统计热力学
统计热力学

= NkT ⎜⎛ ∂ ln q' ⎟⎞ ⎝ ∂V ⎠T ,N
(5)H = NkT 2⎜⎛ ∂ ln q ⎟⎞ + NkTV ⎜⎛ ∂ ln q ⎟⎞
⎝ ∂T ⎠V ,N
⎝ ∂V ⎠T ,N
=
NkT 2 ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂T ⎠V ,N
+
NkTV ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂V ⎠T ,N
可见θr只取决于分子本身的结构特征,一般分子的氏只有几度或十几度。
11.
qV
= =
exp(−θV / 2T )
1e−xepx(−p(h−νθV/
/T) 2kT )
1− exp(− hν / kT )
或
q'V
=
1−
1
exp(−θV
/T
)
=
1−
1
exp(− hν
/
kT
)
式中qv为双原子分子振动配分函数,q’V为将振动零点能值指定为 0 时的振动配分函数;θV为分 子的振动特征温度,其定义为
⎤ ⎥ ⎦
3.3 思 考 题
1.Stirling 公式 的适用条件是什么?
N!≈ ⎜⎛ N ⎟⎞N ⎝e⎠
2.对于由少数(例如 20 个)离域子构成的系统,我们能否用公式
∑∏ Ω =
g ni i
i ni!
计算其微观状态数?若不能用此式计算,请说应如何计算Ω。
3.什么是最可几分布?最可几分布的各能级分布数如何计算?
⎝ ∂T ⎠V ,N
⎝ ∂V ⎠T ,N
=
NkT 2 ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂T ⎠V ,N
化学物理学中的热力学和统计力学

化学物理学中的热力学和统计力学热力学和统计力学是化学物理学的两个重要分支,它们研究的是物质热力学性质和分子运动规律,是探究物质本质的的一门基础学科。
本文将从热力学和统计力学的基本概念、研究对象、热力学第一、二、三定律、热力学函数、状态方程、熵等方面进行阐述,希望可以为读者进一步了解化学物理学中的热力学和统计力学提供一些帮助。
一、热力学和统计力学的基本概念热力学和统计力学是两个不同的分支,热力学研究的是宏观尺度下的物理过程,而统计力学则是在微观尺度下对物质粒子的运动与相互作用进行研究。
热力学是以能量转换为研究对象的学科,主要研究物质的热力学性质,包括温度、压强、物态变化等;而统计力学则是以物质分子的热运动为研究对象的学科。
通过统计学的方法来推导宏观物理现象的微观动力学规律。
二、热力学和统计力学的研究对象热力学和统计力学研究的对象是相同的,都是物质。
热力学研究的是物质的宏观性质,表现为带有大量质点的物体的性质;而统计力学研究的是物质的微观性质,表现为分子或原子的性质。
热力学研究的物质状态为平衡态,而统计力学则研究物质在平衡态和非平衡态下的性质。
三、热力学第一、二、三定律热力学第一定律,也叫能量守恒定律,表明在一定条件下物体能量的总量不变。
具体来说,即使在一个系统中发生了内部的能量转化,这个系统所包含的总能量仍然保持不变。
根据热力学第一定律,热力学系统能量的变化等于系统的热量和功的合,表达式为ΔU=Q-W,其中ΔU表示系统内能的变化,Q表示系统吸收或放出的热量,W表示系统所做的功。
热力学第二定律是热力学中的熵增定律,表明在一定条件下,物体内部的热力学熵是单调不减的。
具体来说,随着热量传递,系统失去了一部分可以进行有效工作的能量,但是系统的热力学熵却不断增加。
热力学第二定律反映了物理过程的不可逆性。
热力学第三定律表明,在绝对零度时,物质的最低状态熵为零。
也就是说,热力学第三定律是热力学第二定律的推论,表明热力学第二定律中的熵增原则在绝对零度时还是成立的。
统计热力学

