有理数的认识
认识有理数ppt课件

求
相
2、负数的相反数是正数
反
数
3、0的相反数是0
的
方
4、一个字母的相反数只需要在这个字母前面添一个“-”
法
5、一个式子的相反数只需要将这个式子用括号括起来,在前面添一个“-”
结论
原点
一个数的数量大小叫做这个数的绝对值. 有理数a 的绝对值记
作
。
练习:
|+2|=
;
|-3|=
;
|0|=
;
|1.5|=
.
1、正数的绝对值是它本身
求
相
2、负数的绝对值是它的相反数
反
数
3、0的绝对值是0
的
方
4、任何一个数都有唯一的绝对值
法
5、绝对值相等的两个数(一正一负)互为相反数。
思考: 相反数、绝对值的联系是什么? 互为相反数的两个数的绝对值相等.
绝对值相等
|+5|=5 |-5|=5
互为相反数,符号相反
绝对值相等,符号相反的两个数互为相反数.
;
(2)1.7与
互为相反数;
(3)x的相反数是
.
例2:求下列各数的相反数和绝对值:
-2, ,0,-3.8,30.
解:-2, ,0,-3.8,30的相反数分别为 2, ,0,3.8,-30
认识相反数
一、利用相反数的概念求值。 例1:已知 是-3的相反数, 是最小的正整数,则
① 已知 的相反数是-0.5, 是-2的相反数,则 ② 已知 的相反数是它本身, 是最小的质数,则
结论
两个负数比较大小,绝对值大的反而小。
练习:
1.-5 -4; 2.-2.3 -2.2; 3.-2 2; 4.2021 2022; 5.-2021 0。
数学自学指南 有理数的认识和数轴

自学资料一、正数、负数【知识探索】1.如果一个问题中出现相反意义的量,我们可以用正数和负数分别表示它们.2.0既不是正数,也不是负数.【说明】0是正数与负数的分界.0℃是一个确定的温度,海拔0m表示海平面的平均高度.0的意义已不仅是表示“没有”.【错题精练】例1.若收入100元记为+100元,则﹣500元表示.例2.某超市出售的三种品牌的大米袋上,分别标有质量为(50±0.2)kg、(50±0.3)kg、(50±0.25)kg的字样,从超市中任意拿出两袋大米,它们的质量最多相差()A. 0.4kgB. 0.5kgC. 0.55kgD. 0.6kg第1页共12页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训例3.某项科学研究需要以30分钟为一个时间单位,并记研究那天上午10时为0,10时以前记为负,10时以后记为正.例如那天9:30记为﹣1,10:30记为1等等,依此类推,那天上午7:30应记为()A. ﹣3B. ﹣5C. ﹣2.30D. ﹣2.5例4.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.表是某次测量数据的部分记录中(用A﹣C表示观测点A相对观测点C 的高度),根据这次测量的数据,可得观测点A相对观测点B的高度是()A﹣C C﹣D E﹣D F﹣E G﹣F B﹣G100米80米﹣60米50米﹣70米20米A. ﹣240米B. 240米C. 390米D. 210米例5.2016年9月2日早上8点,空军航空开放活动在大房身机场举行,某特技飞行队做特技表演时,其中一架飞机起飞0.5千米后的高度变化如表:(1)完成上表;(2)飞机完成上述四个表演动作后,飞机离地面的高度是多少千米?(3)如果飞机平均上升1千米需消耗5升燃油,平均下降1千米需消耗3升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?【举一反三】1.规定零上为正,若北京市12月份的平均气温是零下5℃,则可记作℃.2.一袋面粉的质量标识为“25±0.25千克”,则下列一袋面粉质量中,合格的是()A. 25.30千克;B. 24.70千克;C. 25.51千克;D. 24.80千克.3.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.若规定向东为正,向西为负,出租车的行程如下(单位:千米):-10,+15,-4,+3,-12,-13,+13,-15.(1)当最后一名老师送到目的地时,小王距离出车地点多少千米?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?第2页共12页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训第3页共12页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第4页 共12页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例5. 在中,负分数的个数有__________ 个【举一反三】1.−15的倒数是( ) A. 15; B. −15; C. ﹣5;D. 5.2.下列说法正确的是( )A. 0大于一切非负数B. 数轴上上离原点越远,表示的数越大C. 没有最大的正数,却有最大的负数D. 有理数是指正整数、负整数、正分数、负分数、零这五类数3.下列说法正确的是( ) A. 分数都是有理数 B. ﹣a 是负数C. 有理数不是正数就是负数D. 绝对值等于本身的数是正数4.有理数1.7,﹣17,0,﹣5,﹣0.001,,2003和﹣1中,其中负有理数有__________ 个,分数有__________ 个.5.把下列各数填在相应的大括号内:①10,②-0.0082,③−3012,④3.14,⑤-2,⑥π,⑦0,⑧-98,⑨−218,⑩1 整数集合:{ } 正有理数集合:{ } 负分数集合:{ }6.一个纸环链如图所示,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()A.B.C.D.三、数轴【知识探索】1.在数学中,可以用一条直线上的点表示数,这条直线叫做数轴(number axis),它满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点(origin);(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3,…;从原点向左,用类似方法依次表示-1,-2,-3,….2.一般地,设是一个正数,则数轴上表示数的点在原点的右边,与原点的距离是个单位长度;表示数的点在原点的左边,与原点的距离是个单位长度.