第二章物理系统的数学模型及传递函数
《机械控制工程基础》-2物理系统的数学模型及传递函数解析

称为叠加性或叠加原理。
控制工程基础
2.1.3 非线性系统的线性化
(2)非线性系统 如果系统的数学模型是非线性的,这种 系统称为非线性系统。 工程上常见的非线性特性如下: 饱和非线性 死区非线性 间隙非线性 摩擦非线性……
控制工程基础
2.1.3 非线性系统的线性化
(3)举例 下列微分方程描述的系统为线性系统:
零初始条件: 输入及其各阶导数在t =0-时刻均为0; 输出及其各阶导数在t =0-时刻均为0。 形式上记为:
Y (s) b0 s m b1s m1 bm1s bm G( s ) X (s) a0 s n a1s n1 an1s an
控制工程基础
2.2.2 传递函数的求法
(1)解析法(根据定义求取) 设线性定常系统输入为x(t) ,输出为y(t) ,描 述系统的微分方程的一般形式为 :
dny d n1 y d n2 y dy an n an1 n 1 an 2 n2 a1 a0 y dt dt dt dt
Xi ( s) Ts Xo ( s)
传递函数: G( s)
式中T为微分时间常数。
特点: (1)一般不能单独存在 (2)反映输入的变化趋势 (3)增强系统的阻尼 (4)强化噪声
4.积分环节
1 微分方程: xo (t ) T xi (t )dt
传递函数:
X ( s) 1 G( s) o X i (s) Ts
2 2
下列微分方程描述的系统为非线性系统:
控制工程基础
2.1.3 非线性系统的线性化
(4)系统运动微分方程的建立
电气系统
电阻、电感和电容器是电路中的三个基本元件。通常利用基尔霍夫 定律来建立电气系统的数学模型。 基尔霍夫电流定律:
传递函数模型和传递函数

传递函数模型和传递函数传递函数是控制系统中一个重要的概念,它描述了输入信号经过系统后的输出信号与输入信号之间的关系。
传递函数模型是用来描述连续时间系统的,而传递函数是传递函数模型的具体表达式。
传递函数模型可以简化对系统行为的分析和设计。
通过将系统抽象为一个传递函数,可以忽略系统的具体细节,只关注输入输出之间的关系。
这样一来,我们可以用数学方法来分析系统的稳定性、性能等特性。
传递函数模型通常用拉普拉斯变换来表示。
拉普拉斯变换是一种数学变换,用于将连续时间域中的函数转换为复频域中的函数。
通过拉普拉斯变换,可以将微分方程转化为代数方程,从而简化对系统的分析。
传递函数通常表示为H(s),其中s是复变量,表示频域中的频率。
传递函数的形式可以是分数形式,如H(s)=N(s)/D(s),其中N(s)和D(s)分别是多项式。
传递函数的分子多项式N(s)描述了输入信号对系统的影响,而分母多项式D(s)描述了系统的特性。
传递函数的分母多项式D(s)的根决定了系统的稳定性。
如果分母多项式的根都是负实数或者有负实部的复数,那么系统是稳定的。
反之,如果分母多项式的根有正实数或者纯虚数,那么系统是不稳定的。
传递函数还可以用来描述系统的频率响应。
频率响应描述了系统对不同频率输入信号的响应程度。
通过传递函数,可以计算出系统在不同频率下的增益和相位差。
传递函数模型和传递函数在控制系统的分析和设计中起着重要的作用。
通过传递函数模型,可以对系统进行数学建模和分析。
而通过传递函数,可以计算系统的稳定性、频率响应等特性。
掌握传递函数模型和传递函数的使用方法,对于控制系统的工程师来说是非常重要的。
总之,传递函数模型和传递函数是控制系统分析和设计中常用的工具。
通过传递函数模型,可以对系统进行简化和抽象,忽略系统的具体细节。
而通过传递函数,可以计算系统的稳定性、频率响应等特性。
掌握传递函数模型和传递函数的使用方法,可以帮助我们更好地了解和设计控制系统。
第2章(3) 系统传递函数

c1s c2 s ( 1)( 1) k1 k2 G( s ) c1s c2 s c1s ( 1)( 1) k1 k2 k2 1 对比:R1 c1 R2 c2 C1 k1
1 C2 k2
三、传递函数的表达形式