统计热力学统计热力学是宏观热力学与量子化学相关联的桥梁。
通过系统粒子的微观性质(分子质量、分子几何构型、分子内及分子间作用力等),利用分子的配分函数计算系统的宏观性质。
由于热力学是对大量粒子组成的宏观系统而言,这决定统计热力学也是研究大量粒子组成的宏观系统,对这种大样本系统,最合适的研究方法就是统计平均方法。
微观运动状态有多种描述方法:经典力学方法是用粒子的空间位置(三维坐标)和表示能量的动量(三维动量)描述;量子力学用代表能量的能级和波函数描述。
由于统计热力学研究的是热力学平衡系统,不考虑粒子在空间的速率分布,只考虑粒子的能量分布。
这样,宏观状态和微观状态的关联就转化为一种能级分布(宏观状态)与多少微观状态相对应的问题,即几率问题。
Boltzmann 给出了宏观性质—熵(S )与微观性质—热力学几率(Ω)之间的定量关系:ln S k =Ω。
热力学平衡系统熵值最大,但是通过概率理论计算一个平衡系统的Ω无法做到,也没有必要。
因为在一个热力学平衡系统中,存在一个微观状态数最大的分布(最概然分布),摘取最大项法及其原理可以证明,最概然分布即是平衡分布,可以用最概然分布代替一切分布。
因此,有了数学上完全容许的ln Ω≈ln W D,max ,所以,S =k ln W D,max 。
这样,求所有分布的微观状态数—热力学几率的问题转化为求一种分布—最概然分布的微观状态数的问题。
波尔兹曼分布就是一种最概然分布,该分布公式中包含重要概念—配分函数。
用波尔兹曼分布求任何宏观状态函数时,最后都转化为宏观状态函数与配分函数之间的定量关系。
配分函数与分子的能量有关,而分子的能量又与分子运动形式有关。
因此,必须讨论分子运动形式及能量公式,各种运动形式的配分函数及分子的全配分函数的计算。
确定配分函数的计算方法后,最终建立各个宏观性质与配分函数之间的定量关系。
热力学:基础:三大定律研究对象:(大量粒子构成的)宏观平衡体系研究方法:状态函数法手段:利用可测量量p-T-V+C p,m和状态方程结果:求状态函数(U,H,S,G,等)的改变值,以确定变化过程所涉及的能量和方向。
11统计热力学

ε0 /kT
q
0
q e
0
ε0 /kT
q
q e
0
ε0 /kT
q
说明: 1、选择不同的能量零点对配分函数的值有影响
但对玻耳兹曼分布的能级分布数无影响
三、统计系统的分类 1、按粒子的运动情况不同 •离域子系统(全同粒子系统):
粒子处于混乱,无固定位置,无法彼此分辨
如气体、液体
•定域子系统(可辨粒子系统):
粒子有固定平衡位置,可加编号区分,如固体
2、按粒子间的相互作用情况不同 •独立子系统:
粒子间相互作用可忽略,如理想气体
•相依子系统:
粒子间相互作用不能忽略 如真实气体、液体等
gi e εi /kT 配分函数(总有效容量)
i
gie -i / kT 称为能级 i 的有效容量
ε j /kT
3、任意两能级i、k上 粒子数之比:
ni gi e εk /kT nk gk e
εi /kT
二、玻耳兹曼分布式的推导
定域子系统:
g WD N! i ni !
M N-M 0 10 … … 4 6 5 5 6 4 … … 10 0
WD 1 210 252 210 1 … … PD 9.8 10-4 … 0.20508 0.24609 0.20508 … 9.8 10-4 M N-M 0 20 … … 9 11 10 10 11 9 … … 20 0
WD 1 1 … 167960 184756 167960 … PD 9.5 10-7 … 0.16018 0.17620 0.16018 … 9.5 10-7
ni i
g WD N! i ni !
ni i
06章_统计热力学

12 什么是Sackur-Tetrode公式?有什么用处?
