吕荣值和渗透系数

吕荣值和渗透系数
吕荣值和渗透系数

吕荣值(q )表示使用灌浆材料作为试验流体时地层的渗透系数。吕荣(Lugeon),1吕荣为1MPa 作用下1米试段内每分钟注入1L 水量。(在100m 的水柱压力下,每米长度标准钻孔内,历时10min ,平均每分钟压入岩石裂隙中的水量。)定义公式,q=Q/PL ,其中,Q 为压入流量,单位L/min ;P 为作用于试段内的全部压力,单位MPa ;L 为试段长度,单位m 。

渗透系数又称水力传导系数(hydraulic conductivity)。在各向同性介质中,它定义为单位水力梯度下的单位流量,表示流体通过孔隙骨架的难易程度,表达式为:κ=k ρg/η,式中k 为孔隙介质的渗透率,它只与固体骨架的性质有关,κ为渗透系数;η为动力粘滞性系数;ρ为流体密度;g 为重力加速度。在各向异性介质中,渗透系数以张量形式表示。渗透系数愈大,岩石透水性愈强。强透水的粗砂砾石层渗透系数〉10米/昼夜;弱透水的亚砂土渗透系数为1~0.01米/昼夜;不透水的粘土渗透系数<0.001米/昼夜.据此可见土壤渗透系数决定于土壤质地。

地下水流速的确定:在地下水等水位图上的地下水流向上,求出相邻两等水位线间的水力梯度,然后利用公式计算地下水的流速V=kI 。式中:V---地下水的渗流速度(m/d ) K---渗透系数(m/d ) I----水力梯度

表示岩土透水性能的数量指标。亦称水力传导度。可由达西定律求得:q =KI ,式中q 为单位渗流量,也称渗透速度(米/日);K 为渗透系数(米/日);I 为水力坡度,无量纲。可见,当I =1时,q =K ,表明渗透系数在数值上等于水力坡度为 1时,通过单位面积的渗流量。岩土的渗透系数愈大,透水性越强,反之越弱。

透水率q 和渗透系数K 之间不是简单的对应关系,各种条件下通过q 计算K 的公式也很多。SL 31-2003《水利水电工程钻孔压水试验规程》推荐:当试段位于地下水位以下,透水率在10 Lu 以下,P—Q 曲线为A 型(层流型)时,可用下式求算渗透系数 r

HL Q k 1ln 2π=

式中:K —地层渗透系数,m/d;

Q —压水流量,m 3/d ;H—试验压力,以水头表示,m;

L —试验段长度,m ;

r —钻孔半径,m 。

按照上式,如假定压水试验的压力为1 MPa (即100 m 水头),每米试段的压人流量为

1 L/min (即1.44 m 3/d ),试段长度为5m 。即在透水率为1 Lu 的条件下,以孔径为56~150 mm

计算得的渗透系数为(1.37~1.11)×10-5 cm/s。由此可见,作为近似关系,1 Lu相当于渗透系数为10-5cm/s。

严格地讲,渗透系数K与单位吸水量w间并无固定关系。但有时为设计计算方便起见,通过实践大致有以下几种认识:

(1)K=(1.5~2)×w(K的单位为m/d,w的单位为L/min.m.m)

例如:某大坝基岩透水性,单位吸水量w平均值为0.08L/min.m.m,试求其相应的渗透系数K。

若采用K=2w时,则K=2×0.08=0.16(m/d)=1.85×10-4cm/s。

采用K=1.5w时,则

K=1.5×0.08=0.12(m/d)=1.39×10-4cm/s。

(2)国外资料认为1Lu=1.3×10-5cm/s。

(3)国外有些学者和单位给出了渗透系

数K与吕荣值的相关关系图,见下图。由图

中可以看出:当K=10-7m/s(即10-5cm/s)时,吕

荣值大约为1~3;当K=10-5m/s(即10-3cm/s)

时,各曲线的吕荣值均大于30。

吕荣值和渗透系数K之间关系

吕荣值和渗透系数K之 间关系 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

吕荣值(q)表示使用灌浆材料作为试验流体时地层的渗透系数。吕荣(Lugeon),1吕荣为1MPa作用下1米试段内每分钟注入1L水量。(在100m的水柱压力下,每米长度标准钻孔内,历时10min,平均每分钟压入岩石裂隙中的水量。)定义公式,q=Q/PL,其中,Q为压入流量,单位L/min;P为作用于试段内的全部压力,单位M P a;L为试段长度,单位m。 渗透系数又称水力传导系数(hydraulic conductivity)。在各向同性介质中,它定义为单位水力梯度下的单位流量,表示流体通过孔隙骨架的难易程度,表达式为:κ=kρg/η,式中k为孔隙介质的渗透率,它只与固体骨架的性质有关,κ为渗透系数;η为动力粘滞性系数;ρ为流体密度;g为重力加速度。在各向异性介质中,渗透系数以张量形式表示。渗透系数愈大,岩石透水性愈强。强透水的粗砂砾石层渗透系数〉10米/昼夜;弱透水的亚砂土渗透系数为1~米/昼夜;不透水的粘土渗透系数<米/昼夜.据此可见土壤渗透系数决定于土壤质地。 地下水流速的确定:在地下水等水位图上的地下水流向上,求出相邻两等水位线间的水力梯度,然后利用公式计算地下水的流速V=kI 。式中:V---地下水的渗流速度(m/d)K---渗透系数(m/d)I----水力梯度 表示岩土透水性能的数量指标。亦称水力传导度。可由达西定律求得:q=KI,式中q为单位渗流量,也称渗透速度(米/日);K为渗透系数(米/日);I 为水力坡度,无量纲。可见,当I=1时,q=K,表明渗透系数在数值上等于水力坡度为 1时,通过单位面积的渗流量。岩土的渗透系数愈大,透水性越强,反之越弱。