1.多项式分式形式 X o ( s ) bm s m b1s b0 G( s) X i ( s ) an s n a1s a0 2.零极点增益形式 分子、分母首一化,再分解因式
0
特点: (1)一般不能单独存 在; (2)反映输入的变化 趋势; (3)增加系统阻尼; (4)强化噪声。
iC du i (t ) dt
du i (t ) uo (t ) Ri RC dt U o ( s) G( s) RCs U i ( s)
4.惯性环节 微分方程: Tx o (t ) xo (t ) xi (t )
2
特征量——
时间常数: T
固有振荡频率: n 1T
阻尼比:
0 1 : 欠阻尼(振荡) 1: 临界阻尼 1 : 过阻尼
时间响应:
单位阶跃响应 欠阻尼 1 过阻尼 临界阻尼 t 0
例10:
特点: (1)0<ξ<1,输出存在 振荡,ξ越小,振荡越 剧烈 ; (2)ξ>1,输出无振荡, 由两一阶惯性环节组成。
例:求传递函数
k2 c1 k1
c2
xi
xo
k2
A
c2 c1
B
xi
xo
x2
k1
二、相似性原理 相似系统: 能用形式相同的数学模型来描述的两个系统; 相似量: 在微分方程或在传递函数中占有相同 位置的物理量。
第二章 传递函数

5. 振荡环节
nt
第二章 传递函数
常见振荡环节的实例: (1) 机械位移系统 Y(s) 1 G(s)= F(s) = ms2+fs+k (2) 他激直流电动机 1/Ce N(s) G(s)= U(s) = T T s2+T s+1 a m m (3) RLC电路 Uc(s) 1 G(s)= U (s) = LCs2+RCs+1 r
Δ
0
1 R(s)= S
t C(s)= TS ·1 S G(s) =RC s
第二章 传递函数
液位系统 d[h0+h(t)] =[qi0+qi(t)]-[qo0+qo(t)] A dt qi—流入箱体 平衡时:qi0=qo0 其中: 流量增量 qi0 +qi 故 qi0—流入箱体 dh(t)流出箱体 qo =q (t)-q A dt — 的流量 o(t) i 流量增量 qoh—液面高度 (t)的流量公式 h0+h o0—流出箱体 的流量 增量 qo(t)=a h(t) qo0+qo A—dh(t) 箱体面积 h0—液面高度 +a h(t) 得: A 根据物料平衡关系=qi(t) dt
实例
水位控制系统
V1
θo
控制阀
浮球
RPB Q1 UB H 水箱 V2 Q2用水量
RPA
K1
变速箱
θm
伺服电动机
UA 控 制 器 放 大 器
△U
Ua
SM
第二章 传递函数
1 c(t)=1- e Sin(ω 2 单位阶跃响应: 微分方程: 2 dt+β) 2 ωn T 1-ζ G(s) = 2 d2c(t) ζ ζ 1 dc(t) = S2+2ζ ω n S+ω n2 2 2 S + 单位阶跃响应曲线 = r(t) S+ T +2T T 2 + c (t) 2 T dt dt 1 r(t) —无阻尼自然振荡频率 ωn = c(t) ζ — 阻尼比 T — 时间常数 T c(t) 1 振荡环节方框图 传递函数: r(t) R(S) C(s) ωn2 1 C(S) = 2 22 G(s) = R(s)+2ξω S+ω + 2T ζ S+ 1 2 TS n n 0 S t
数学模型-传递函数

1 1 , j ,Ti zj pi ( pi )
( z j )
m
(3) 二项式表示法:
如 p1 . p2为一对共轭复数,则有
1 1 2 ( s p1 )( s p2 ) s 2 n s n 2
1 1 2 2 或 (T1 s 1)(T2 s 1) T s 2Ts 1
当初始条件为零时有:
3
第二章 数学模型
传 递 函 数(续)
C ( s ) b0 s m b1 s m 1 bm 1 s bm 则G ( s ) R( s ) a 0 s n a 1 s n 1 a n 1 s a n
s j 为复数, G (s ) 是复变量s 的函数, 故称为复放大系数。
i 1
m
(s z )
当s
z j时,G(s) = 0. z j 为传函的零点。