• 答:用来计算理想气体的平动熵。对于1 mol理 想气体因为Nk = R , 所以计算公式为:
上一内容
下一内容
回主目录
13 平动配分函数对热力学能、等容热容、平动 焓和平动Gibbs自由能有什么贡献
• 对热力学能的贡献为 1.5RT ;对等容热容的贡 献为 1.5R ;对平动焓和平动Gibbs自由能的贡 献为:
正确答案: d
上一内容 下一内容 回主目录
• 11. 热力学函数与配分函数的关系式对于定域 子体系和离域子体系都相同的是: • A. U.A.S • B. U.H.Cv • C. U.H.S • D. H.G.Cv
正确答案: B
上一内容 下一内容 回主目录
• • • • •
2mol CO2 的转动能 Ur 为: A. 2RT B. RT C. 1/2RT D. 3/2RT
答:CO2是三原子分子,设它为线形,则有3个平 动自由度,2个转动自由度和4个振动自由度,则:
假设正确,CO2是线型分子。
上一内容 下一内容 回主目录
2. CO和N2分子的质量相同, ,电子均处于非 简并的最低能态。两种分子的转动惯量相同, 但在相同温度、相同压力下,将两种分子看作 理想气体,计算所得的统计熵却不同,这是为 什么?那个熵值较大 CO的熵值较大。因为CO和N2的对称数不同,虽
上一内容
下一内容
回主目录
6.什么是等概率假定?
• 答:对于 U, V 和 N 确定的某一宏观体系,任 何一个可能出现的微观状态,都有相同的数学 概率,所以这假定又称为等概率原理。例如, 某宏观体系的总微态数为 W ,则每一种 微观状态 P 出现的数学概率都相等,即 P = 1/W 。
物理化学教材统计热力学

03 热力学函数与状态方程
热力学函数的概念与性质
热力学函数
描述系统热力学行为的物理量,如内能、熵、焓等。
热力学函数的性质
封闭系统中,热力学函数的改变量只与系统与外界的 能量交换有关,与具体变化过程无关。
热力学基本方程
描述系统热力学函数之间关系的方程,如热力学第一、 第二定律等。
热容与熵的概念
热容
平衡。
05 热力学过程与平衡常数
热力学过程及其计算方法
热力学过程
是指系统状态随时间的变化过程,包括等温、等压、等 容等过程。
计算方法
通过热力学基本定律和相关公式,计算过程中系统吸收 或释放的热量、功量等物理量。
平衡常数的概念与计算
平衡常数
是指在一定条件下,可逆反应达到平衡状态时,反应 物和生成物的浓度比值。
02 分子运动论与热力学定律
分子运动论的基本概念
分子运动论
分子运动论是研究物质分子运动 规律的理论,它通过分析分子运 动的速度、方向、频率等参数, 揭示物质宏观性质和微观结构之
间的关系。
分子模型
分子模型是描述分子形状和结构 的工具,常见的分子模型包括球 棒模型、比例模型等,它们可以 直观地展示分子的几何形状和内
热力学第三定律
热力学第三定律指出,绝对零度是不可能达到的,即绝对 零度是不可能达到的。
分子运动论中的热力学基本关系式
理想气体状态方程
理想气体状态方程是描述理想气体状 态变化规律的公式,它表示气体的压 力、体积和温度之间的关系。
热容公式
热容公式是描述物质在加热或冷却过 程中吸收或释放热量时温度变化规律 的公式,它表示物质的比热容、熵等 热力学参数之间的关系。
统计分布描述了大量粒子系统中,粒子在各 种可能状态下的分布情况。
统计热力学

i
(ni + g i − 1)! ≈ g in (g >> n ) 离域子系统: WD = ∏ ∏ n! i i n!×( g i − 1)! i i i
i
(6)最概然分布与平衡分布 热力学概率最大的分布称为最概然分布 最概然分布。 最概然分布 对于热力学系统N≥1024,N,V,E确定的系统达平衡时(即系 统的热力学态),粒子的分布方式几乎将不随时间而变化,这种分 布称为平衡分布 平衡分布。 平衡分布 当系统的N→∞时,最概然分布可以代表平衡分布,从而最概 然分布的微观状态数可以代替系统的总微观状态数。这就是摘取 摘取 最大项原理。 最大项原理。