双环法测野外渗透系数

双环法测野外渗透系数SK-500型试坑双环注水试验装置 双环法测野外渗透系数 一、实验目的和意义 双环法试验是野外测定包气带非饱和松散岩层的渗透系数的常用的简易方法,试验的结果更接近实际情况。利用这个试验资料研究区域性水均衡以及水库、灌区、渠道渗漏量等都是十分重要的。 二、实验方法 野外测定包气带非饱和松散岩层的渗透系数最常用的是试坑法,单环法和双环法。其中双环法的精度最高。 三、实验原理 在一定的水文地质边界以内,向地表松散岩层进行注水,使渗入的水量达到稳定,即单位时间的渗入水量近似相等时,再利用达西定律的原理求出渗透系数(K)值。 在坑底嵌入两个高约20cm,直径分别为0.25m和0.5m的铁环,试验时同时往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜,由于外环渗透场的约束作用使内环的水只能垂向渗入,因而排除了侧向渗流的误差,因此它比试坑法和单环法的精度都高。 图1双环法渗水试验示意图 四、实验仪器 双环、铁锹、尺子、水桶、胶带、橡皮管 五、实验步骤 (1)选择试验场地,最好在潜水埋藏深度大于5m的地方为好。如果潜水埋深小于2m时,因渗透路径太短,测得的渗透系数不真实,就不要使用渗水试验。 (2)按双环法渗水试验示意图,安装好试验装置。 (3)往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜。 (4)按一定的时间间隔观测渗入水量。开始时因渗入量大,观测间隔时间要短,稍后可按一定时间间隔比如每10分钟观测一次,直至单位时间渗入水量达到相对稳定,再延续2~4小时即可结束试验。 六、注意事项 (1)随时保持内外环的水柱都保持在0.1m的同一高度。 (2)向供水瓶注水时,做好水量转换的换算 七、实验成果 (1)野外渗水试验的记录格式见表1。 表1 野外渗水试验记录 工程名称试验者 工程编号计算者 试验日期校核者 试验次数经过的时间 (s) 渗透流量 m3/min 渗透速度 m/min 渗透系数 m/min 注:A-双环内径面积(314cm2)I是水力梯度, (2)计算渗透系数

透水率和渗透性之间的区别----谢克

透水率和渗透性之间的区别 很多人把透水率和渗透性等同看待,也没有太在乎试验方法之间的差别。 (1)透水率的概念 也叫单位吸水率,是压水试验过程过程中,每分钟(min)每米(m)试段在每米(m)压头下的注入水量(L)。单位国际标准采用吕荣Lu。 压水试验规范中说透水率“表达岩体透水性的指标”,个人感觉欠妥,把大家搞糊涂了。正确的说法是“反映岩体可灌性的指标”,尽管和岩石渗透系数K有相关关系,甚至很好的相关关系,是不同的概念和机理。希望将来哪位把它改过来。下面再仔细讨论“透水率”和“渗透性”的恩恩怨怨! (2)透水率的工程意义 首先,要把压水试验和常规的抽水、注水试验区别一下,目前认为它是为灌浆目的而进行的水文地质试验,就足够。透水率是反映岩体可灌性的指标,其大小直接影响设计的方案。 比如基础防渗设计标准是3Lu,目前基础一下50米很多岩体透水率是5Lu,那么防渗设计一般要求做到(a)相对隔水层[封闭帷幕]或(b)足够深度[悬挂帷幕,要进行渗透计算确定]显然,如果是交钥匙工程,投标时资料不权,估计透水率比较小,结果中标后,补充勘察发现有大面积透水性很强的岩层。工程意义就是,你的帷幕防渗工作量包不住,赔钱!意义重大。 (3)透水率吕荣Lu和渗透系数K的关系 上面也提到了,数值上有很好的关系,工程中老总会用1Lu≈1.0E-7m/s来把透水率转化成渗透性。这也是把大家搞糊涂的原因。也不反对这个简化转换,确实有这个近似数值关系。哈哈 (4)两者的区别也是明显的: (a)两者不是线性关系 层流状态可以用以上简化关系,如果是非稳定流,就不适合了。规范说小于10Lu可以直接数值转换,也有公式。接触了Christin Kutzner德国岩土大坝专家的一本书,上面就有两者的曲线。绝对不是线性的。因此,大家要理解实践简化和真实解的区别。 (b)试验状态不一样 常规渗透试验,如抽水、常水头、降水头渗透试验,都是利用稳定地下水位随时间的变化来确定的岩石的渗透系数的,关键的一条,对岩石本身的扰动很小,降落漏斗的形成、发展和水位恢复时间很长,是一个很“温柔”的试验过程。 再看压水试验,都用很大的压力水头,在钻孔周围迅速形成水位压力差,虚拟反漏斗。并不需要原来地下水的参与,干孔照样可以试验。对岩石裂隙张开度、充填物的影响是肯定的,是一个“急暴”的试验过程。 因此,也有大师提出这个问题,在这本书里有介绍。《水利水电工程灌浆与地下水排水》

土壤—饱和导水率(渗透系数)的测定—渗透筒法pdf

FHZDZTR0020 土壤 饱和导水率(渗透系数)的测定 渗透筒法 F-HZ-DZ-TR-0020 土壤—饱和导水率(渗透系数)的测定—渗透筒法 1 范围 本方法适用于田间土壤饱和导水率(渗透系数)的测定。 2 原理 土壤饱和导水率系在单位水压梯度下,通过垂直于水流方向的单位土壤截面积的水流速度,又称土壤渗透系数。本法可在田间进行测定,但易受下层土体性质的影响。在饱和水分的土壤中,土壤的饱和导水率(渗透系数)是根据达西(H. Darcy )定律: K =h t S L Q ×××……(1) 式(1)中: K ——饱和导水率(渗透系数),cm/s ; Q ——流量,渗透过一定截面积S (cm 2)的水量,mL ; L ——饱和土层厚度,渗透经过的距离,cm ; S ——渗透筒的横截面积,cm 2; t ——渗透过水量Q 时所需的时间,s ; h ——水层厚度,水头(水位差),cm 。 饱和导水率(渗透系数)与土壤孔隙数量、土壤质地、结构、盐分含量、含水量和温度等有关。饱和导水率(渗透系数)K 的量纲为cm/s 或mm/min 或cm/h 或m/d 。从达西定律可以看到,通过某一土层的水量,与其截面积、时间和水层厚度(水头)呈正比,与渗透经过的距离(饱和土层厚度)呈反比,所以饱和导水率(渗透系数)是土壤所特有的常数。 图1 渗透筒Q =K ×S ×t ×h /L 3 仪器 3.1 渗透筒(图1)。 3.2 量筒,500mL 。 3.3 烧杯,400mL 。 3.4 漏斗。 3.5 秒表。 3.6 温度计。 4 操作步骤 4.1 测定深度:根据土壤发生层次(A 、B 、C )进行测定,每一层次要重复 测定5次。 A 层测定主要用作设计防止土壤侵蚀的措施及制定灌溉制度。 B 层测定用作设计防止土壤侵蚀的措施及预测该层土壤水分可能停滞的 情况,鉴定该层的坚实度和碱化度,并可鉴定该层是否适于作临时灌溉和固 定灌溉渠槽。 C 层测定结果可以提供土壤保水情况及鉴定是否可以作为大型灌溉渠 道、渠槽的资料。 4.2 在选定的试验地上,用渗透筒采取原状土,取土深度为10cm ,将垫有滤 纸的底筛网盖好,带回室内待测定。 4.3 将渗透筒浸入水中,注意水面不要超过土柱。一般砂土浸4h~6h ,壤土浸8h~12h ,粘土浸24h 。 4.4 在预定时间将渗透筒取出,挂在适当位置,待重力水滴完后装上漏斗,漏斗下接一烧杯。