10
当 s pi 时,G(s) = , pi 为传函的极点。
第二章 数学模型
而 K g b0 ——传递系数。(根轨迹中叫根轨迹增益)
a0
(2)时间常数表示法:
bm d m s m d m 1 s m 1 d 1 s 1 G( s ) a n c n s n c n 1 s n 1 c 1 s 1
其传递函数为
6. 齿轮系
m
Z1
Z2
c
第二章 数学模型
§2-2 传 递 函 数
用拉氏变换求解微分方程,虽思路清晰,简单实用,但 如果系统参数改变,特征方程及其解都会随之改变。 要了解参数变化对系统动态响应的影响,就必须多次 计算,方程阶次愈高,计算工作量越大,故引入另一 种数模—传递函数。它是控制理论中的重要概念和工具, 也是经典理论中两大分支—根轨迹和频率响应的 基础。利用传递函数不必求解微方就可研究初始条件 为零的系统在输入信号作用下的动态过程。
第二章(3)传递函数

例 如图所示永磁式直流测速机, 已知 u (t) k di (t) 0 dt U 0 (s ) G ( s ) ks 进行拉氏变换后得 i (s ) d i 则
U 0 (s) k dt (t )
U0(t)
式中,T—振荡环节的时间常数 ζ—阻尼比,对于振荡环节,0<ζ<1 K—比例系数
特点:在一定条件下,具有振荡可能,取决于系统本身的固有特性, 这是因为有两个储能元件,有能量交换,这种能量交换在一定条件下 以振荡方式存在。
只有当|Ts|<<1时,才近似为微分环节。
(4)积分环节
如果输出变量正比于输入变量的积分,即 进行拉氏变换得 X 0 (s) k
x 0 ( t ) k x i ( t )dt
G (s) X 0 (s ) k X i (s ) s
则
X i (s) s
特点:系统的输出和输入之间没有唯一对应的关系, 有记忆功能,能提高系统的稳态精度, 系统中的积分环节不能大于2个,否则系统不稳定。
例
如图所示弹簧-阻尼系统。
Xi(t)
kx i (t ) x 0 (t ) D
dx0 (t ) dt
Xo(t)
kX i (s) X o (s) DsXo (s)
D s 1X o (s) X i (s) k
X (s) 1 G (s) 0 X i (s) D s 1 k
i (t)
对于相同量纲的理想微分环节物理上是难以实现的, 电路中常遇到下述的近似微分环节。
i (t ) ——输入转角; 其中, u0(t) ——输出电压。
第二章 2-2传递函数

3
为了方便,常把传递函数分解为一次因式的乘积,
式(2-51)中的K常称为传递函数的增益或传递系 数(放大系数)。
4
二、传递函数的零、极点
式(2-52)中zj (j=1.2……m)为分子多项式的根,称为传 递函数的零点。 Pi(1.2……n)为分母多项式的根,称为传递函数的极点。 传递函数的零、极点可以是实数或零,也可以是复数,由 于传递函数分子、分母多项式的系数都是实数,故若有复数 零极点时,它们必是成对共轭的。 传递函数的分母多项式就是相应微分方程式 (2-49)的特 征多项式,令该分母多项式等于零,就可得到相应微分方程 的特征方程。 在特征方程中,s最高阶次等于输出量最高阶导数的阶次, 如果s的最高阶次等于n,这种系统就称为n阶系统。
1
一、传递函数的定义:线性定常系统在零初始条件下, 输出量的拉氏变换与输入量的拉氏变换之比,称为该系 统的传递函数。
若线性定常系统的微分方程为:
在初始条件为零时,对(2-49)进行拉氏变换,得
2
根据传递函数的定义,描述该线性定常 系统的传递函数为:
可见,传递函数是由系统微分方程经拉氏变换而引出的。 系统输入、输出及传递函数之间的相互关系可用下图表示, 输出是由输入经过G(s)的传递而得到的,因此称G(s)为传递 函数。因为传递函数是在零初始条件下定义的,故在初始条 件为零时,它才能完全表征系统的动态性能。
§2-2传递函数
