无效,考试结束 后,将本试题卷和答题卡一并交回。

第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1.设集合{|22}A x x =-≤≤,Z 为整数集,则AZ 中元素的个数是( ) (A )3(B )4(C )5(D )62.设i 为虚数单位,则6(i)x +的展开式中含x 4的项为( )(A )-15x 4(B )15x 4(C )-20i x 4(D )20i x 43.为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( ) (A )向左平行移动π3个单位长度(B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度(D )向右平行移动π6个单位长度 4.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )(A )24(B )48(C )60(D )725.某公司为激励创新,计划逐年加大研发资金投入.若该公司2019年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg2≈0.30)( A )2018年(B )2019年(C )2020年(D )2021年6.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n ,x 的值分别为3,2,则输出v 的值为( )(A )9 (B )18 (C )20 (D )357.设p :实数x ,y 满足(x –1)2+(y –1)2≤2,q :实数x ,y 满足1,1,1,y x y x y ≥-⎧⎪≥-⎨⎪≤⎩则p 是q 的( )(A )必要不充分条件(B )充分不必要条件(C )充要条件(D )既不充分也不必要条件8.设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A )33(B )23(C )22(D )1 9.设直线l 1,l 2分别是函数f (x )=ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)10.在平面内,定点A ,B ,C ,D 满足DA =DB =DC ,DA DB =DB DC =DC DA =-2,动点P ,M 满足AP =1,PM =MC ,则2BM 的最大值是( ) (A )434(B )494(C )37634+(D )372334+第II卷(非选择题100分)二、填空题:本大题共5小题,每小题5分,共25分。

