人教版七年级下册数学:数据的收集、整理与描述
人教版七年级下册10.1数据的收集、整理与描述教案

一、教学内容
人教版七年级下册10.1数据的收集、整理与描述:
1.数据的收集:学习使用观察、调查、访谈等方法收集数据,了解数据收集的注意事项。
2.数据的整理:学习使用表格、图表等方法整理数据,掌握分类、排序等整理技巧。
3.数据的描述:学习使用平均数、中位数、众数等描述数据集中趋势,了解极差、方差等描述数据离散程度的指标。
-数据描述的统计量:重点介绍平均数、中位数、众数等描述数据集中趋势的统计量,以及极差、方差等描述数据离散程度的指标。
-实践活动的应用:通过具体案例,让学生掌握如何将数据收集、整理与描述的方法应用于解决实际问题。
举例:在讲解数据的整理技巧时,可以以班级同学的身高数据为例,演示如何将原始数据整理成表格,并通过图表直观展示数据分布。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何对一次班级考试成绩进行收集、整理与描述,以及如何通过这些数据帮助我们分析学生的学习情况。
3.重点难点解析:在讲授过程中,我会特别强调数据收集的准确性和整理的逻辑性这两个重点。对于难点部分,比如统计量的选择和应用,我会通过举例和比较来帮助大家理解。
5.培养学生的创新意识,鼓励学生尝试不同的数据收集和整理方法,勇于探索新思路,提高数据处理能力。
三、教学难点与重点
1.教学重点
-数据的收集方法:重点讲解观察法、调查法、访谈法等常见的数据收集方法,并通过实例让学生理解各种方法的适用场景和操作步骤。
-数据的整理技巧:强调分类、排序等整理方法的重要性,以及如何利用表格、图表等形式清晰、有序地展示数据。
2.教学难点
-数据收集的准确性:难点在于如何确保收集到的数据真实、可靠,避免因主观因素造成数据偏差。
人教版七年级数学下册全册教案 第十章数据的收集、整理与描述

10.1.1统计调查【课时分配】3课时统计调查 (第一课时)【教学目标】1.了解通过全面调查收集数据的方法,并能够独立设计调查表.2.了解全面调查的一般步骤和适用范围.3.会画条形图和扇形图.【教学重点与难点】教学重点:了解全面调查的一般方法.教学难点:了解运用全面调查的应用范围,并能根据已有数据画出条形图和扇形图.【教学方法】通过创设情境引发学生思考,引导学生积极动手动脑进行探索.教学环节的设计与展开都以生活中的常见问题为出发点,让学生在自主探索的过程中,形成自己的观点。
【教学过程】一、创设情境提出问题(设计说明:以生活中常见问题创设情境,引起学生的探究兴趣,从而发现问题.)问题:2001年7月13日,国际奥委会根据什么决定由中国承办2008年奥运会?在2008年北京奥运会上,人们又是根据什么知道中国队位列金牌榜第一位呢?学生回答:国际奥委会根据投票的多少决定由哪个国家承办2008年奥运会,在这次投票中,第二轮北京得56票,多伦多得22票,巴黎得18票,伊斯坦布尔得9票(获得主办权需要52票),中国得标最多,所以由中国承办2008年奥运会.在2008年奥运会上,中国得到51枚金牌,是得到金牌数最多的国家,所以中国列于金牌榜第一位.(教学说明:这两个问题只要学生能够说明中国得票最多,中国得到的金牌数最多即可,教师可以将问题的答案说明得更为详细,不仅激发学生的学习兴趣,也培养了学生的民族自豪感.)二、探索新知解决问题1.自主探索,讨论收集数据的方法(设计说明:从生活中常见的问题出发,合作探索收集数据的方法.)问题1:如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你会怎么做?学生回答:要进行统计调查,可以举手,也可以调查问卷.问题2:你能设计一份调查问卷来收集我们需要的数据吗?学生探索交流,并进行设计.教师进行点拨,并说明设计应注意的问题.问题3:如果想了解男、女生喜爱节目的差异,问卷中还应该包含什么内容?学生回答:还应该增加性别.(教学说明:本环节所提出的问题较少,但整个活动过程需要教师注意引导.特别是问题2,这是本环节的一个重点,教师要先让学生自己尝试进行设计,不能由教师一手代劳,并且好的设计教师要给予肯定.最后,教师可以通过提出“调查的目的是什么”“调查的对象是什么”“调查问卷应该包括哪些内容”“应该从哪些方面提出问题”“如何提问”“怎样设计选择答案”等问题,让学生体会设计一份调查问卷需要注意哪些问题.所以,一般说来,调查问卷应简明易答,内容一般包括调查中所提问题的设计、问题答案的设计、提问顺序的设计等.最后,教师要说明,这就是统计的第一个步骤“收集数据”.)2. 集体合作,探究整理数据的方法(设计说明:在已有数据的基础上,集体合作进行整理数据.)问题1:利用调查问卷,我们现在收集到全班每一位同学喜爱的节目的编号,这些编号我们称为数据.观察下现的数据,你能看出全班同学喜爱各类节目的情况吗?C C AD B C A D C DC E A BD D B C C CD B D C D D D C D CE B B D D C C E B DA B D D C B C B D D学生回答:不能.问题2:我们运用什么方法能够更为清晰地发现这些数据中的规律呢?学生回答:数一数每个编号的个数;画“正”字;列表等.问题3:我们一般都是列出一个表格,通过画“正”字进行记数,“正”字的每一划代表一个数据,这种方法被称为划记法.请同学们设计一个表格整理一下这些数据.学生小组合作设计并完成下表.全班同学最喜爱的节目统计表3.运用条形图和扇形图描述和分析数据(设计说明:画出条形图和扇形图,通过两种统计图的对比,感受条形图与扇形图的特点和作用.)教师操作:为了更直观地看出表中的信息,我们可以将数据用条形图和扇形图表示出来.教师操作:为了更直观地看出表中的信息,我们可以将数据用条形图和扇形图表示出来.