渗透系数

渗透系数 渗透系数 k 是一个代表土的渗流性强弱的定量指标,也是计算时必须用到的基本参数,不同种类的土,k 值差别很大。因此,准确测定土的渗透系数,是一项十分重要的工作。 实验室测定法 目前实验室中测定渗透系数k 的仪器种类和试验方法很多,但从试验原理上大体可分为常水头法和变水头法两种。 (1)常水头试验法 常水头试验法就是在整个试验过程中保持水头为一常数,从而水头差也为常数。适用于测量渗透性大的砂性土的渗透系数, 设试样的长度为L,截面积为A,试验时,先打开供水阀,使水自上而下通过试样并从溢流槽排除,试样两端部设有测压管测定其水头差Δ h,待水在试样中渗流稳定后,经过一段时间,测定历时t 流过试样的水量Q 和测压管水头差Δ h,即可按照达西定律得: (2)变水头试验法 对于黏性土来说,由于其渗透系数较小,故渗水量较小,用常水头渗透试验不易准确测定,因此这种渗透系数小的土可用变水头渗透试验。变水头试验在试验过程中水头是随时间而变化的。利用水头变化与渗流通过试样截面的水量关系测定土的渗透系数,试验装置如图3.6(b)所示。水流从一根直立带有刻度的玻璃管和U 形管自上而下流经试样。试验时,将玻璃管充以预处理好的

试验用水至适当高度后,开动秒表,测记起始水头差h1,经历时间t 后再测定水头差h2,便可利用达西定律推导出渗透系数的表达式。 渗透试验装置示意图 设玻璃管内截面积为a,试样长度为L,试样截面积为A。试验开始后任意时刻t 的水头差为h,经历dt 时段,管中水位下降dh,则时段dt 内,流过试样的水量为: 式中,负号表示渗水量随h 的减小而增大。 根据达西定律,在时段dt 内流过试样的水量又可表示为: 令式(a)等于式(b),得到: 上式两边积分:

压水试验施工方案-1标

衡水市南水北调配套工程水厂以上输水管道工程第n设计单元n标段 管道整体水压试验施工方案 二○一六年三月

批准: 校核: 编写:

目录 1 工程概况 (1) 2 水压试验目的、主要依据及试验分段 (2) 3 水压试验方法及试验压力 (4) 4 水压试验计划安排 (5) 5 主要设备要求 (6) 6 注水过程控制 (7) 7水压试验技术要求 (8) 8 安全要求 (10)

1 工程概况 1.1概述 衡水市南水北调配套工程水厂以上输水管道工程第三设计单元自石津干渠衡水支线傅家庄分水口门取水,通过泵站加压向衡水市区、工业新区、滨湖新区、武邑县、冀州市、枣强县、故城县等7个区县地表水厂供水。设计单元包括2条输水线路,分别为傅家庄分水口门加压泵站~衡水市区、工业新区及武邑县地表水厂线路和傅家庄分水口门加压泵站~冀州市、滨湖新区、枣强县及故城县地表水厂线路。输水管线全长约128.6km,管道单排布置,设计输水流量8.18m3/s;全线均采用泵站加压的输水方式,设加压泵站2座,输水管道主要采用预应力钢筒混凝土管(PCCP)、球墨铸铁管(DIP)和高密度聚乙烯塑料管(HDPE)。PCCP管材工作压力0.4MPa,设计压力0.6MPa;DIP管材设计压力0.6MPa,HDPE管材设计压力0.6MPa。 2014年4月29日,河北省南水北调工程建设委员会办公室以冀调水设[2014]51号文对本设计单元初步设计报告进行了批复,同意开工建设。河北水务集团为本工程项目法人,委托衡水市进行项目建设管理。 本设计单元于2014年9月1日正式开工建设,截止2016年2月底,途径冀州、枣强、故城、滨湖新区的全部管段和市区的部分管段主体工程已基本完工,市区剩余部分管段和工业新区管段正在建设中。为检查已完工线路管道力学性能和管道连接的严密性,需进行管道整体压水试验。 本标段主要为PCCP管道,工作压力为0.4Mpa,试验压力按试验段管道工作压力的1.5倍计,即0.6Mpa。 1.2工程概况 1.2.1管道附属构筑物 (1)排气阀井 为随时排除管内积气,减少气囊对输水能力的影响,在输水管道的竖向凸起点设置多功能复合式进排气阀,另在管道平缓段适当位置也设排气