(完整word)2019年高考试题汇编理科数学--数列,推荐文档

(完整word)2019年高考试题汇编理科数学--数列,推荐文档

解答: 13,设等比数列公比为q3、25•- (ag )ag••• q 3• S 121 …S 53(1)证明:a nb n 是等比数列,a n b n 是等差数列;(2 )求a n 和b n 的通项公式. 答案: (1) 见解析 1 x n 11 x n 1(2)a n () n,b n () n2222解析:(1)将 4a n 1 3a n b n 4 , 4b n 1 3b n a n 4 相加可得 4a n1 4b n 1 3a n 3b n a n b n ,11 整理可得a n 1 b n 1丄(a n b n ),又玄1 Q 1,故a . b n 是首项为1,公比为1的等比数列22将 4a n 1 3a n b n 4, 4b n 13b n a n 4 作差可得 4a n14b n13a n 3b n a . b n 8,整理可得a n 1 b n 1a nb n 2,又a 1 Q 1,故a .b n 是首项为1,公差为2的等差数列1 1A. a n 2n 5B.3n 3n 10 CS2n 28nD.S n■In 2 2n 2答案:A解析:S 4 4冃 6d 0a 1 3 5, S n2依题意有 可得 a nn 4n .3S 31 4d 5 d 2 n(2019全国1理)9•记S n 为等差数列 a n 的前n 项和•已知S 40 , a 5 5,则(2(2019全国1理)14.记S n 为等比数列 a n 的前 n 项和,a 436,则 S5答案: S 51213 2019全国2理)19.已知数列a n 和b n满足a 10 , 4a n 1 3a n b n 4, 4b n 1 3b n a n 4.-31 2 3436(2)由a n b n是首项为1 ,公比为?的等比数列可得a n b n ()"①;由a n bn 是首项为1公差为2的等差数列可得a n b n 2n 1②;【解析】 【分析】首先确定公差,然后由通项公式可得 a 5的值,进一步研究数列中正项 ?负项的变化规律,得到和的最小值.【详解】等差数列 a n 中,8s 5a 3 10,得a 3 2& 3,公差da 3 a ?1, a§% 2d 0,由等差数列a n 的性质得n 5时,a n 0, n 6时,a n 大于0,所以S n 的最小值为S 4或S 5,即为10.①②相加化简得a n(!)n n 1,①②相减化简得b n 2 2(2019全国3理)5.已知各项均为正数的等比数列的前4项和为15,且a s 3a 3 4印,则a ?()A. 16B. 8 答案: C解答:C. 4D.设该等比数列的首项 a i ,公比由已知得,4a©3dq 24a i , 因为a 0且q 0, 则可解得2,又因为 a i (1q 3) 15,即可解得c 1,则4.(2019全国3理)14.记S n 为等差数列 a n 的前n 项和,若q0, a 2 3a ,则 3°S 5答案:4解析:设该等差数列的公差为d 2a 1 a 1 0,d 0 ,10 a 1 a 10S 0____________2S 55 a 1 a 522 2a 1 9d3 4.2a 1 4d 5d(2019北京理)10.设等差数列 的前n 项和为S n,若a 2=-3 ,S s =-10,则a s = ,S n 的最小值为【答案】 (1). 0. (2). -10.【点睛】本题考查等差数列的通项公式?求和公式?等差数列的性质,难度不大,注重重要知识?基础知识?基本运算能力的考查a i (2019北京理)20.已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i l<i2<・・Vm),若a h a2则称新数列a h, a i2, , a m为{a n}的长度为m的递增子列•规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(I)写出数列1 , 8, 3, 7, 5, 6, 9的一个长度为4的递增子列;(H)已知数列{a n}的长度为p的递增子列的末项的最小值为a m o,长度为q的递增子列的末项的最小值为a n0.若p<q,求证:a m°<a n°;(川)设无穷数列{a n}的各项均为正整数,且任意两项均不相等若{ a n}的长度为s的递增子列末项的最小值为2s -, 且长度为S末项为2s-1的递增子列恰有2s-1个(s=1 , 2,…),求数列{a n}的通项公式.【答案】(I )1,3,5,6.(n )见解析; (川)见解析.【解析】【分析】(I )由题意结合新定义的知识给出一个满足题意的递增子列即可;(n )利用数列的性质和递增子列的定义证明题中的结论即可;(川)观察所要求解数列的特征给出一个满足题意的通项公式,然后证明通项公式满足题中所有的条件即可•【详解】(I )满足题意的一个长度为4的递增子列为:1,3,5,6.(n)对于每一个长度为q的递增子列a n a2丄a q,都能从其中找到若干个长度为p的递增子列色总丄a p,此时a p a q ,设所有长度为q的子列的末项分别为:a q, ,a q2,a q3 ,L ,所有长度为p的子列的末项分别为:a p1,a p2,a p3,L ,则a n0 min a q1,a q2,a q3,L ,注意到长度为P的子列可能无法进一步找到长度为q的子列,故a m0 min a p1,a p2,a p3,L ,据此可得:a m0a n0n 1, n为偶数(川)满足题意的一个数列的通项公式可以是a n 斗才来朴2,1,4,3,6,5,8,7,L ,n 1,n为奇数面说明此数列满足题意很明显数列为无穷数列,且各项均为正整数,任意两项均不相等.长度为s 的递增子列末项的最小值为2s-1,下面用数学归纳法证明长度为s 末项为2s-1 的递增子列恰有2s 1个s 1,2,L :当n 1 时命题显然成立,假设当n k时命题成立,即长度为k末项为2k-1的递增子列恰有21个,则当n k 1时,对于n k 时得到的每一个子列a s1,a s2,L ,a s k 1,2k 1,可构造:aq,a s2丄,a s「2k 1,2 k 1 1和a5^,a S2,L ,a^l,2k,2 k 1 1两个满足题意的递增子列,则长度为k+1 末项为2k+1 的递增子列恰有 2 2k 12k2k 1 1个,n 1, n为偶数综上可得,数列a n、,卄沁.2,1,4,3,6,5,8,7,L是一个满足题意的数列的通项公式•n 1, n为奇数注:当s 3时,所有满足题意的数列为:2,3,5 , 1,3,5 , 2,4,5 , 1,4,5 ,当s 4 时,数列2,3,5 对应的两个递增子列为:2,3,5,7 和2,3,6,7 .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.2019天津理) 19.设a n 是等差数列,b n 是等比数列.已知a1 4,b1 6,b2 2a2 2,b3 2a3 4.