问题1:从这两个统计图中,你可以得到哪些信息?学生回答:从条形图中可以知道,喜欢娱乐节目的同学最多,其次是喜欢动画的同学,喜欢戏曲节目的同学最少等;从扇形图中可以知道,喜欢新闻节目的人占总人数的8%,喜欢体育节目的人数占总人数的20%等.问题2:这两个统计图有什么区别?学生回答:条形图能够显示每组中的具体数据,易于比较数据之间的差别;扇形图用扇形的大小表示部分在总体中所占的百分比,易于显示每组数据相对于总数的大小,而不能判断出每组数据的绝对大小.问题3:如图,我们称∠AOB为圆心角.那么圆心角的度数与这个扇形所表示的百分比有什么关系?学生回答:圆心角度数=360°×扇形所表示的百分比.问题4:思考,画扇形图的一般步骤是什么?学生讨论回答:①收集数据;②整理数据,算出每组数据所代表的圆心角度数;③画扇形图.(教学说明:通过演示统计图的完成过程,让学生感受利用统计图描述数据的好处,同时让学生通过条形图和扇形图对数据进行分析.分析数据时最好从三方面进行分析:①表面情况;②可以计算出的结果;③数据所反映的现实情况.对于条形图和扇形图,学生在小学都接触过,学生已经学过用条形图来描述数据,但对于扇形图学生只会从扇形图中读出信息,并没有学习如何画扇形图,所以些环节只讲解了扇形图的画法,这是本节课的一个重点.最后教师要说明,画出统计图,是描述数据的过程,而从统计图中得到一定的信息,则是分析数据的过程.至此统计调查的步骤结束.)4.通过所学知识,总结本节内容(设计说明:通过回顾所学知识的过程,独立总结统计调查的基本步骤.)问题1:回顾本节课的学习过程,思考统计调查的基本步骤.学生回答:统计调查的基本步骤是:①收集数据;②整理数据;③描述数据;④分析数据.教师讲解:本节课我们对全班的每一位同学进行了喜爱哪种电视台节目的调查.这里,调查的对象是全班的每一位同学,所以我们对全班每一位同学都进行了调查.像这样的调查方式就被称为全面调查.问题2:在生产生活中,你还知道哪些统计调查属于全面调查?学生回答:人口普查等.(教学说明:本环节教师要注意引导学生回顾探索知识的过程,而在问题2中,只要学生所举的调查方式适合于全面调查,教师就要给予肯定.)三、巩固训练熟练技能(设计说明:通过基础的练习,使学生感受统计调查在生活中的广泛应用,培养学生的应用意识.)练习1.下图是从1988年汉城奥运会到2008年北京奥运会中国队所获得的金牌数目的统计图,从这个统计图中你能得到哪些信息?学生:1998年获得的金牌最少,只有5块;2008年获得的最多,有51块,大约20年前的10倍;中国获得的金牌数逐年增加,呈上升趋势;可以看出我国的体育发展水平越来越高等.练习2.经调查,某班同学上学所用的交通工具中,自行车60%,公交车30%,其他10%,请画出扇形统计图以描述以上数据.学生:自行车占圆心角度数=360°× 60% =216°;公交车占圆心角度数=360°× 30% =108°;其他占圆心角度数=360°× 10% =36°.扇形图如右图所示.(教学说明:从不同角度设计练习,巩固学生所学)四、反思总结情意发展(设计说明:围绕三个问题,师生以谈话交流的形式,共同总结本节课的学习收获。
七年级下册数学数据的收集整理与描述

七年级下册数学数据的收集整理与描述数据的收集、整理与描述数据的收集、整理、描述和分析是统计学中的基本过程。
数据的收集是指从总体中获取数据的过程。
数据的整理是将收集到的数据进行分类、排序和编码等操作。
数据的描述是将整理好的数据以表格、图表等形式呈现出来。
数据的分析是对数据进行统计学分析,得出结论。
知识结构统计调查有两种方式:全面调查和抽样调查。
全面调查是对总体进行调查,抽样调查是从总体中抽取一部分个体进行调查。
全面调查的优点是可靠、真实,抽样调查的优点是省时、省力,减少破坏性。
在进行数据处理时,基本过程是收集数据、整理数据、描述数据、分析数据、得出结论。
数据的表示有两种基本方法,一是统计表,二是统计图。
常见的统计图有条形统计图、扇形统计图和折线统计图。
全面调查全面调查是指对总体进行调查的方式。
在数据处理的基本过程中,全面调查包括收集数据、整理数据、描述数据、分析数据和得出结论。
其中,数据的整理和描述可以使用统计表和统计图的方式进行。
统计表可以清楚地找出数据分布的规律,统计图则可以更直观地反映数据的规律。
常见的统计图有条形统计图、扇形统计图和折线统计图。
抽样调查抽样调查是指从总体中抽取一部分个体进行调查的方式。
抽样调查只考察总体中的一部分个体,因此它的优点是调查范围小,节省人力、物力和财力。
但是,抽样调查得到的结果往往不如全面调查得到的结果准确。
为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性。
在统计中,需要考察对象的全体叫做总体,其中从总体中抽取的部分个体叫做总体的一个样本,样本中个体的数目叫做样本容量。
表示数据的两种基本方法表示数据的两种基本方法是统计表和统计图。
统计表可以清楚地找出数据分布的规律,统计图则可以更直观地反映数据的规律。
常见的统计图有条形统计图、扇形统计图和折线统计图。
扇形统计图用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小。
人教版 数学 七年级 下册 第十章 数据的收集、整理与描述 知识点