钻孔压水试验

钻孔压水试验 工程地质勘察不仅要求了解地下水面以下岩土体的渗透特性,而且对地下水面以上岩土体的渗透性能往往也给予同样的重视,前者一般采用抽水或压水试验去解决,后者常采用渗水、注水或压水等试验来完成。水工建筑物修建以后,往往使环境水文地质条件发生剧烈的变化,尤其是在高压水头作用下,不论位于地下水面以上或在其下的裂隙岩体,其渗透性能必然受到较大的影响,因此,只有采用原位模拟性的压水试验才能获得较满意的结果。在这里我们只学习钻孔压水试验。 一、试验目的与基本原理 钻孔压水试验是测定裂隙岩体的单位吸水量,并以其换算求出渗透系数,用以说明裂隙岩体的透水性和裂隙性及其随深度的变化情况,为论证坝基和库区岩体的完整性和透水程度,以及制定防渗措施和基础处理方案等提供重要依据。 压水试验(图4-20)是借助于专门的止水栓塞与孔壁密贴,把一定长度的试验段隔离开来,然后通过水泵用一定水头压力的水压入试验段内,使之从孔壁的裂隙向周围的岩体内渗透,经过一段时间后,其渗透水量最终趋向于一个稳定值,即可按下式计算单位吸水量(w):ω=Q/(s·L) (4-34) 式中 Q--稳定的压入流量(L/min) s--压力水头高度(m) L--试验段的长度(m) 单位吸水量(ω)是表征岩体透水性大小的指标,它是指单位压力(m)下,单位长度(m)试段在单位时间内的岩体吸水量。 中欧国家在压水试验(也称刘让试验)中用“刘让”单位(Lugeon unit)来表示岩石的渗透性,该试验也是以5m为一试验段,以10个大气压的压力值进行不少于10分钟的试验(只采用一个压力阶段)并按下式计算“刘让”(Lu)值。 Lu=p·Q/L (4-35) 式中 p--压水试验时所采用的压力(MN/m2) Q--流量(L/min) L――试验段的长度(m) “刘让”(Lu)与单位吸水量(w)的关系: 1Lu=0.01ω (4-36) 高于30m的坝,其坝基岩体的透水性不应超过一个“刘让”单位,而低于30m的坝,则对坝基岩体透水性的要求可达3个“刘让”单位。也可根据下式求渗透系数(k):1“Lu”=10-5cm/s (4-37) 二、仪器与主要设备 钻孔压水试验设备主要由压水系统,量测系统和止水系统三部分组成。压水系统包括水箱、水位计和水泵;量测系统包括压力表和流量计;止水系统包括止水栓塞或气泵等。 三、试验技术要点与要求 必需采用清水钻进,压水前要用高压水将钻孔冲洗干净。钻孔要垂直,孔壁应呈规整的圆柱状,平直光滑。覆盖层与基岩之间要使用套管止水。 按规范规定,采用自上而下分段压水,每钻一段,停钻作一段压水试验,试验段长度一般为5m,但对于构造破碎带、节理密集带、岩溶洞穴等透水性较强的地段,可按具体情况适当减小试验段的长度,单独进行压水试验。同一试验段不宜跨越透水性相差悬殊的两种岩体。在钻进过程中,如发现冲洗液突然消失或消耗量急剧增大,应停钻进行压水试验。

抽水试验确定渗透系数的方法及步骤

抽水试验确定渗透系数的方法及步骤 1.抽水试验资料整理 试验期间,对原始资料和表格应及时进行整理。试验结束后,应进行资料分析、整理,提交抽水试验报告。 单孔抽水试验应提交抽水试验综合成果表,其内容包括:水位和流量过程曲线、水位和流量关系曲线、水位和时间(单对数及双对数)关系曲线、恢复水位与时间关系曲线、抽水成果、水质化验成果、水文地质计算成果、施工技术柱状图、钻孔平面位置图等。并利用单孔抽水试验资料编绘导水系数分区图。 多孔抽水试验尚应提交抽水试验地下水水位下降漏斗平面图、剖面图。 群孔干扰抽水试验和试验性开采抽水试验还应提交抽水孔和观测孔平面位置图(以水文地质图为底图)、勘察区初始水位等水位线图、水位下降漏斗发展趋势图(编制等水位线图系列)、水位下降漏斗剖面图、水位恢复后的等水位线图、观测孔的S-t、S-lg t曲线[注]、各抽水孔单孔流量和孔组总流量过程曲线等。 注意:(1)要消除区域水位下降值;(2)在基岩地区要消除固体潮的影响;3)傍河抽水要消除河水位变化对抽水孔水位变化的影响。 多孔抽水试验、群孔干扰抽水试验和试验性开采抽水试验均应编写试验小结,其内容包括:试验目的、要求、方法、获得的主要成果及其质量评述和结论。 2. 稳定流抽水试验求参方法 求参方法可以采用Dupuit 公式法和Thiem公式法。 (1) 只有抽水孔观测资料时的Dupuit 公式 承压完整井: 潜水完整井: 式中K——含水层渗透系数(m/d); Q——抽水井流量(m3/d); sw——抽水井中水位降深(m); M——承压含水层厚度(m); R——影响半径(m); H——潜水含水层厚度(m); h——潜水含水层抽水后的厚度(m); rw——抽水井半径(m)。 (2) 当有抽水井和观测孔的观测资料时的Dupuit 或Thiem公式

吕荣值和渗透系数

吕荣值(q )表示使用灌浆材料作为试验流体时地层的渗透系数。吕荣(Lugeon),1吕荣为1MPa 作用下1米试段内每分钟注入1L 水量。(在100m 的水柱压力下,每米长度标准钻孔内,历时10min ,平均每分钟压入岩石裂隙中的水量。)定义公式,q=Q/PL ,其中,Q 为压入流量,单位L/min ;P 为作用于试段内的全部压力,单位MPa ;L 为试段长度,单位m 。 渗透系数又称水力传导系数(hydraulic conductivity)。在各向同性介质中,它定义为单位水力梯度下的单位流量,表示流体通过孔隙骨架的难易程度,表达式为:κ=k ρg/η,式中k 为孔隙介质的渗透率,它只与固体骨架的性质有关,κ为渗透系数;η为动力粘滞性系数;ρ为流体密度;g 为重力加速度。在各向异性介质中,渗透系数以张量形式表示。渗透系数愈大,岩石透水性愈强。强透水的粗砂砾石层渗透系数〉10米/昼夜;弱透水的亚砂土渗透系数为1~0.01米/昼夜;不透水的粘土渗透系数<0.001米/昼夜.据此可见土壤渗透系数决定于土壤质地。 地下水流速的确定:在地下水等水位图上的地下水流向上,求出相邻两等水位线间的水力梯度,然后利用公式计算地下水的流速V=kI 。式中:V---地下水的渗流速度(m/d ) K---渗透系数(m/d ) I----水力梯度 表示岩土透水性能的数量指标。亦称水力传导度。可由达西定律求得:q =KI ,式中q 为单位渗流量,也称渗透速度(米/日);K 为渗透系数(米/日);I 为水力坡度,无量纲。可见,当I =1时,q =K ,表明渗透系数在数值上等于水力坡度为 1时,通过单位面积的渗流量。岩土的渗透系数愈大,透水性越强,反之越弱。 透水率q 和渗透系数K 之间不是简单的对应关系,各种条件下通过q 计算K 的公式也很多。SL 31-2003《水利水电工程钻孔压水试验规程》推荐:当试段位于地下水位以下,透水率在10 Lu 以下,P—Q 曲线为A 型(层流型)时,可用下式求算渗透系数 r HL Q k 1ln 2π= 式中:K —地层渗透系数,m/d; Q —压水流量,m 3/d ;H—试验压力,以水头表示,m; L —试验段长度,m ; r —钻孔半径,m 。 按照上式,如假定压水试验的压力为1 MPa (即100 m 水头),每米试段的压人流量为 1 L/min (即1.44 m 3/d ),试段长度为5m 。即在透水率为1 Lu 的条件下,以孔径为56~150 mm