(I)求a n和b n的通项公式;(n)设数列q满足G 1,c n X 2 J 2「其中k Nn 1 n b k,n 2k ,i )求数列a2n c2n1 的通项公式;2nii )求a i c i n Ni1答案】(I )a n 3n 1 ; b n 3 2n(n )(i )a2n c2n 1 9 4n1 (ii )* 2n 1n 1 *aqnN 27 25 2 n 12 nNi 1【解析】 【分析】(I )由题意首先求得公比和公差,然后确定数列的通项公式即可; (n )结合(I )中的结论可得数列a 2n c 2n 1的通项公式,结合所得的通项公式对所求的数列通项公式进行等2n价变形,结合等比数列前n 项和公式可得aG 的值.i 12 4 d 26 2d,解得2 4 2d 4 12 4d故a n 4 (n 1) 33n1 ,b n6 2n13 2n.所以,a n的通项公式为 a n 3n 1 , b n的通项公式为b n3 2n (n )( i ) a 2n C 2n 1 a ?n b n 1 3 2n 1 3 2n 19 4n 1所以,数列 a ?n c?n1 的通 项公式 :为a2nc 2n 19 4n 12n 2n2n2n(ii )a &a i a C i 1a ia c 2i1i 1i 1i 1i 12n 2n 1n2 n4-39 412i 14 1 4n3 ?2 n5 2n 19n1 427 _2n•1J 112N*25 2n n【点睛】本题主要考查等差数列 ?等比数列的通项公式及其前 n 项和公式等基础知识.考查化归与转化思想和数列 求和的基本方法以及运算求解能力.【详解】(I )设等差数列a n 的公db n 的公比为q .依题意得6q6q 2(2019上海)18•已知数列{a n } , a 1 3,前n 项和为S n •(1)若{an }为等差数列,且 a 4 15, 求S n ;(2)若{a n }为等比数列,且 lim n S n 12,求公比 q 的取值范围 【解答】解:(1) Q a 4 a 3d 3 3d 15 ,d 4 ,n(n 1),S n 3n4 2n 2 n;2lim S n 存在,nlim 3(^ 2 ,n1 q 1 q3 4公比q 的取值范围为(1 , 0) (0 , 3).42综上,d -或者d3Hm S n存在, lim S n n (2019上海)21.已知等差数列{务}的公差d (0, ],数列{b n }满足 b n sin (a n ),集合 S x|xb n ,n2 、(1 )若a 1 0,d 一,求集合 30,d —,3{乜,0, △.2 2根据三角函数线,①等差数列 {a n }的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时此时d —,3(2)若a 1,求d 使得集合 2 S 恰好有两个(3)若集合S 恰好有三个元素: b n T b n , T 是不超过7的正整数,求 T 的所有可能的值.【解答】解:(1) Q 等差数列{a n }的公差d (0,],数列{b n }满足 b n sin (a n ),集合 S x|xb n ,n当a 1集合S (2) Q,数列{b n }满足 b n sin (a .),2集合S x|x N *恰好有两个元素,如图:②a 1终边落在OA 上,要使得集合 S 恰好有两个元素,可以使 a 2, a 3的终边关于y 轴对称,如图OB , OC ,(3)①当T 3 时,b n 3 b n,集合S {bl,b2, b3},符合题意.②当T 4 时,b n 4 b n ,sin(a n 4d) sina. a n 4d a n 2k ,或者a n 4d 2k a n ,4d a n 2k,又k 1,2当k1时满足条件,此时S {,1, 1}.③当T 5时,b n 5b n,si n(a n5d)sina n,故k1,2.当k1时,S{sin—,1,sin}满足题意1010④当T 6时,b n 6b n,sin (an6d)sina n,a na n等差数列{a n}的公差d (0,],故a n5d a n 2k ,或者a n 5d 2k a n,因为 d (0 ,所以6d a n 2k 或者a n 6d 2k a n,d (0,1 , 2, 3.1时,S {-^O, —3},满足题意.2 2⑤当T 7 时,b n 7 b n,si n(a n 7d) si na n si na n,所以a n 7d a n 2k ,或者a n 7d 2k a n,d (0,故k 1 , 2, 31时,因为b i ~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然有a m a n 2 ,d m 7,不符合条件.k 2时,因为b i~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然有a m a n 2 ,d n不是整数,不符合条件.k 3时,因为bi ~ b7对应着3 个正弦值,故必有一个正弦值对应着3个点,必然有a m a n—,或者d7—,此时,m n均不是整数,不符合题意.7综上,T3,4,5,6.(2019江苏)8.已知数列{a n}( n N*)是等差数列,S n是其前n项和若a2^ 兎0,S9 27 ,则Q的值是 _____________________ 【答案】16【解析】【分析】由题意首先求得首项和公差,然后求解前8项和即可.a 2a 5CBa 1 d a-i 4d7d 0【详解】由题意可得:9 8S99a 1 9 8d227解得: a 1 51 ,则 S 8 8a 1 8 7d40 28 216.d 22【点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应 用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建a 1, d 的方程组.(2019江苏)20.定义首项为1且公比为正数的等比数列为“M—数列”.(1)已知等比数列{a n }满足:a ?a 4 a 5,a 3 4a ? 4印 0 ,求证:数列{a n }为“M—数列”;u . 1 2 2(2)已知数列{b n }满足:b 1 1,S b b ,其中S 为数列{b n }的前n 项和.S n b n b n 1① 求数列{b n }的通项公式;② 设m 为正整数,若存在 “M—数列” {} (n € N *),对任意正整数k ,当k 呦 时,都有C k b k q 1成立,求m 的 最大值.【答案】(1)见解析; (2[① b n = n n N * :② 5. 【解析】 【分析】(1 )由题意分别求得数列的首项和公比即可证得题中的结论; (2)①由题意利用递推关系式讨论可得数列{b n }是等差数列,据此即可确定其通项公式;②由①确定b k 的值,将原问题进行等价转化,构造函数,结合导函数研究函数的性质即可求得【详解】(1)设等比数列{a n }的公比为q ,所以a 1^0, q 丰0.因此数列{a n }为M —数列”1 22 (2) ①因S n—,所以b nb nbn11 2 2由b| 1,S 1th 得1 1 ,则 b 22.1由2 2 得 S nb n b n 1m 的最大值.a 2&4 a s由a 3 4a : 4ci|。