控制系统的微分方程,是时域中描述系统动态性能的数 学模型,求解微分方程可以得到在给定外界作用及初始条 件下系统的输出响应,并可通过响应曲线直观地反映出系 统的动态过程。 但系统的参数或结构形式有变化,微分方程及其解都会 同时变化,不便于对系统进行分析与研究。 根据求解微分方程的拉氏变换法,可以得到系统的另一 种数学模型 ——传递函数。 它不仅可以表征系统的动态特性,而且可以方便地研究 系统的参数或结构的变化对系统性能所产生的影响。 在经典控制理论中广泛应用的根轨迹法和频率法,就是 在传递函数基础上建立起来的。
机械控制工程基础第二章物理系统的数学模型及传递函数

系统的动态特性是系统的固有特性,仅 取决于系统的结构及其参数,与系统的输 入无关。
线性系统与非线性系统 线性系统 可以用线性微分方程描述的系统。如果方程的 系数为常数,则为线性定常系统;如果方程的
系数是时间t的函数,则为线性时变系统;
其中:
K1
f x1
,
x1 x10 x2 x20
K f 2
x2
x1 x10 x2 x20
滑动线性化——切线法
线性化增量方程
y=f(x)
为:
y y' =xtg
y0
A
切线法是泰勒级
x
数法的特例。
y y’
0
x0
x
非线性关系线性化
系统线性化微分方程的建立
步骤 确定系统各组成元件在平衡态的工作点; 列出各组成元件在工作点附近的增量方程; 消除中间变量,得到以增量表示的线性化微
y
f
(x0 )
df (x) dx
x
(x x0
x0 )
或:y
-
y0
=
y
=
Kx,
其中:K
df (x) dx
x
x0
上式即为非线性系统的线性化模型,称为增
量方程。y0 = f (x0)称为系统的静态方程;
由于反馈系统不允许出现大的偏差,因此,
这种线性化方法对于闭环控制系统具有实际
意义。
增量方程的数学含义就是将参考坐标的原 点移到系统或元件的平衡工作点上,对于实际 系统就是以正常工作状态为研究系统运动的起 始点,这时,系统所有的初始条件均为零。
i(t)
R
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
dx1 (t dt
)
dx2 (t dt
)
D dx(t) dt
机械平移系统
fi(t)
fi(t)
m
0
m
fm(t) 0
静止(平衡)工作点作为
xo(t)
xo(t) 零点,以消除重力的影响
k
D
fk(t) fD(t)
机械平移系统 及其力学模型
fi (t) fk (t)
fD (t) kxo (t)
数学模型应能反映系统内在的本质特征,同时 应对模型的简洁性和精确性进行折衷考虑。
数学模型的形式
➢ 时间域:微分方程 差分方程 状态方程 (一阶微分方程组)
➢ 复数域:传递函数 结构图
➢ 频率域:频率特性
控制系统的运动微分方程
机电控制系统的受控对象是机械系统。在 机械系统中,有些构件具有较大的惯性和 刚度,有些构件则惯性较小、柔度较大。 在集中参数法中,我们将前一类构件的弹 性忽略将其视为质量块,而把后一类构件 的惯性忽略而视为无质量的弹簧。这样受 控对象的机械系统可抽象为质量-弹簧-阻 尼系统。
x1(t) v1(t)
k
x2(t)
v2(t) 对于弹簧, 受力相同,
fk(t) 变形量不同。
fk (t) k x1(t) x2 (t) kx(t)
k
t
v1
(t
)
v2
(t
)
dt
t
k v(t)dt
✓ 阻尼
v1(t)
v2(t)
x1(t)
x2(t)
fD(t)
fD(t)
D
fD (t) Dv1(t) v2 (t) Dv(t)
uo
(t)
RC
d dt
uo
(t)
uo
(t)
ui
(t)
一般R、L、C均为常数,上式为二阶常系数微 分方程。
若L=0,则系统简化为:
RC
d dt
uo
(t
)
uo
(t
)
ui
(t
)
有源电路网络
i2(t)
ui(t) i1(t)
C
a
R
+
uo(t)
iu1a(t()t
)0 i2 (t
)
ui (t) C duo (t)
进给传动装置示意图及等效力学模型
组合机床动力滑台及其力学模型
控制系统微分方程的列写
➢ 机械系统
机械系统中以各种形式出现的物理现象,都可 简化为质量、弹簧和阻尼三个要素:
✓ 质量
fm(t)
x (t) v (t)
m 参考点
fm (t)
m