第四章 统计热力学基础 1.统计热力学基本概念 . (1)统计热力学系统的分类 ①独立子系和相依子系(非独立子系) 统计热力学将组成系统的分子、原子及离子等统称为粒子 粒子或 粒子 简称子。 子 按照粒子间有无不可忽略的相互作用,系统可分为独立子系 独立子系 (或近独立子系 近独立子系)——子间无相互作用;相依子系 相依子系(非独立子 近独立子系 相依子系 系)——子间有不可忽略的相互作用。 ②定域子系和离域子系 按照粒子的运动是否遍及系统的全体积,系统可分为定域子 定域子 系——子的运动是定域化的(不遍及系统的全体积);离域子系 离域子系 非定域子系) (非定域子系)——子的运动是非定域化的(遍及系统的全体 积)。
而
q=qtqrqvqeqn
表明粒子的配分函数q可以用各独立运动的配分函数之积表示。 这称为配分函数的因子分解性质。配分函数的析因子性质非常有 用。通常可写成 lnq=lnqt+lnqr+lnqv+lnqe+lnqn (3)能量零点的选择对配分函数q值的影响 若某独立运动形式是基态能级的能量值为ε0,能级i的能量值 为εi,则以基态作为能量零点时能级i的能量值ε0 i应为 ε0i=εi-ε0 若规定基态能级的能量值为零时的配分函数以q0,则上述各能 级的能量为,则由配分函数的定义可得:
物理化学第七章统计热力学基础

热力学第二定律的实质是揭示了热量 传递和机械能转化之间的方向性。
VS
它指出,热量传递和机械能转化的过 程是有方向的,即热量只能自发地从 高温物体传向低温物体,而机械能只 能通过消耗其他形式的能量才能转化 为内能。
热力学第二定律的应用
在能源利用领域,热力学第二定律指导我们合理利用能源,提高能源利用效率。
优势
统计热力学从微观角度出发,通过统计方法描述微观粒子的运动状态和相互作用,能够 更深入地揭示热现象的本质和内在规律。
局限性
统计热力学涉及到大量的微观粒子,计算较为复杂,需要借助计算机模拟等技术手段。
统计热力学与宏观热力学的关系
统计热力学和宏观热力学是相互补充的 关系,宏观热力学提供整体的、宏观的 视角,而统计热力学提供更微观、更具 体的视角。
03
热力学第一定律
热力学第一定律的表述
热力学第一定律的表述为
能量不能无中生出,也不能消失,只能从一种形式转化为另一种 形式。
也可以表述为
封闭系统中,热和功的总和是守恒的,即Q+W=ΔU。其中Q表示传 给系统的热量,W表示系统对外做的功,ΔU表示系统内能的变化。
热力学第一定律的实质
热力学第一定律实质是能量守恒定律在封闭系统中的具体表现。 它表明了在能量转化和传递过程中,能量的总量保持不变,即能 量守恒。
掌握理想气体和实际气 体的统计描述,理解气 体定律的微观解释。
了解相变和化学反应的 统计热力学基础,理解 热力学第二定律和熵的 概念。
02
统计热力学基础概念
统计热力学简介
统计热力学是研究热力学系统 在平衡态和近平衡态时微观粒 子运动状态和宏观性质之间关 系的学科。
它基于微观粒子的运动状态和 相互作用,通过统计方法来描 述系统的宏观性质,揭示了微 观结构和宏观性质之间的联系 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可见θr只取决于分子本身的结构特征,一般分子的氏只有几度或十几度。
11.
qV
= =
exp(−θV / 2T )
1e−xepx(−p(h−νθV/
/T) 2kT )
1− exp(− hν / kT )
或
q'V
=
1−
1
exp(−θV
/T
)
=
1−
1
exp(− hν
/
kT
)
式中qv为双原子分子振动配分函数,q’V为将振动零点能值指定为 0 时的振动配分函数;θV为分 子的振动特征温度,其定义为
∆εt < ∆ε r < ∆εV < ∆εe < ∆ε n
一般 ∆ ε和t 分∆别ε为r
和10−19 k,T能级差1很0−小2 k,T分子较容易实现从低能级向高能级的跃迁,因
此可将平动和转动近似当作能量连续变化的情况来处理。而 约为 , 约为 , ∆ε值V 更
大1,0所kT以处理振∆动εe、电子1运0动2 k和T 核运∆动ε n时,必须考虑能量变化的不连续性。能量较高的分子可
θV = hν / k 所以氏只取决于分子本身,一般分子的氏值数量级为 103 K
12.