2019年山东省高考数学理科试题含答案(Word版)

2019年山东省高考数学理科试题含答案(Word版)

2019年山东省高考数学理科试题含答案(Word版)2019年山东卷数学理科试卷本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试用时120分钟。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.在答题卡和试卷规定的位置上,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写。

2.第Ⅰ卷每小题选出答案后,在答题卡上对应题目的答案标号处涂黑,如需改动,用橡皮擦干净后再涂其他答案标号。

答案写在试卷上无效。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上。

如需改动,先划掉原来的答案,然后再写上新的答案。

不能使用涂改液、胶带纸、修正带。

不按要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:若复数z满足2z+z=3-2i,其中i为虚数单位,则z=()A)1+2i(B)1-2i(C)-1+2i(D)-1-2i设集合A={y|y=2,x∈R},B={x|x-1<0},则A)(-1,1)(B)(0,1)(C)(-1,+∞)(D)(0,+∞)某高校调查了200名学生每周的自时间(单位:小时),制成了如图所示的频率分布直方图,其中自时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30]。

根据直方图,这200名学生中每周的自时间不少于22.5小时的人数是()A)56(B)60(C)120(D)140若变量x,y满足x>0,y>0,xy2,2x3y9,则x2y2的最大值是()A)4(B)9(C)10(D)12一个由半球和四棱锥组成的几何体,其三视图如图所示。

则该几何体的体积为()A)(1/3+2/3)π(B)(1/3+2/3)π(C)122/3+6π(D)1+6π已知直线a和直线b分别在两个不同的平面α和β内,则直线a和直线b相交是平面α和平面β相交的(C)充要条件。

海南省2019年高考理科数学试题及答案(Word版)

海南省2019年高考理科数学试题及答案(Word版)