土的渗透性和渗流问题

第四章 土的渗透性和渗流问题 第一节 概述 土是由固体相的颗粒、孔隙中的液体和气体三相组成的,而土中的孔隙具有连续的性质,当土作为水土建筑物的地基或直接把它用作水土建筑物的材料时,水就会在水头差作用下从水位较高的一侧透过土体的孔隙流向水位较低的一侧。 渗透:在水头差作用下,水透过土体孔隙的现象 渗透性:土允许水透过的性能称为土的渗透性。 水在土体中渗透,一方面会造成水量损失,影响工程效益;另一方面将引起土体内部应力状态的变化,从而改变水土建筑物或地基的稳定条件,甚者还会酿成破坏事故。 此外,土的渗透性的强弱,对土体的固结、强度以及工程施工都有非常重要的影响。 本章将主要讨论水在土体中的渗透性及渗透规律,以及渗透力渗透变形等问题。 第二节 土的渗透性 一、土的渗透规律——达西定律 (一)渗流中的总水头与水力坡降 液体流动的连续性原理:(方程式) dw v dw v w w ??=2 211 2211v w v w = 1 221w w v v = 表明:通过稳定总流任意过水断面的流量是相等的;或者说是稳定总流的过水断面的 平均流速与过水断面的面积成反比。 前提:流体是连续介质 流体是不可压缩的; 流体是稳定流,且流体不能通过流面流进或流出该元流。 理想重力的能量方程式(伯努利方程式1738年瑞士数学家应用动能定理推导出来的。) c g v r p Z =++22 饱和土体空隙中的渗透水流,也遵从伯努利方程,并用水头的概念来研究水体流动中 的位能和动能。 水头:实际上就是单位重量水体所具有的能量。 按照伯努利方程,液流中一点的总水头h ,可以用位置水头Z ,压力水头U/r w 和流速水

提水试验方法及公式

提水试验 钻孔提水试验原理同抽水试验,只是用提桶将孔内的水提出空口。 一、提水试验过程 压水试验是在钻探终孔后,采用从0MPa、0.1MPa、0.2MPa、 0.3MPa、0.2MPa、0.1MPa、0MPa等7个压力点连续不间断地进行压水。对于分段压水试验孔,从下段往上段进行,当下段完成后,用两段止水胶球进行上下止水,胶球之间段为压水试验段,选择需压水试验段进行压水试验。主要过程如下: 1、注水设备采用BW250型泥浆泵送水,φ40mm专用水管输水,A/H水表测定流量。 2、每一层段压水试验时间累计进行1h~1.5h。 3、压水试验方法及过程: 1)计算xx水位的水柱压力; 2)基本保持一定的注入水量向孔内连续注水; 3)升压段: 开泵在0MPa压力点,每间隔1min测定水表用水量,每个压力点连续5min 观测并记录压力与用水量;调节注水量与压力至下一个压力点0.1MPa,每间隔1min测定水表用水量,每个压力点连续5min观测并记录压力与用水量;用同样方法测升压段至0.2MPa、0.3MPa,观测并记录压力与用水量;4)降压段: 不停顿的连续进行注水,从第3步过程的0.3MPa降压至0.2MPa、 0.1MPa、0MPa压力点,各压力点每间隔1min测定水表用水量,每个压力点连续5min观测并记录压力与用水量。 5)完成全部压水试验以后,测定钻孔深度。 4、压水质量评价:

1)各段次压水试验压力稳定时间均满足规范要求,水量误差小于规程允许范围。 2)各压力点注水流量基本稳定。 3)P-Q 曲线正常。 4)压水质量符合要求。 5、压水试验成果见各孔的压水试验记录表。 二、压水试验资料分析 根据《铁路工程地质手册》(铁一院编)规定的计算公式进行计算。 1、透水率公式: Q3 Lu P3.L Lu―吕荣流量即单位吸水量ω,单位L/(min·m),是1Mpa压力下,压入1m 试段中每分钟的水量;Q3―压力为0.3Mpa时钻孔压水的稳定流量, (L/min);P 3-压力为0.3Mpa时试验段所加的总压力; L -试验xx,m。 2、渗透系数k计算公式:2 0.66lki0.525Lu lgr 3.压水试验成果见插表2-6,详见附件中DZ-T-2孔压水试验记录及压水试验曲线图。

渗透试验报告

双环渗透 8.1试验的目的 双环法试验是野外测定包气带非饱和松散岩层的渗透系数的常用的简易方法,试验的结果更接近实际情况。利用这个试验资料研究区域性水均衡以及水库、灌区、渠道渗漏量等都是十分重要的。 8.2试验的适用范围 对砂土和粉土,可采用试坑法或单环法,对粘性土应采用试坑双环法 8.3试验的基本原理 水在土中的流动符合达西定律,水在土的孔隙中流动时,大多数情况下流速较小,可以认为属于层流(即水流流线相互平行的流动)。则渗透速度与水力坡降成正比。当水力坡降为1时的渗透速度称为土的渗透系数。对于饱和土的渗透现象常用达西定律来表示。即 v= k =或 kIF q I 在一定的水文地质边界以内,向地表松散岩层进行注水,使渗入的水量达到稳定,即单位时间的渗入水量近似相等时,再利用达西定律的原理求出渗透系数(K)值。在坑底嵌入两个高约50cm,直径分别为0.25m和0.50m的铁环,试验时同时往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜,由于外环渗透场的约束作用使内环的水只能垂向渗入,因而排除了侧向渗流的误差,因此它比试坑法和单环法的精度都高。 8.4 试验仪器及制样工具 双环、铁锹、水平尺、量筒、笔直的树枝 双环:(外环:上底0.5m,下底0.5m,高0.25m;内环:上底0.25m,下底0.25m,高0.25m)。 8.5试验的操作步骤 (1)选择试验场地,最好在潜水埋藏深度大于5m的地方为好。如果潜水埋深小于2m时,因渗透路径太短,测得的渗透系数不真实,就不要使用渗水试验; (2)按双环法渗水试验示意图,安装好试验装置。 (3)往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜。 (4)按一定的时间间隔观测渗入水量。开始时因渗入量大,观测间隔时间要短,