第十章 数据的收集、整理与描述一、知识结构二、统计调查1、全面调查:考察全体对象的调查叫做全面调查.2、抽样调查:只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.3、有关概念:要考查的全体对象称为总体,组成总体的每一个考查对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目称为样本容量.总体中的每一个个体都有相等机会被抽到的抽样方法是一种简单随机抽样;将总体分成几个层(如年龄段),然后再在各层中进行简单随机抽样,这是一种分层抽样. 与简单随机抽样相比,分层抽样更具有代表性.全班同学最喜爱节目人数统计表(划记法)扇形的大小是由圆心角的大小决定的.根据各项所占的百分比就可以算出对应扇形圆心角的度数.节目类型 人 数 百分比 A 新闻 4 10% B 体育 10 25% C 动画 8 20% D 娱乐 18 45% 合 计40100%301020400娱乐 动画娱乐节目类别如新闻:360°×10%≈36° 折线统计图三、直方图七年级准备从63名同学中挑40名参加广播体比赛。
收集身高数据如下(单位:㎝) 158 158 160 168 159 159 151 158 159 168 158 154 158 154 169 158 158 158 159 167 170 153 160 160 159 159 160 149 163 163 162 172 161 153 156 162 162 163 157 162 162 161 157 157 164 155 156 165 166 156 154 166 164 165 156 1571531651591571551641561、计算最大值与最小值的差(极差) 172-149=232、决定组距与组数把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距。
作等距分组(各组的组距相同),本例取组距为3㎝(从最小值起每隔3㎝作为一组). 232733最大值-最小值==组距将数据分成8组:149≤x <152,152≤x <155,…,170≤x <173.注意:①根据问题的需要各组的组距可以相同或不同;②组距和组数的确定没有固定的标准,要凭借经验和所研究的具体问题来决定;③当数据在100个以内时,按照数据的多少,常分成5~12组.3、频数分布表对落在各个小组内的数据进行累计,得到各个小组内的数据的个数(叫做频数)。
人教版七年级下册数学教学设计(教案):第十章数据的收集、整理与描述单元备课

第十章“数据的收集、整理与描述”单元备课本章是统计部分的第一章,内容包括:1.利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;2.利用统计图表(以直方图为重点)描述数据;3.展现收集、整理、描述和分析数据得出结论的统计调查的基本过程.本章共安排三个小节和两个选学内容,教学(不包括选学内容)约需10课时,具体安排如下(仅供参考):10.1 统计调查约3课时10.2 直方图约2课时课题学习从数据谈节水约3课时数学活动小结约2课时一、教科书内容与本章学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容10.1节“统计调查”,主要介绍收集、整理与描述数据的一些常用方法.全面调查和抽样调查是统计调查的常用方法.教科书以调查人们对几种电视节目的喜爱情况为背景,设计了两个问题,通过统计调查问题1回顾了全面调查;通过统计调查问题2介绍了抽样调查.教科书首先设置问题1,要求学生考察全班同学喜爱五种电视节目的情况.解决这个问题需要统计调查,首先是收集数据,由此引出利用调查问卷收集数据的方法;对于收集到的数据需要进行整理才能看出数据分布的规律,这就涉及如何整理数据的问题,教科书介绍了利用频数分布表(没有给出频数分布的概念)整理数据的方法;为了更直观地看出全班同学喜爱五种电视节目的情况,教科书选用了学生在小学已经学过的条形图和扇形图展示了数据的分布规律;最后通过分析统计图表就可以看出全班同学五种电视节目的情况.对于扇形图,学生在小学只能从扇形图中读出信息,不会画出扇形图来描述数据,在本节中,教科书结合问题1介绍了如何画出扇形图,这是本学段的一个教学要求.问题1的统计调查过程实际上让学生经历了一个收集、整理、描述和分析数据得出结论,即数据处理的一般过程.数据的来源一般有两条渠道:一条是通过统计调查或科学试验直接得到第一手统计数据;另一条是通过查阅资料等间接获得第二手统计数据.统计调查是获得第一手数据的重要途径,它们常常通过访问、邮寄、电话、电脑辅助等形式来收集数据;科学试验是取得自然科学数据的主要手段;各种文献资料、报刊杂志、广播、电视媒体等提供了大量的统计数据,通过这些资料或媒体可以获得第二手数据.本章主要学习通过统计调查来收集数据,并对收集到的数据进行整理的方法.关于通过科学试验获得数据的方法,教科书通过一个选学栏目作了简单介绍;对于通过查阅资料等间接手段收集数据的方法,主要安排在课题学习和习题中.用样本估计总体是统计的基本思想,抽样调查是实际中经常采用的一种调查方式,也是本节重点介绍的统计调查方法.教科书沿用问题1的情景,设计了问题2,介绍利用抽样调查收集数据.在问题2中,调查全校学生对五种电视节目的喜爱情况,由于学生人数较多,采用全面调查的方式收集数据不太实际,抽样调查是一种经济、有效、省时省力的方法,这就使学生对抽样的必要性有所感受.结合着必要性的讨论,教科书给出了与抽样调查有关的概念和术语,如样本、总体、个体、样本容量等.为了使样本尽可能具有好的代表性,抽取样本时,要求每一个学生都有相等的机会被抽到,教科书介绍了一种利用学号随机抽取样本,实现简单随机抽样的方法.这个抽样方法简单有效,便于学生理解样本的代表性.有了样本数据,就可以整理、描述和分析样本数据,通过分析样本数据来估计总体的情况.通过问题2的学习,学生经历了一个利用抽样调查处理数据、解决问题的统计过程,对抽样调查的必要性、样本的代表性、单随机抽样,以及通过样本估计总体的思想等有所了解.在问题1,2的基础上,教科书设置了问题3.