q’e=ge,0
式中q’e为电子运动配分函数(选εe,0=0),ge,0为电子运动的基态简并度。除O2及NO等少数分子以
外,大多数分子的队ge,0=1,即电子运动的基态是非简并的,因而它们的q’e=1。
13.
q’n=gn,0
第 3 章 统计势力学
3.1 重要概念
1.能量量子化及能级间隔
分子的运动具有平动、转动、振动、电子运动和核运动五种形式。若把这些运动视为相互
独立的,则分子的能量为
ε = εt + εr + εV + εe + εn
由于等式右端的五种能量都是量子化的,所以分子能量ε是量子化的。分子的状态用量子数描
述,称做量子态。分子总是处在一个个数值不连续的能级上。同一能级上所包括的不周量子态
N 确定的情况。即在能够实现系统的同一宏观状态的所有分布中,不论哪一种分布类型,对独
立于系,均要满足 4.配分函数
∑ ni = N
能级
∑ niεi = U
能级
∑ 由定义q = gi exp(− εi / kT ) 可知,配分函数代表分子可占用的所有能级上的有效量子态
之和。q 是;个无量纲的微观量,其值的大小与分子性质有关,但它并不是分子本身固有的性
择性,零点能的选择将产生如下影响:
(1)对各能级的能量标度产生影响。若基态能量为ε0(ε0≠o)时任一能级的标度为εi,当将基态能
量定为ε0’=0 时,上述能级的标度为εi’,则
ε
' i
=
εi
−ε0
(2)对配分函数产生影响。能量标度的改变造成各能级的 Boltzmann 因子的改变,从而导致配
分函数值的变化。若(1)中两种选择时的配分函数分别为 q 和 q’,则
4.请说明配分函数的定义和物理意义。
5 q 和 q’的区别是什么?它们关系如何?
6.在相同的条件下,定域子系的微观状态数
∏ Ω定பைடு நூலகம்= N!Σ i
S = St + Sr + SV + Se + Sn
在利用此关系进行具体计算时,只需计算St,Sr和Sv即可。
3.2 主要公式
1.
( ) εt
=
h2 8mV 2/3
nx2
+
n
2 y
+
nz2
式中εt为分子的平动能,V为分子可以平动的空间体积,m为分子质量,A为P1anck常数
( h = 6.6262)×,1n0x−,34nJy,• 和s nz为平动量子数,它们均可以取任意正整数。可以看出,平动能级
增加。因此从本质上讲,影响微观状态数的因素就是影响熵的因素:①分子数越多,熵值越
大。例如,分解反应导致久值增加,这是由于分子数增加,使得Ω值增大,于是S值增大。②分
子占用的能级越多,S值越大。例如,当温度升高时,许多分子由于吸收能量而向较高能级跃
迁,即分子占用的能级数增多,因而Ω值增大,S值增加。当体积增大(膨胀)时,使得平动能级
=
NkT 2 ⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂T ⎠V ,N
+U0
(2)S = k ln qN + NkT ⎜⎛ ∂ ln q ⎟⎞
⎝ ∂T ⎠V ,N
= k ln q'N +NkT ⎜⎛ ∂ ln q' ⎟⎞ ⎝ ∂T ⎠V ,N
(3)A = −kT ln qN
= −kT ln q'N +U0
(4)p = NkT ⎜⎛ ∂ ln q ⎟⎞
N!
⎝ ∂T ⎠V ,N
(3)A = −kT ln qN
N!
=
−kT
ln
q'N N!
+U0
(4)p = NkT ⎜⎛ ∂ ln q ⎟⎞
⎝ ∂V ⎠T ,N
= NkT ⎜⎛ ∂ ln q' ⎟⎞ ⎝ ∂V ⎠T ,N
(5)H = NkT 2⎜⎛ ∂ ln q ⎟⎞ + NkTV ⎜⎛ ∂ ln q ⎟⎞
Avogadro常数。 15.