高考理科数学试题及答案(考试时间:120分钟 试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.31ii+=+( ) A .12i + B .12i - C .2i + D .2i -2. 设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,53. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏4. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部 分所得,则该几何体的体积为( ) A .90π B .63π C .42π D .36π5. 设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )A .15-B .9-C .1D .96. 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种7. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩8. 执行右面的程序框图,如果输入的1a =-,则输出的S =( )A .2 B .3 C .4 D .59. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的 离心率为( )A .2B .3C .2D .2310. 已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB与1C B 所成角的余弦值为( )A .3 B .15 C .10 D .3 11. 若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.112. 已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是( )A.2-B.32-C. 43- D.1-二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019高考数学(理)试卷真题分类汇编(WORD 版含解析)目录一、选择题.................................................................................................................... 1 二、填空题.................................................................................................................. 39 三、解答题 (63)一、选择题1.【来源】2019年高考真题——数学(浙江卷)设,a b R ∈,数列{a n }中,21,n n n a a a a b +==+,b N *∈ ,则( )A. 当101,102b a => B. 当101,104b a => C. 当102,10b a =-> D. 当104,10b a =->答案及解析:1. A 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想的考查.本题从确定不动点出发,通过研究选项得解.【详解】选项B :不动点满足2211042x x x ⎛⎫-+=-= ⎪⎝⎭时,如图,若1110,,22n a a a ⎛⎫=∈< ⎪⎝⎭,排除如图,若a 为不动点12则12n a =选项C:不动点满足22192024x x x⎛⎫--=--=⎪⎝⎭,不动点为ax12-,令2a=,则210na=<,排除选项D:不动点满足221174024x x x⎛⎫--=--=⎪⎝⎭,不动点为12x=±,令122a=±,则11022na=±<,排除.选项A:证明:当12b=时,2222132431113117,,12224216a a a a a a=+≥=+≥=+≥≥,处理一:可依次迭代到10a;处理二:当4n≥时,221112n n na a a+=+≥≥,则117117171161616log2log log2nn n na a a-++>⇒>则12117(4)16nna n-+⎛⎫≥≥⎪⎝⎭,则626410217164646311114710161616216a⨯⎛⎫⎛⎫≥=+=++⨯+⋯⋯>++>⎪ ⎪⎝⎭⎝⎭.故选A【点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a的可能取值,利用“排除法”求解.2.【来源】2019年高考真题——数学(浙江卷)已知,a b R∈,函数32,0()11(1),032x xf xx a x ax x<⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b=--恰有三个零点,则()A. 1,0a b<-< B. 1,0a b<->C. 1,0a b>-> D. 1,0a b>-<答案及解析:2. D 【分析】本题综合性较强,注重重要知识、基础知识、运算求解能力、分类讨论思想及数形结合思想的考查.研究函数方程的方法较为灵活,通常需要结合函数的图象加以分析. 【详解】原题可转化为()y f x =与y ax b =+,有三个交点.当BC AP λ=时,2()(1)()(1)f x x a x a x a x '=-++=--,且(0)0,(0)f f a ='=,则(1)当1a ≤-时,如图()y f x =与y ax b =+不可能有三个交点(实际上有一个),排除A ,B(2)当1a >-时,分三种情况,如图()y f x =与y ax b =+若有三个交点,则0b <,答案选D下面证明:1a >-时,BC AP λ=时3211()()(1)32F x f x ax b x a x b =--=-+-,2()(1)((1))F x x a x x x a '=-+=-+,则(0)0 ,(+1)<0F >F a ,才能保证至少有两个零点,即310(1)6b a >>-+,若另一零点在0<【点睛】遇到此类问题,不少考生会一筹莫展.由于方程中涉及,a b 两个参数,故按“一元化”想法,逐步分类讨论,这一过程中有可能分类不全面、不彻底..3.【来源】2019年高考真题——数学(浙江卷)设三棱锥V -ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成角为α,直线PB 与平面ABC 所成角为β,二面角P -AC -B 的平面角为γ,则( ) A. ,βγαγ<< B. ,βαβγ<< C. ,βαγα<<D. ,αβγβ<<答案及解析:3. B 【分析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.【详解】方法1:如图G 为AC 中点,V 在底面ABC 的投影为O ,则P 在底面投影D 在线段AO 上,过D 作DE 垂直AE ,易得//PE VG ,过P 作//PF AC 交VG 于F ,过D 作//DH AC ,交BG 于H ,则,,BPF PBD PED α=∠β=∠γ=∠,则c o s c o s P F E G D HB D P B P B P BP B α===<=β,即αβ>,tan tan PD PDED BDγ=>=β,即γ>β,综上所述,答案为B.方法2:由最小角定理βα<,记V AB C --的平面角为γ'(显然γ'=γ) 由最大角定理β<γ'=γ,故选B.法2:(特殊位置)取V ABC -为正四面体,P 为VA 中点,易得cos sin sin α=⇒α=β=γ=B. 【点睛】常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.4.【来源】2019年高考真题——数学(浙江卷)在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且0)a ≠的图象可能是( ) A. B.C. D.答案及解析:4. D 【分析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数xy a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数xy a =过定点(0,1)且单调递增,则函数1x y a=过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论a 的不同取值范围,认识函数的单调性.5.