问题3是比较学生所在学校三个年级学生的平均体重,教科书没有给数据,也没有给分析和解决过程,需要学生自主合作完成.教科书这么做的目的是考虑到统计内容有较强的实践性,希望学生通过亲自参与统计活动这种有效方式学习统计内容.问题3中设置的三个小问题,事实上是给学生完成此问题适当的引导.其中调查方案的确定,需要根据学生自己所在学校的实际情况进行综合权衡,选取相对合适的调查方案.即使是调查同一所学校,也完全可以采用不同的调查方式收集数据,但要能解决所提问题为前提,其实这是辩证地认识两种调查方式特点的过程,更是正确认识统计方法特点的过程.通过问题3,让学生亲自参与在实际问题中收集、整理、描述和分析数据得出结论的统计过程,培养应用意识和解决问题的能力,初步建立数据分析观念,感受统计的思想.“捉-放-捉(capture-recapture)”是生产和科研中经常用到的方法,常常被用来根据部分的情况估计整体的情况,例如估计养鱼池中鱼的个数,森林中某种动物的个数等,这个方法体现了用样本估计总体的思想.教科书在选学栏目“实验与探究瓶子中有多少粒豆子”中,模拟这种方法设计了一个活动,通过学生动手活动体验这种方法,感受用样本估计总体的思想,并了解试验也是获得数据的有效方法.10.2节“直方图”,重点讨论利用直方图来描述数据.对于直方图,学生在前两个学段没有接触,这是本学段学习的一种新统计图.教科书从学生熟悉的问题情景入手:从63名学生中选出40名参加广播体操比赛.选择参赛队员的一个要求是队员的身高应尽可能整齐.我们可以用不同的方法选出符合这个要求的队员,教科书介绍了利用频数分布确定人选的方法.分析数据的频数分布,首先是将数据分组,根据一组数据的最大值、最小值可以确定这组数据的极差,极差反映了数据的变化范围.参照极差,可以确定组距,进而可以将数据进行分组,利用频数分布表给出了身高数据的分布情况,分析频数分布表可以看出大部分学生的身高分布在哪个范围,由此可以确定参赛选手的身高.对于取值比较少的数据(如前一节最喜爱的电视节目),可以用条形图描述频数分布,而对于取值比较多的数据(如身高),分组后可以用直方图来描述频数分布.教科书利用问题4介绍了根据频数分布表作出频数分布直方图的方法.教科书结合一个实际问题介绍直方图描述数据的方法,使得对于统计图表的认识具体化.10.3节“课题学习从数据谈节水”,要求学生综合利用学过的统计知识和方法从事统计活动,经历收集、整理、描述和分析数据的基本过程.教科书选择了一个具有实际意义和时代气息的问题——水资源问题为主题编写课题学习,这不仅有利于统计知识的深入学习,而且具有“节能减污,保护环境”的教育价值.这个课题学习由两部分组成,第一部分要求学生阅读背景材料,从中收集数据,通过数据处理回答问题.第二部分要求学生运用已学的统计调查知识,完成一个以“家庭人均月生活用水量”为题的统计调查活动,并结合第一部分的内容撰写一份报告.课题学习的设计目的,一方面是让学生感受对数据进行合适处理,可以挖掘其中蕴涵的信息,体会统计方法的意义;另一方面是让学生经历在实际问题中收集、整理、描述和分析数据得出结论的统计过程,在经历这个统计调查的过程中,发展学生的数据分析观念,感受统计的思想,逐步建立用数据说话的习惯.(三)本章学习目标1.经历收集数据、整理、描述和分析数据的活动,了解数据处理的过程.了解全面调查和抽样调查两种收集数据的方式,会设计简单的调查问卷.2.通过实例,体会抽样的必要性,了解简单随机抽样.通过简单随机抽样,体会样本估计总体的合理性,能根据统计结果作出简单的判断和预测.3.通过实例,了解频数及频数分布的意义,会用表格整理数据,体会表格在整理数据中的作用.5.能画扇形图和简单频数分布直方图(等距分组的情形),并能利用频数分布直方图解释数据中蕴涵的信息.会根据问题需要选择适当的统计图描述数据,进一步体会统计图在描述数据中的作用.6.通过表格、折线图、趋势图等,感受随即现象的变化趋势.7.通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立数据分析观念,培养重视调查研究的良好习惯和科学态度.三、对教学的几个建议1.注意统计思想的渗透与体现2.在统计过程中学习统计,改进学生的学习方式3.挖掘现实生活中的素材进行教学4.准确把握教学要求5.关注信息技术的使用。
2020-2021年人教版七年级下册数学期末复习:数据的收集、整理与描述(含答案)

2020-2021年人教版七年级下册数学期末复习数据的收集、整理与描述考点一调查方式的选用【例1】下列调查方式中适合的是( )A.要了解一批节能灯的使用寿命,采用全面调查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查沱江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式【分析】统计的调查方式有全面调查与抽样调查两种方式.对于两种调查方式的选择主要取决于调查对象的数量和性质,因为调查具有时间限制,有的调查还具有破坏性.【解答】C【方法归纳】全面调查适合的条件:(1)总体的数目较少,(2)研究的问题要求情况真实、准确性较高,(3)调查工作方面,没有破坏性;抽样调查适合的条件:(1)受客观条件限制,无法对所有个体进行调查,(2)调查具有破坏性.1.以下问题,不适合用全面调查的是( )A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱考点二收集数据的相关概念【例2】为了解我县七年级6 000名学生的数学成绩,从中抽取了300名学生的数学成绩,以下说法正确的是( )A.6 000名学生是总体B.每个学生是个体C.300名学生是抽取的一个样本D.