水利坝体压水试验专项方案

B01 施工技术方案申报表 (承包[2015]技案03号) 合同名称:莆田市乌溪水库大坝工程合同编号: 致:福建省水利水电工程建设公司 我方今提交莆田市乌溪水库大坝工程坝体砌筑EL159.5~164.0m高程的坝段压水试验施工方案。 请贵方审批。 承包人:兴锋盈(福建)集团有限公司 莆田市乌溪水库大坝工程项目部 项目经理: 日期:年月日 监理机构:福建省水利水电工程建设公司 签收人: 日期:年月日 说明:本表一式4份,由承包人填写。监理机构审签后,随同审批意见,承包人、监理机构、发包人、设代机构机构各1份。

莆田市乌溪水库大坝工程 坝体砌筑(4~5m坝段)压水试验 施 工 方 案 编辑单位:兴锋盈(福建)集团有限公司 编辑人: 编制时间:2015年4月1日

编制人:审核人:审批人:

一、概况 乌溪水库大坝工程于2015年1月22日坝体拱圈EL159.5m开始砌筑,3月29日坝体砌筑到EL164.0m,完成砌筑方量3050m3,EL164.0m层面面积为750m2。按照设计要求坝体每新砌筑一层次(4.5m高度),需进行一次简易密实性检查—钻孔压水试验,其主要任务是检测坝段砌筑体的透水性和密实度。 一、编制依据 (1)《水利水电工程钻孔压水试验规程》SL31—2003 (2)《水利水电工程施工质量与评定规程》SL176—2007 (3)《水利水电建设工程验收规程》SL223—2008 (4)设计施工图(WXSK-SGT-DB-TJ-01) 三、压水试验设备 (1)止水栓塞:单管顶压式栓塞,止水可靠,操作方便,栓塞长度不小于8倍的钻孔孔径。 (2)供水设备:试验用的灌浆机(G-105型立式双缸),压力稳定,出流均匀,工作可靠。在1MPa 压力下,流量能保持100L / m i n 。供水调节阀门应灵活可靠,不漏水,且不宜与钻进共用。 (3)量测设备:量测压力用的压力表应反应灵敏,卸压后指针回零,量测范围应控制在极限压力值的1 / 3 ~3 / 4。 (4)管路:采用钢丝网胶管,承受压力为最大压力的1.5倍。 四、压水试验基本规定 (1)试验方法及试段长度:采用单管顶压式单栓塞隔离试段进行压

土力学计算公式

一、 土的不均匀程度: C U = 10 60 d d 式中 d 60——小于某粒径颗粒含量占总土质量的60%时的粒径, 该粒径称为限定粒径 d 10——小于某粒径颗粒含量占总土质量的10%时的粒 径,该粒径称为有效粒径。 C U 小于5时表示颗粒级配不良,大于10时表示颗粒级配良好 二 1、土的密度ρ和土的重力密度γ ρ= v m (t/m 3或g/cm 3) γ=ρg(KN/m 3 ) 一般g=10m/s 2 ρ 表示土的天然密度称为土的湿密度 γ 表示天然重度。 天然状态下土的密度和重度的变化范围较大, 一般ρ=1.6——2.2(t/m 3),γ=16——22(KN/m 3 ) 2、土粒比重ds (相对密度) d s =w s s v m ρ ρw ——水的密度,可取1t/m 3 3 土的含水量 = ωs m m ω×100%

换算指标 4、土的孔隙比e e=s v v v 5、土的孔隙率n n=%100?v v v 6、土的饱和度Sr Sr=v w V V 7、土的干密度ρd ρd =v m s (t/m 3 ) γd =ρd g(KN/m 3 ) 8、土的饱和密度ρsat ρsat =v v m w v s ρ+ ( t/m 3 ) 饱和重度 9、土的有效密度ρ, 和有效重度γ, ρ, =v v m w v s ρ- ( t/m 3 ) =ρsat –ρw γ, = ρ, g=γsat -γw 土的三相比例指标换算公式

10、砂的相对密度Dr Dr=m in m ax m ax e e e e -- 11、塑性指数I P I P =ωL -ωP (不要百分号) 液性指数I L

吕荣值和渗透系数K之间关系

透水率q 和渗透系数K 之间不是简单的对应关系,各种条件下通过q 计算K 的公式也很多。SL 31-2003《水利水电工程钻孔压水试验规程》推荐:当试段位于地下水位以下,透水率在10 Lu 以下,P —Q 曲线为A 型(层流型)时,可用下式求算渗透系数 r HL Q k 1ln 2π= 式中:K —地层渗透系数,m/d; Q —压水流量,m 3/d ;H —试验压力,以水头表示,m; L —试验段长度,m ; r —钻孔半径,m 。 按照上式,如假定压水试验的压力为1 MPa (即100 m 水头),每米试段的压人流量为1 L/min (即1.44 m 3/d ),试段长度为5m 。即在透水率为1 Lu 的条件下,以孔径为56~150 mm 计算得的渗透系数为(1.37~1.11)×10-5 cm/s 。由此可见,作为近似关系,1 Lu 相当于渗透系数为10-5 cm/s 。 严格地讲,渗透系数K 与单位吸水量w 间并无固定关系。但有时为设计计算方便起见,通过实践大致有以下几种认识: (1)K =(1.5~2)×w (K 的单位为m/d,w 的单位为L/min.m.m ) 例如:某大坝基岩透水性,单位吸水量w 平均值为0.08L/min.m.m ,试求其相应的渗透系数K 。 若采用K=2w 时,则K =2×0.08=0.16(m/d )=1.85×10-4cm/s 。 采用K =1.5w 时,则K =1.5×0.08=0.12(m/d )=1.39×10-4cm/s 。 (2)国外资料认为 1Lu =1.3×10-5cm/s 。 (3)国外有些学者和单位给出了渗透系数K 与吕荣值的相关关系图,见下图。由图中可以看出:当K =10-7m/s (即10-5cm/s )时,吕荣值大约为1~3;当K =10-5m/s (即10-3cm/s )时,各曲线的吕荣值均大于30。

水利水电工程钻孔压水试验规程[SL31-2003]条文说明

中华人民共和国水利行业标准    水利水电工程  钻孔压水试验规程    SL31-2003   条文说明                  ×××× 北京

目次 1 总则 3 基本规定 3.1 试验方法和试段长度 3.2 压力阶段与压力值 3.3 试验钻孔 3.4 试验用水与试验人员 4 试验设备 4.1 止水栓塞 4.2 供水设备 4.3 量测设备 5 现场试验 5.1 试验程序 5.2 洗孔 5.3 试段隔离 5.4 水位观测 5.5 压力和流量观测 6 试验资料整理