【来源】2019年高考真题——数学(浙江卷) 若0,0ab >>,则“4a b +≤”是 “4ab ≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件答案及解析:5.A 【分析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当0, 0a >b >时,a b +≥,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.6.【来源】2019年高考真题——数学(浙江卷)祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高,若某柱体的三视图如图所示,则该柱体的体积(cm 3)是( )A. 158B. 162C. 182D. 324答案及解析:6. B 【分析】本题首先根据三视图,还原得到几何体—棱柱,根据题目给定的数据,计算几何体的体积.常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 【点睛】易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.7.【来源】2019年高考真题——数学(浙江卷)若实数x ,y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是( )A. -1B. 1C. 10D. 12答案及解析:7. C 【分析】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.【详解】在平面直角坐标系内画出题中的不等式组表示的平面区域为以(-1,1),(1,-1),(2,2)为顶点的三角形区域(包含边界),由图易得当目标函数=3+2z x y 经过平面区域的点(2,2)时,=3+2z x y 取最大值max 322210z =⨯+⨯=.【点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错.8.【来源】2019年高考真题——数学(浙江卷)渐近线方程为0x y ±=的双曲线的离心率是( )B. 1D. 2答案及解析:8. C 【分析】本题根据双曲线的渐近线方程可求得1a b ==,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】因为双曲线的渐近线为0x y ±=,所以==1a b ,则c ==的离心率ce a==【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.9.【来源】2019年高考真题——数学(浙江卷)已知全集U ={-1,0,1,2,3},集合A ={0,1,2},B ={-1,0,1},则(C U A )∩B =( ) A. {-1} B. {0,1} C. {-1,2,3}D. {-1,0,1,3}答案及解析:9. A 【分析】本题借根据交集、补集的定义可得.容易题,注重了基础知识、基本计算能力的考查. 【详解】={1,3}U C A -,则(){1}U C A B =-【点睛】易于理解集补集的概念、交集概念有误.10.【来源】2019年高考真题——理科数学(北京卷)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A. ①B. ②C. ①②D. ①②③答案及解析:10. C 【分析】将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.【详解】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到原. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.11.【来源】2019年高考真题——理科数学(北京卷)设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“||||AB AC BC +>”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件D. 既不充分也不必要条件答案及解析:11. C 【分析】由题意结合向量的减法公式和向量的运算法则考查充分性和必要性是否成立即可. 【详解】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.12.【来源】2019年高考真题——理科数学(北京卷)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为A. 1010.1B. 10.1C. lg10.1D. 10–10.1答案及解析:12. D 【分析】 先求出12lgE E ,然后将对数式换为指数式求12E E ,再求12E E . 【详解】两颗星的星等与亮度满足12125lg 2E m m E -= , 令2 1.45m =- ,126.7m =- ,()1212221g( 1.4526.7)10.155E m m E =-=-+=, 10.110.112211010E EE E -=⋅= , 故选D.13.【来源】2019年高考真题——理科数学(北京卷)若x ,y 满足|1|x y ≤-,且y ≥−1,则3x+y 的最大值为 A. −7B. 1C. 5D. 7答案及解析:13. C 【分析】首先画出可行域,然后结合目标函数的几何意义确定其最值即可. 【详解】由题意1,11yy x y -≤⎧⎨-≤≤-⎩作出可行域如图阴影部分所示.设3,3z x y y z x =+=-,当直线0:3l y z x =-经过点()2,1-时,z 取最大值5.故选C.【点睛】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大题,注重了基础知识、基本技能的考查.14.【来源】2019年高考真题——理科数学(北京卷)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A. a 2=2b 2B. 3a 2=4b 2C. a =2bD. 3a =4b答案及解析:14. B 【分析】由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式. 【详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.15.【来源】2019年高考真题——理科数学(北京卷)已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是A.15B.25C.45D.65答案及解析:15. D 【分析】首先将参数方程化为直角坐标方程,然后利用点到直线距离公式求解距离即可.【详解】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l 的距离65d ==,故选D. 16.【来源】2019年高考真题——理科数学(北京卷)执行如图所示的程序框图,输出的s 值为A. 1B. 2C. 3D. 4答案及解析:16. B 【分析】根据程序框图中的条件逐次运算即可.【详解】运行第一次, =1k ,2212312s ⨯==⨯- ,运行第二次,2k = ,2222322s ⨯==⨯- ,运行第三次,3k = ,2222322s ⨯==⨯- ,结束循环,输出=2s ,故选B .17.【来源】2019年高考真题——理科数学(北京卷)已知复数z =2+i ,则z z ⋅=C. 3D. 5答案及解析:17. D 【分析】题先求得z ,然后根据复数的乘法运算法则即得. 【详解】∵z 2i,z z (2i)(2i)5=+⋅=+-= 故选D. 18.【来源】2019年高考真题——理科数学(天津卷)已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为A.[0,1]B.[0,2]C.[0,e ]D.[1, e ]答案及解析:18. C∵(0)0f ≥,即0a ≥,(1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->, 当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立;若ln 0x a x -≥(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故max ()()g x g e e ==,所以a e ≤。

相关文档
最新文档