每个学生的数学成绩是个体【分析】我们可以根据总体、个体、样本、样本容量的概念结合具体问题解决,本题的考察对象是6 000名学生的数学成绩,而不是6 000名学生,所以选项A是错误的,同理,选项B,C 也是错误的,每个学生的数学成绩是个体,所以选项D是正确的.【解答】D【方法归纳】解决本题的关键是准确把握总体、个体、样本、样本容量的概念,弄清具体问题中总体、个体、样本所指的对象,明白它们是数据而不是载体.2. 2015年河池市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是( )A.300名考生的数学成绩B.300C.3.2万名考生的数学成绩D.300名考生考点三统计图的选择与制作【例3】绵阳农科所为了考察某种水稻穗长的分布情况,在一块试验田里随机抽取了50个谷穗作为样本,量得它们的长度(单位:cm).对样本数据适当分组后,列出了如下频数分布表:穗长 4.5≤x<5 5≤x<5.5 5.5≤x<6 6≤x<6.5 6.5≤x<7 7≤x<7.5频数 4 8 12 13 10 3(1)在下图中画出频数分布直方图;(2)请你对这块试验田里的水稻穗长进行分析,并计算出这块试验田里穗长在5.5≤x<7范围内的谷穗所占的百分比.【分析】题目已给出频数分布表,可根据表中所给数据画出频数分布直方图,再根据频数分布直方图回答(2)中的问题.【解答】(1)如图所示:(2)由(1)可知谷穗长度大部分落在5 cm至7 cm之间,其他范围较少.长度在6≤x<6.5范围内的谷穗个数最多,有13个.这块试验田里穗长在 5.5≤x<7范围内的谷穗所占百分比为(12+13+10)÷50=70%.【方法归纳】给出频数分布表求作频数分布直方图时,按照画频数分布直方图的步骤完成即可.3.某中学七年级学生共450人,其中男生250人,女生200人.该校对七年级所有学生进行了一次体育测试,并随机抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:(1)从统计表的“频数”,“百分比”两列数据中选择一列,用适当的统计图表示;(2)估计该校七年级体育测试成绩不及格的人数.考点四统计图表中信息的获取【例4】在义乌中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了__________名学生;(2)被调查的学生中,最喜爱丁类图书的有________人,最喜爱甲类图书的人数占本次被调查人数的________%;(3)在最喜爱丙类图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1 500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.【分析】(1)结合条形统计图和扇形统计图可以看出最喜爱丙类图书的有40人,占被调查人数的20%,因此总人数=40÷20%=200(人);(2)根据总人数为200人,可以求最喜爱丁类图书的人数=200-80-65-40=15(人),最喜爱甲类图书的人数占本次被调查人数的百分比=80200×100%=40%;(3)先求出最喜爱丙类图书的总人数,然后用x表示男生人数,1.5x表示女生人数,根据男生人数与女生人数之和等于最喜爱丙类图书的总人数列出方程,求出最喜爱丙类图书的女生人数和男生人数.【解答】(1)40÷20%=200(人).(2)200-80-65-40=15(人),80200×100%=40%.(3)设最喜爱丙类图书的男生人数为x人,则女生人数为1.5x人.根据题意,得x+1.5x=1 500×20%.解得x=120.当x=120时,1.5x=180.∴最喜爱丙类图书的女生人数为180人,男生人数为120人.【方法归纳】解决此类问题的关键是牢固掌握统计的基础知识,善于从统计图表中获取相关信息,并具备良好的分析数据的能力.4.某校为了解“阳光体育”活动的开展情况,从全校2 000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=__________,n=__________;(3)全校学生中喜欢篮球的人数大约有多少?复习测试一、选择题(每小题3分,共30分)1.下列调查中,适宜采用全面调查(普查)方式的是( )A.对全国中学生心理健康现状的调查B.对市场上的冰淇淋质量的调查C.对我市市民实施低碳生活情况的调查D.对我国首架大型民用直升机各零部件的检查2.下列调查方式合适的是( )A.为了了解市民对电影《南京》的感受,小华在某校随机采访了8名初三学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向3位好友做了调查C.为了了解“嫦娥一号”卫星零部件的状况,检测人员采用了普查的方式D.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式3.某商店一周中每天卖出的衬衣分别是:16件、19件、15件、18件、22件、30件、26件,为了反映这一周销售衬衣的变化情况,应该制作的统计图是( )A.扇形统计图B.条形统计图C.折线统计图D.直方图4.甲校的女生占所有学生的50%,乙校的男生占所有学生的60%,那么( )A.甲校的女生人数多B.乙校的女生人数多C.两个学校的女生人数一样多D.不能判断哪一个学校的女生人数多5.某校500名学生参加生命安全知识测试,测试分数均大于或等于60且小于100,分数段的频率分布情况如下表所示(其中每个分数段可包括最小值,不包括最大值),结合表中的信息,可得测试分数在80~90分数段的学生共有( )分数段60~70 70~80 80~90 90~100频率0.2 0.25 0.25A.250名B.200名C.150名D.100名6.