Sr,m
=
R⎜⎜⎝⎛ ln
8π 2IkT σh2
+ 1⎟⎟⎠⎞
式中Sr,m为双原子分子理想气体的摩尔转动熵,I和σ分别为分子的转动惯量和对称数。
[ ] 式中16S.V,m为双原子分子理想气SV体,m的=摩R尔⎢⎣⎡ e振xp动(θθ熵VV ,//TT久)为−1分−子ln的1振−动ex特p(征−温θV度/ T。)
质,当系统的 U,V,N 确定时 q 有定值。通常记作 q=f(T,V,N)。配分函数在统计力学中占有
极其重要的地位。平衡统计力学的主要任务之一是用分子性质计算系统的宏观性质,这一任务
正是通过配分函数来完成的。
5.零点能的取值
能量值总是相对的,所以任一能级的能值总是相对于零点能的取值。而这种取值具有人为选
A 是 B01tzmann 常数,它与摩尔气体常数及有关
k = R / L = 1.3806 ×10−23 J • K −1
是=只/人=l。3806×10—23J.K—1
此处 L 是 Avogadro 常数。
ni∗ = gi exp(− εi / kT )
N
q
5. 此式称为Bo1tzmann分布定律。式中ni∗代表在最可几分布时具有能量εi的分子数,N是系统 中的分子总数,gi是能级εi上的简并度,q是分子配分函数,其定义为
+U0
(6)G = −kT ln qN + NkTV ⎜⎛ ∂ ln q ⎟⎞
⎝ ∂V ⎠T ,N
=
−kT
ln
q'N
+ NkTV
⎜⎛ ⎝
∂ ln q' ⎟⎞ ∂V ⎠T ,N
+U0
在以上各式中q’代表将基态能量规定为零时的配分函数,U0代表当系统中所有分子都处在基态 (即系统处于 0K)时系统的能量,即U0=Nε0。
间隔变小,平动能级变得密集,于是分子占据的能级数增多,结果Ω值增大,S值增加。③能级
的简并度越大,S值越大。例如,在一定温度和压力下,对同一种物质而言,液体的熵大于固体
的熵,气体的熵大于液体的熵,即Sm(g)>Sm(1)>Sm(s)。这是由于液体分子比固体增加了转动 运动,而气体分子又比液体分子增加了平动运动。分子运动形式越多,各能级的简并度越大,
m1 + m2
其中m1和m2分别为分子中两个原子的质量,r为原子间距离,µ称约化质量。
3.
εV
= ⎜⎛ v + ⎝
1 ⎟⎞hν 2⎠
式中εv代表双原子分子的振动能,h为P1anck常数,ν为振动频率,v为振动量子数,其值为 0,
1,2,•••等整数。
4.
S = k ln Ω
此式称做 Boltzmann 公式,其中 3 为系统的炳,6 为微观状态数,
式中认为核运动配分函数(εn,0=0),gn,o为核运动的基态简并度。因为在一般物理化学过程中,
不涉及原子核状态的变化,所以在计算热力学量时可略去核运动。
14.
St,m
=
R
⎪⎨⎧ln ⎪⎩
⎡ ⎢ ⎣
(2πmkT
Lh3
)3
2
Vm
⎤ ⎥ ⎦
+
5 ⎪⎫
2
⎬ ⎪⎭
此式称为Sacker—Tetrode方程。其中St,m为理想气体的摩尔平动熵,Vm为摩尔体积,L为
9
qt
=
(2πmkT )3
h2
2
V
此式表明,平动配分函数与体积有关。当T和V固定时,qt取决于分子质量m。
10.
qr
=T σθ r
=
8π 2IkT σh2
式中qt为双原子分子的转动配分函数;σ是分子的对称数,对异核双原子分子σ=1,而同核双原
子分子的σ=2;θt是分子的转动特征温度,其定义为
θr
=
h2 8π 2Ik
Ω就越大,使得S值越大。
3。Bo1tzmann 统计及其宏观约束条件
Bo1tzmann 统计属于平衡统计,它以等几率假设为基础,用最可几分布代表平衡状态。
Bo1tzmann 分布定律指出,在最可几分布时,任一能级上的分子在总分子数中所占的比例等于
该能级上的有效量子态在总有效量子态中所占的比例。该定律的导出,是基于系统的 U,V 和
k
q = ∑ gi exp(− εi / kT ) i=0