d dt
v(t)
m
d2 dt 2
x(t)
✓ 弹簧
fk(t)
R
dt
即:
RC
duo (t) dt
ui
(t)
电动机
T t KT ia t
磁场对载流线圈
作用的定律
ei t
Raia t
La
dia t
dt
em t
基尔霍夫定律
em t
✓ 电容
i(t)
C
u(t) ✓ 电感
i(t) L
u(t)
u(t)
1 C
i(t)dt
u(t) L di(t) dt
R-L-C无源电路网络
L
R
ui(t)
i(t) C
uo(t)
R-L-C无源电路网络
ui
(t)
Ri (t )
L
d dt
i(t)
1 C
i(t)dt
uo
(t)
1 C
i(t)dt
LC
d2 dt 2
建立控制系统的数学模型,并在此基础上对控制系 统进行分析、综合,是机电控制工程的基本方法。如 果将物理系统在信号传递过程中的动态特性用数学表 达式描述出来,就得到了组成物理系统的数学模型。
经典控制理论采用的数学模型主要 以传递函数为基础。而现代控制理论采 用的数学模型主要以状态空间方程为基 础。而以物理定律及实验规律为依据的 微分方程又是最基本的数学模型,是列 写传递函数和状态空间方程的基础。
弹簧-阻尼系统
fi(t)
0
xo(t)
fi (t) fD (t) fk (t)
k
D
D
d dt
xo (t) kxo (t)
fi (t)
弹簧-阻尼系统
系统运动方程为一阶常系数 微分方程。
机械旋转系统
i(t)0
o(t) 0
k Tk(t)
J
J —旋转体转动惯量;
TD(t)
k —扭转刚度系数; D —粘性阻尼系数
控制工程基础
(第二章)
2011年
第二章 控制系统的动态数学模型
一、系统数学模型 二、传递函数 三、典型环节的传递函数 四、系统方框图及其联接 五、物理系统传递函数推导
第二章 控制系统的动态数学模型
本章要熟悉下列内容: ➢ 建立基本环节(质量-弹簧-阻尼系统、电路 网络和电机)的数学模型及模型的线性化 ➢ 重要的分析工具:拉氏变换及反变换 ➢ 经典控制理论的数学基础:传递函数 ➢ 控制系统的图形表示:方块图及信号流图 ➢ 建立实际机电系统的传递函数及方块图
对于给定的动态系统,数学模型表达不 唯一。工程上常用的数学模型包括:微分方 程,传递函数和状态方程。对于线性系统, 它们之间是等价的。
建立数学模型的方法 ➢ 解析法 依据系统及元件各变量之间所遵循的物理或化 学规律列写出相应的数学关系式,建立模型。
➢ 实验法 人为地对系统施加某种测试信号,记录其输出 响应,并用适当的数学模型进行逼近。这种方 法也称为系统辨识。
一、系统数学模型
系统的数学模型 数学模型是描述系统输入、输出量以及内部 各变量之间关系的数学表达式,它揭示了系 统结构及其参数与其性能之间的内在关系。
静态数学模型:静态条件(变量各阶导数为 零)下描述变量之间关系的代数方程。反映 系统处于稳态时,系统状态有关属性变量之 间关系的数学模型。
动态数学模型:描述变量各阶导数之间 关系的微分方程。描述动态系统瞬态与过渡 态特性的模型。也可定义为描述实际系统各 物理量随时间演化的数学表达式。动态系统 的输出信号不仅取决于同时刻的激励信号, 而且与它过去的工作状态有关。微分方程或 差分方程常用作动态数学模型。
fk
(t)
m
d2 dt 2
xo (t
xo
(t)
m
d2 dt 2
yo
(t
)
D
d dt
yo (t) kyo (t)
fi (t)
式中,m、D、k通常均为常数,故机械平移系 统可以由二阶常系数微分方程描述。
显然,微分方程的系数取决于系统的结 构参数,而阶次等于系统中独立储能元 件(惯性质量、弹簧)的数量。
柔性轴
粘性液体
齿轮
D
Tk (t) k i (t) o (t)
TD
(t )
D
d dt
o
(t )
J
d2 dt 2
o (t)
Tk (t) TD (t)
J
d2 dt 2
o (t)
D
d dt
o (t)
ko (t)
ki (t)
➢ 电路系统
电路系统三个基本元件:电阻、电容和电感。
✓ 电阻
i(t)
R
u(t) u(t) R i(t)