某纺织厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中合格品约为( )A.9.5万件B.9万件C.9 500件D.5 000件7.为调查某校2 000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,并结合调查数据作出如图所示的扇形统计图,根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有( )A.500名B.600名C.700名D.800名8.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是( )A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)的人数是269.某市股票在七个月之内增长率的变化状况如图所示,从图上看出,下列结论不正确的是( )A.2~6月份股票月增长率逐渐减少B.7月份股票的月增长率开始回升C.这七个月中,每月的股票不断上涨D.这七个月中,股票有涨有跌10.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,可得出样本容量是( )A.15B.40C.50D.60二、填空题(每小题4分,共20分)11.将七年级一班分成五个组,各组人数在频数分布直方图中的小长方形高的比依次为1∶2∶5∶3∶1,人数最多的一组有25人,则该班共有__________人.12.一个样本含有下面10个数据:52,51,49,50,47,48,50,51,48,53,则最大的值是__________,最小的值是__________,如果组距为1.5,则应分成__________组.13.某区卫生局在2012年11月对全区初中毕业生进行体质健康测试,随机抽取了200名学生的测试成绩作为样本,数据整理如下表,其中x的值是__________.等级 A B C D频数150 4百分比x 0.1814.如图,整个圆表示某班参加课外活动的总人数,跳绳的人数占30%,表示踢毽的扇形圆心角是60°,踢毽和打篮球的人数比是1∶2,那么表示参加“其他”活动的人数占总人数的__________%.15.四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图,写出一条你从图中所获得的信息:________________________________________.三、解答题(共50分)16.(7分)雅安地震,牵动着全国人民的心,地震后某中学举行了爱心捐款活动,下图是该校九年级某班学生为雅安灾区捐款情况绘制的不完整的条形统计图和扇形统计图.(1)求该班人数;(2)补全条形统计图;(3)若该校九年级有800人,据此样本,请你估计该校九年级学生中捐款15元的有多少人?17.(8分)阅读对人成长的影响是很大的.希望中学共有1500名学生,为了了解学生课外阅读的情况,就“你最喜欢的图书类别”(只选一项)随机调查了部分学生,并将调查结果统计后绘制成如下统计表和条形统计图.请你根据统计图表提供的信息解答下列问题:(1)这次随机调查了__________名学生;(2)种类频数频率科普0.15艺术78文学0.59其他8118.(10分)联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某校课外活动小组对全校师生开展了以“爱护环境,从我做起”为主题的问卷调查活动,将调查结果分析整理后,制成了下面的两个统计图.其中:A:能将垃圾放到规定的地方,而且还会考虑垃圾的分类B:能将垃圾放到规定的地方,但不会考虑垃圾的分类C:偶尔会将垃圾放到规定的地方D:随手乱扔垃圾根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全下面的条形统计图;(2)如果该校共有师生2 400人,那么随手乱扔垃圾的约有多少人?19.(12分)今年,市政府的一项实事工程就是由政府投入1 000万元资金对城区4万户家庭的老式水龙头和13升抽水马桶进行免费改造.某社区为配合政府完成该项工作,对社区内1 200户家庭中的120户进行了随机抽样调查,并汇总成下表:改造情况均不改造改造水龙头改造马桶1个2个3个4个1个2个户数20 31 28 21 12 69 2(1)试估计该社区需要对水龙头、马桶进行改造的家庭共有__________户;(2)改造后,一个水龙头一年大约可节省5吨水,一个马桶一年大约可节省15吨水.试估计该社区一年共可节约多少吨自来水?(3)在抽样的120户家庭中,既要改造水龙头又要改造马桶的家庭共有多少户?20.(13分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可)(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?参考答案变式练习1.D2.A3.(1)选择扇形统计图表示各种情况的百分比,图略.(2)450×10%=45(人).答:估计该校七年级体育测试成绩不及格的有45人.4.(1)100 图略(2)30 10(3)2 000×10%=200(人).答:全校学生中喜欢篮球的人数大约有200人.复习测试1.D2.C3.C4.D5.C6.A7.B8.D9.D 10.B11.60 12.53 47 4 13.0.05 14.2015.答案不唯一,可以从总体来说:该班有50人参与了献爱心活动,也可以具体分情况来说,捐款10元的有20人等16.(1)15÷30%=50(人).(2)图略.(3)800×1050=160(人).17.(1)300(2)45 0.26 9618.