1 总则 1.0.1在岩体上或岩体内修建水工建筑物时,必须研究建筑物区及其影响范围内岩体的透水性。测定岩体渗透性的方法有压水试验、注水试验、抽水试验等,其中压水试验是最常用的在钻孔内进行的岩体原位渗透试验。具体做法是在钻进过程中或钻孔结束后,用栓塞将某一长度的孔段与其余孔段隔离开,用不同的压力向试段内送水,测定其相应的流量值,并据此计算岩体的透水率。 压水试验成果主要用于评价岩体的渗透特性(透水率大小及其在不同压力下的变化趋势),并作为渗控设计的基本依据。当条件简单时,也可用于渗漏计算。 1.0.2本标准采用吕荣试验作为常规性的压水试验方法。 吕荣试验是世界各国普遍采用的常规性压水试验方法,采用这种试验方法,有利于国际间的技术合作与交流。 吕荣试验方法从提出至今,经历了一个漫长的发展过程,在一些具体做法上与原始的吕荣试验已有很大的不同。另一方面,目前国际上尚没有统一的压水试验方法,各国的规定之间,也存在一定的差别。因此,在遵循吕荣试验原则的前提下,允许对某些具体做法作出选择或修改。 针对工程的不同目的和需要,出现了许多专门性压水试验方

渗透试验

渗透试验 专业班级港航5班学号姓名同组者 实验编号实验名称渗透试验 实验日期2012.10.10批报告日期成绩教师签名 一、试验目的 测量土体的渗透系数k。 二、试验原理 渗透试验原理就是在试验装置中测出渗流量,不同点的水头高度,从而计算出渗流速度和水力梯度,代入(8-1)式计算出渗透系数。 (8-1) v ki 由于土的渗透系数变化范围很大,自大于10-1cm/s到小于10-7cm/s,故实验室内常用两种不同的试验装置进行试验:常水头试验装置用来测定渗透系数k比较大的无凝聚性土的渗透系数;变水头渗透试验装置用来测定渗透系数k比较小的凝聚性土的渗透系数。特殊设计的变水头试验测定粗粒渗透系数和常水头试验测定渗透性极小的粘性土渗透系数也很常用。 三、试验设备及试验操作 (一)常水头试验 1.仪器设备 (1)70型渗透仪; (2)附属设备:木锤、秒表、天平等。 2.操作步骤 (1)装好仪器,检查是否漏水。将调节管与供水管相连,由仪器底部充水至水位达到金属透水板顶面时,放入滤纸,关止水夹; (2)取代表性风干土样3~4kg,称重精确至1g,测定风干含水率; (3)将试样分层装入仪器,根据预定孔隙比控制试样密度。每层装完后从调节管进水至试样顶面。最后一层应高出上测压管孔3~4cm。待最后一层试样饱和后,继续使水位上升至圆筒顶面。将调节管卸下,使管口高于圆筒顶面,观测三个测压管水位是否与孔口齐平; (4)量测试样顶面至筒顶余高,计算出试样高度。称量剩余土样,计算出装入质量,计算试样干密度和孔隙比; (5)供水管向圆筒顶面供水,使水面始终保持与渗透仪顶面齐平,同时降

低调节管高度,形成自下向上方向的渗流。固定调节管在某一高度,过一段时间后,三个测压管水位达到稳定值,表明形成稳定渗流场; (6)记录三个测压管水位H 1,H 2,H 3,则测压管Ⅰ和Ⅱ水位差为h 1= H 1-H 2,测压管Ⅱ和Ⅲ的水位差为h 2= H 2-H 3。计算渗径长度为L=10cm 的平均水位差h =( h 1+ h 2) /2= (H 1- H 3)/2; (7)开动秒表,用量筒接取经过一段时间Δt 的渗流量ΔQ ,量测渗透水的水温T °C ; (8)改变调节管的高度,达到渗透稳定后,重复(6)、(7)的步骤,平行进行5~6次试验; (9)按式(8-4)计算每次量测的水温T °C 时的渗透系数k ti ; QL k tAh ?= ? (8-4) (10)计算渗透系数均值: 1t ti k k N = ∑ (8-8) (11)按下式折算到20°C 时的渗透系数k 20: 2020 t t k k ηη= (8-9) 式中,t η,20η分别为水温T °C 和20°C 时水的动力粘滞系数。 (二) 变水头试验 1.仪器设备 (1)改进南55型渗透仪,试样高L =4cm ,试样横截面积A =30cm 2; (2)辅助设备:切土器、秒表、温度计、削土刀、凡士林等。 2.操作步骤 (1)试样制备 变水头渗透试验的试样分原状试样和扰动试样两种,其制备方法分别为:(a)原状试样:根据要测定的渗透系数的方向,用环刀在垂直或平行土层面方向切取原状试样,试样两端削平即可,禁止用修土刀反复涂抹。放入饱和器内抽气饱和(或其他方法饱和);(b)扰动试样:当干密 度较大(3 1.40/d g cm ρ≥)时,用饱和度较低(S t ≤80%)土压实或击实办 法制样;当干密度较低时,使试样泡于水中饱和后,制成需要干密度的饱 和试样。 (2)将盛有试样的环刀套入护筒,装好各部位止水圈。注意试样上下透水石和滤纸,按先后顺序装好,盖上顶盖,拧紧顶部螺丝,不得漏水漏气。 (3)把装好试样的渗透仪进水口与水头装置(测压管)相连。注意及时向测压管中补充水源,补水时,关闭进水口。 (4)在向试样渗透前,先由底部排气嘴出水,排除底部空气至气嘴无气泡时,关闭排气嘴,水自下向上渗流,由顶部出水管排水。 (5)待出水管有水流出后,开始测定试验数据。记录时间t=t 1时,上下游

实验五_土壤渗透系数的测定

实验五 土壤渗透系数的测定 1 测定意义 当土层被水分饱和后,土壤中的水分受重力影响而向下移动的现象称为渗透性。 土壤渗透性是土壤重要的特性之一,它与大气降水和灌溉水几乎完全进入土壤,并在其中贮存起来,而在渗透性不好的情况下,水分就沿土表流走,造成侵蚀。 土壤渗透性与土壤质地、结构、盐分含量、含水量以及湿度等有关。 2 测定原理 在饱和水分土壤中,渗透性按照达西公式计算如下: V=K ·I (厘米/秒) L h I = 式中:V ——渗透速度,每秒钟通过1平方厘米土壤断面的水的流量,以立 方厘米表示; I ——水压梯度,即渗透层中单位距离内的水压降; K ——渗透系数,在单位水压梯度(I=1)下,单位时间内通过单位截面积的流量 (毫升/分或小时); H ——土柱上水头差(厘米)即静水压力; L ——发生水分渗透作用的土层的厚度(厘米)即渗透路程。 在时间t 内渗透过一定截面积A (平方厘米)的水量Q ,可以用下列的方程式来表示: Q=V ·A ·t=K ·I ·A ·t 因此渗透系数 K=I t A Q ??(毫米/厘米2/分或小时) 土壤渗透性的测定有室外法(渗透简法)及室内法(环刀法)。