(1)由统计图可知B种情况的有150人,占总人数的50%,所以调查的总人数为150÷50%=300(人),D种情况的人数为300-(150+30+90)=30(人),补全图形如图.(2)因为该校共有师生2 400人,所以随手乱扔垃圾的人约为2 400×30300=240(人).19.(1)1 000(2)抽样的120户家庭一年共可节约用水:(1×31+2×28+3×21+4×12)×5+(1×69+2×2)×15=198×5+73×15=2 085(吨),所以,该社区一年共可节约用水的吨数为2 085×1000100=20 850(吨).(3)设既要改造水龙头又要改造马桶的家庭共有x户,则只改造水龙头不改造马桶的家庭共有(92-x)户,只改造马桶不改造水龙头的家庭共有(71-x)户,根据题意列方程,得x+(92-x)+(71-x)=100,解得x=63.所以既要改造水龙头又要改造马桶的家庭共有63户.20.(1)13 正 5(2)答案不唯一:如①从直方图可以看出:居民月均用水量大部分在2.0至6.5之间;②居民月均用水量在3.5<x≤5.0范围内最多,有19户;③居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(合理即可)(3)要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,因为月均用水量不超过5吨的有30户,占总户数的60%.。
人教版七年级下册数学第10章 数据的收集、整理与描述 数据的收集与描述

感悟新知
知2-练
2. 设计调查问卷时要注意( C ) ①问题应尽量简明;②不要提问被调查者不愿意回 答的问题;③提问不能涉及提问者的个人观点; ④提供的选择答案要尽可能全面;⑤问卷应简洁. A.①②④⑤B.①③④⑤ C.①②③④⑤D.①⑤
感悟新知
知识点 3 统计图
知3-讲
1.数据的描述方法有: 统计表和统计图两种.其中统计图常见的有: 条形统计图,折实际需要,常要把日常工作中所得到的相互关联的 知2-讲 数据按照一定的要求进行整理、归类,并按照一定的顺 序把数据排列起来,制成表格,这种表格叫做统计表. (2)统计表的作用: ①使数据更直观、清楚,便于分析; ②用数据把研究对象之间的变化规律清楚地表示出来; ③用数据把研究对象之间的差别清楚地表示出来,以便 于人们分析问题和研究问题.
知2-讲
感悟新知
知2-讲
选项
A
B
C
问题
划 记
人 数
百 分 比
划 记
人 数
百 分 比
划 记
人 数
百 分 比
1
2
感悟新知
归纳
知2-讲
1.设计调查问卷要根据调查的需要和要求进行设计,如果考虑不 周,有的数据了解不到,调查的结果就不具备代表性.因此设计 调查问卷时要进行周密的考虑.一份调查问卷的设计包括问题的 设计和答案的设计:(1)问题的设计要求:①表述要清楚;②表述 要简单明了;③一个问题只能包含一个内容;④易于回答.(2)答 案的设计:①答案要不同;②答案要涉及各种情况.
的变化规律.
感悟新知
知2-讲
例3 某厂准备在“六一”儿童节时送一批气球给幼儿园的 小朋友,特地对50名小朋友最喜欢的气球颜色进行调 查,数据如下: 红蓝红黄红蓝绿绿黄红 红蓝红蓝蓝蓝红蓝红绿 黄红红蓝红绿黄红黄红 黄红绿蓝蓝黄蓝红蓝红 绿红红蓝蓝红红黄蓝绿
人教版七年级数学下册第十章数据的收集,整理与描述优秀教学案例

3.教师可以引导学生回顾之前学过的数据处理方法,如用表格整理数据,用图表展示数据等,激发学生的学习兴趣和回忆。
4.教师可以总结之前的知识,并提出本节课的学习目标,引导学生明确本节课的学习内容和要求。
3.游戏情境:设计有趣的数学游戏,如数据接龙、图表猜猜看等,让学生在游戏中体验数据的收集、整理与描述的过程,提高学生的实践能力。
4.媒体情境:利用多媒体课件、视频等资源,为学生提供丰富的数据资源,丰富学生的数据感知,帮助学生更好地理解和掌握数据处理的方法。
(二)问题导向
1.教师可以通过设计具有挑战性和启发性的问题,引导学生主动思考,激发学生的求知欲,激发学生解决问题的动力。
人教版七年级数学下册第十章数据的收集,整理与描述优秀教学案例
一、案例背景
本案例背景以人教版七年级数学下册第十章“数据的收集、整理与描述”为主题,旨在通过实际教学案例,探讨如何在数学教学中有效地引导学生掌握数据的收集、整理与描述的方法,提高学生的数据处理能力,培养学生的逻辑思维和分析问题的能力。
在实际教学中,教师可以通过设计丰富多样的教学活动,如小组合作、动手操作、问题探究等,激发学生的学习兴趣,引导学生主动参与,从而更好地理解和掌握数据收集、整理与描述的方法。同时,教师还需关注学生的个体差异,给予不同程度的学生个性化的指导,确保每个学生都能在课堂上得到有效的锻炼和提升。
(二)讲授新知
1.教师可以通过讲解和示例,向学生介绍数据的收集方法,如调查、实验等,并解释每种方法的优缺点。
2.教师可以通过讲解和示例,向学生介绍图表的制作方法,如条形图、折线图、饼图等,并解释每种图表的特点和适用场景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30 24 24
18
12 6
0优 良
18 15
9
6
轻度 中度 重度 严重 污染 污染 污染 污染
链接中考 随堂检测
请根据图表中提供的信息,解答下面的问题:
(1)空气质量指数统计表中的 a = ,m = ; (2)请把空气质量指数条形统计图补充完整; (3)若绘制“空气质量指数扇形统计图”,级别为“优” 所对应扇形的圆心角是 度 (4)估计该市 2014 年(365 天)中空气质量指数 大于 100 的天数约有 天
空气质量指数统计表
级 别 指 数 天数
优
0-50 24
良
51-100 a
轻度污染 101-150 18