3 测定方法 3.1室外测定 3.1.1 仪器设备 ①渗透筒:铁制圆柱形筒,横截面积为1000平方厘米(内径358毫米),高350毫米。 ②量筒500ml和1000ml各一个。 ③小铁筒:打水用。 ④温度计:0—50℃ ⑤秒表或一般钟表 ⑥木制厘米尺、小刀、斧头等。 3.1.2 测定步骤 3.1.2.1、在选择具有代表性的地段上,布置一块约1平方米的圆形(直径113cm)试验地块,将其周围筑以土埂。土埂高约30 cm,顶宽20 cm,并捣实之。渗透筒置于中央,应用小刀按筒的圆周向外挖宽2—3cm,深15—20cm小沟,使筒深深嵌入土中。插好后,把取出的土壤重新填入隙缝并予捣实,防止沿壁渗漏损失。筒内部为试验区,外部为保护区。 也可用高15—20厘米面积分别为25×25 和50×50平方厘米的方形铁框或圆形铁筒打入土中3—5厘米进行测定。 3.1.2.2、在筒内:外各插入一米尺,以便观察灌水层的厚度。筒内外迅速灌水,使水层厚度保持为5cm. 为从一开始时,水就向土壤内渗入,所以必须很快地把水倒到预期的水层厚度。为了使灌入的水不致冲刷表层土壤,不应将水直接倒在土面上,而应在简内外灌水处用胶板或木板(甚至杂草或蒿草)保护之。 3.1.2.3、温度影响渗透系数很大,应在简内插入温度计,以使换算为10℃时的渗透系数。 3.1.2.4、当试验区内部灌水到5cm高时,应立即开始计时,每隔一定时间进行

变水头法测定渗透系数(精)

变水头法测定渗透系数 《土工技术与应用》项目组 2015年3月

变水头法测定渗透系数 (一)试验目的 测定粘性土的渗透系数k,以了解土层渗透性的强弱,作为选择坝体填土料的依据。 (二)试验原理 细粒土由于孔隙小,且存在粘滞水膜,若渗透压力较小,则不足以克服粘滞水膜的阻滞作用,因而必须达到某一起始比降后,才能产生渗流。变水头渗透试验适用于细粒土。 (三)仪器设备 1、南55型渗透仪:如图1所示。 2、其它:100mL量筒、秒表、温度计、凡士林等。 (四)操作步骤 1、装土:将装有试样的环刀推入套筒内并压入止水垫圈。装好带有透水石和垫圈的上下盖,并用螺丝拧紧,不得漏气漏水。 2、供水:把装好试样的容器进水口与供水装置连通,关止水夹,向供水瓶注满水。 3、排气:把容器侧立,排气管向上,并打开排气管止水夹。然后开进水口夹,排除容器底部的空气,直至水中无气泡溢出为止。关闭排气管止水夹,平放好容器。在不大于200cm水头作用下,静置某一时间,待容器出水口有水溢出后,则认为试样已达饱和。

图1 南55型渗透仪 1-变水头管;2-渗透容器;3-供水瓶;4-接水源管;5-进水管夹;6-排气管;7-出水管 4.测记:使变水头管充水至需要高度后,关止水夹,开动秒表,同时测记开始水头h1,经过时间t后,再测记终了水头h2,同时测记试验开始与终了时的水温。如此连续测记2~3次后,再使变水头管水位回升至需要高度,再连续测记数次,前后需6次以上。 (五)试验注意事项 1、环刀取试样时,应尽量避免结构扰动,并禁止用削土刀反复涂抹试样表面。 2、当测定粘性土时,须特别注意不能允许水从环刀与土之间的孔隙中流过,以免产生假象。 3、环刀边要套橡皮胶圈或涂一层凡士林以防漏水,透水石需要用开水浸泡。 (六)计算公式 按下式计算渗透系数:

吕荣值与渗透系数关系

吕荣值与渗透系数关系 透水率q 和渗透系数K 之间不是简单的对应关系,各种条件下通过q 计算K 的公式也很多。SL 31-2003《水利水电工程钻孔压水试验规程》推荐:当试段位于地下水位以下,透水率在10 Lu 以下,P —Q 曲线为A 型(层流型)时,可用下式求算渗透系数 r HL Q k 1ln 2π= 式中:K —地层渗透系数,m/d; Q —压水流量,m 3/d ;H —试验压力,以水头表示,m; L —试验段长度,m ; r —钻孔半径,m 。 按照上式,如假定压水试验的压力为1 MPa (即100 m 水头),每米试段的压人流量为1 L/min (即1.44 m 3/d ),试段长度为5m 。即在透水率为1 Lu 的条件下,以孔径为56~150 mm 计算得的渗透系数为(1.37~1.11)×10-5 cm/s 。由此可见,作为近似关系,1 Lu 相当于渗透系数为10-5 cm/s 。 严格地讲,渗透系数K 与单位吸水量w 间并无固定关系。但有时为设计计算方便起见,通过实践大致有以下几种认识: (1)K =(1.5~2)×w (K 的单位为m/d,w 的单位为L/min.m.m ) 例如:某大坝基岩透水性,单位吸水量w 平均值为0.08L/min.m.m ,试求其相应的渗透系数K 。 若采用K=2w 时,则K =2×0.08=0.16(m/d )=1.85×10-4cm/s 。 采用K =1.5w 时,则K =1.5×0.08=0.12(m/d )=1.39×10-4cm/s 。 (2)国外资料认为 1Lu =1.3×10-5cm/s 。 (3)国外有些学者和单位给出了渗透系数K 与吕荣值的相关关系图,见下图。由图中可以看出:当K =10-7m/s (即10-5cm/s )时,吕荣值大约为1~3;当K =10-5m/s (即10-3cm/s )时,各曲线的吕荣值均大于30。 W 值、Lu 值、K 值之间的关系 以前我国对压水试验的成果多是用单位吸水率w 值来表示,其含义是在每米水头作用下,每米钻孔长度内每分钟的吸水量。单位为L/(min ·m ·n)。计算公式为 Q w pl =

相关文档
最新文档