中度污染 151-200 15
重度污染 201-300 9
严重污染 大于300 6
合计 ———— 120
百分比
m
40% 15% 12.5% 7.5%
5%
100%
空气质量指数条形统计图
天数
48 42
ห้องสมุดไป่ตู้
36
全部用于交通等重大项目建设.以下是60亿“债券资金”分配统计图:
(1)请将条形统计图补充完整;
(2)在扇形统计图中,a=
,b=
(都精确到0.1);
(3)在扇形统计图中,“教育文化”对应的扇形圆心角的度数为
°(精确
到°1)
链接中考 随堂检测
(2014年海南)海南有丰富的旅游产品.某校九年级(1)班的同学就部分旅游 产品的喜爱情况对游客随机调查,要求游客在列举的旅游产品中选出喜爱的产品, 且只能选一项,以下是同学们整理的不完整的统计图:
数据的收集、整理与描述
(专题训练)
要点梳理
统计的公式
(1)总人数=
A的人数 A的百分比
(2)A的百分比=
A的人数 总人数
100
%
(3)A的人数=总人数×A的百分比 (4)A的圆心角=360°×A的百分比
要范点例梳讲理解
某市积极开展“阳光体育进校园”活动,各校学生坚 持每天锻炼一小时,某校根据实际,决定主要开展A . 乒乓球,B.篮球,C.跑步,D.跳绳四种运动项目,随 机抽取了100名学生进行调查,并将调查结果(每名学 生统计一个最喜欢的项目)绘制成如下统计图,请你 结合图中信息解答下列问题:
链接中考 随堂检测
(2018年海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,
全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)
属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完
整的条形统计图和扇形统计图,请完成下列问题:
(1)在图1中,先计算地(市)属项目投资额为
(2012年海南)某校有学生2100人,在“文明我先行”活动中,开设了“法律、 礼仪、环保、感恩、互助”五门校本课程,规定每位学生必须且只能选一门.为 了解学生的报名意向,学校随机调查了100名学生,并制成右下统计表: 请根据统计表的信息,解答下列问题:
(1)在这次调查活动中,学 校采取的调查方式 是_________(填写“普查” 或“抽样调查”);
要点梳理
统计的公式
(1)总人数=
A的人数 A的百分比
(2)A的百分比=
A的人数 总人数
100
%
(3)A的人数=总人数×A的百分比
(4)A的圆心角=360°×A的百分比
亿元,然后将条形统计
图补充完整;
(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,
则m= ,β=
度(m、β均取整数).
考点呈现
考查根据图表信息直接填空或做简单计算、分析、补 全图表、计算圆心角、用样本估计总体。
失误原因
此类题目难度不大,但是历年得分率不高,主要失误 出现在审题不仔细、计算功底弱。因此要加强计算基 本功的旋律。
链接中考 随堂检测
(2016年海南)在太空种子种植体验实践活动中,为了解“宇番2号”番茄,某 校科技小组随机调查60株番茄的挂果数量x(单位:个),并绘制如下不完整的 统计图表:“宇番2号”番茄挂果数量统计表
挂果数量 x(个)
频数(株)
频率
25≤x<35
6
0.1
35≤x<45
12
0.2
45≤x<55
根据以上信息完成下列问题:
(1)请将条形统计图补充完整;
(2)随机调查的游客有
400人;在扇形统计图中,A部分所占的圆
心角是72
度;
(3)请根据调查结果估计在1500名游客中喜爱黎锦的约有
人.
链接中考 随堂检测
(2015年海南)为了治理大气污染,我国中部某市抽取了该市 2014 年中 120 天的空气质量 指数,绘制了如下不完整的统计图表:
状元成才路
①样本中最喜欢B项目的人数占所调查人数的百分比是
状 元 成
__2_0_%_,其所在扇形图中的圆心角的度数是__7_2_°_.
才
路 ②请把统计图补充完整.
③已知该校有1200人,请根据样本估计
全校最喜欢乒乓球的人数是多少.
1200 44 100% 528(人) 100
链接中考 随堂检测
“55≤x< 65”范围的番茄有
株.
链接中考 随堂检测
链接中考 随堂检测
(2017年海南)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选 且只能选一项。现随机抽查了名学生,并将其结果绘制成如下不完整的条形图和 扇形图。 (请结合以上信息解答下列问题:
(1)m _____;
(2)请补全上面的条形统计图; (3)在图9-2中,“乒乓球”所对应扇形的圆心角的度数为___________; (4)已知该校共有1200名学生,请你估计该校约有__________名学生最喜爱足 球活动。
a
0.25
55≤x<65
18
b
65≤x<75
9
0.15
请结合图表中的信息解答下列问题:
(1)统计表中,a=
,b=
;
(2)将频数分布直方图补充完整;
(3)若绘制“番茄挂果数量扇形统计图”,则挂果数量在“35≤x<45”所
对应扇形的圆心角度数为
°;
(4)若所种植的“宇番2号”番茄有1000株,则可以估计挂果数量在
(2)a =_______,b =_______,
m =_______;
(3)如果要画“校本课程报 名意向扇形统计图”, 那么“礼仪”类校本课程所 对应的扇形圆心角的度数是 ________; (4)请你估计,选择“感恩” 类校本课程的学生约有 ______人.
链接中考 随堂检测
(2013海南)据悉,2013年财政部核定海南省发行的60亿地方政府“债券资金”,