【错题精练】例1.数轴上点A到原点的距离为2,则点A所对应的数为()A. +2B. ﹣2C. +2或﹣2D. +1或﹣1例2.点A为数轴上表示﹣2的点,将点A向左移4个单位长度到B,点B表示的数是()A. 2B. ﹣6C. 2或﹣6D. 以上都不对例3.一个数a在数轴上表示的点是A,当点A在数轴上向左平移了3个单位长度后到点B,点A与点B表示的数恰好互为相反数,则数a是()A. ﹣3B. ﹣1.5C. 1.5D. 3例4.四位同学画数轴如图所示,你认为正确的是()A. B. C. D.第5页共12页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训例5.等边△ABC在数轴上的位置如图所示,点A、C对应的数分别为0和﹣1,若△ABC绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1;则翻转2015次后,点B所对应的数是()A. 2014B. 2015C. 2016D. 2017例6.如图,数轴上点A,B表示的数分别为﹣40,50.现有一动点P以2个单位每秒的速度从点A向B运动,另一动点Q以3个单位每秒的速度从点B向A运动.当AQ=3PQ时,运动的时间为()A. 15秒B. 20秒C. 15秒或25秒D. 15秒或20秒例7.数轴上A,B两点表示的数分别是和0.25,则A,B两点之间的距离是()A. ﹣0.55B. 0.55C. ﹣1.05D. 1.05例8.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C到点A、点B的距离相等,动点P 从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数是;(2)求当t等于多少秒时,点P到达点A处?(3)点P表示的数是(用含字母t的式子表示);(4)求当t等于多少秒时,P、C之间的距离为2个单位长度.例9.如图,A、B分别为数轴上两点,A点对应的数为﹣20,B点对应的数为80.(1)现有甲电子蚂蚁从B点出发,以7单位/秒的速度向左运动,同时乙电子蚂蚁恰好从A点出发,以3单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(2)若当甲电子蚂蚁从B点出发时,以7单位/秒的速度向左运动,同时乙电子蚂蚁恰好从A点出发,以3单位/秒的速度也向左运动,设两只电子蚂蚁在数轴的D点相遇,你知道D点对应的数是多少吗?(3)若当甲电子蚂蚁从B点出发时,以7单位/秒的速度向左运动,同时乙电子蚂蚁恰好从A点出发,以3单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上相距40单位时,你知道此时乙电子蚂蚁所在位置对应的数是(直接写出答案).第6页共12页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【举一反三】1.如图,点A表示的数可能是()A. -0.8B. -1.2C. -2.2D. -2.82.在数轴上有一个点A在点﹣2.5的左边3个单位处,则点A所表示的数是()A. ﹣0.5B. ﹣5.5C. 0.5D. 5.53.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2013厘米的线段AB,则线段AB盖住的整点的个数是()A. 2011或2012B. 2012或2013C. 2013或2014D. 2014或20154.已知点A,B,C,在同一条数轴上,点A表示的数是−2,点B表示的数是1,若AC=1,则BC=()A. 3或4;B. 1或4;C. 2或3;D. 2或4.5.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.4cm”对应数轴上的数为()A. 5.4;B. -2.4;C. -2.6;D. -1.6.6.正方形ABCD在数轴上的位置如图,点A、D对应的数分别为0和−1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1;则连续翻转2014次后,数轴上数2014所对应的点是.第7页共12页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第8页 共12页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训四、相反数【知识探索】1.只有符号不同的两个数互为相反数(opposite number ), 【说明】(1)和互为相反数,即是的相反数,也可以说是的相反数.这里表示任意一个数,可以是正数、负数、也可以是0; (2)0的相反数是0.(3)在任意一个数前面添上“﹣”号,新的数就表示原数的相反数. 【注意】不一定是负数.【错题精练】例1.3的相反数是( ) A. -3;B. 3;C. 13;D. −13.例2.若a ,b 互为相反数,则下列各对数中不是互为相反数的是( ) A. ﹣2a 和﹣2bB. a+1和b+1C. a+1和b ﹣1D. 2a 和2b例3.如果2x +3与5互为相反数,那么x 等于( ) A. ﹣4; B. ﹣1; C. 1;D. 4.例4.下列说法:①若a 、b 互为相反数,则a +b =0;②若a +b =0,则a 、b 互为相反数;③若a 、b 互为相反数,则ab =−1;④若ab =−1,则a 、b 互为相反数.其中正确的结论是( ) A. ②③④;B. ①②③;C. ①②④;D. ①②.【举一反三】1.23的相反数是( ) A. 32; B. −32; C. −23;D. 23.2.−212和它的相反数之间的整数有 个.3.下列各对数中,互为相反数的是();A. 2和12;B. -0.5和12;C. -3和13D. 1和2.24.如果5x+3与﹣2x+9是互为相反数,则x﹣2的值是5.下列每题的各对数中,哪些是相等的,哪些互为相反数?(1)+(﹣4)与﹣(+4);(2)﹣(﹣4)与﹣4;(3)+(+4)与﹣(﹣4);(4)﹣(+4)与﹣(﹣4).6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣3和x,那么x的值为__________ .1.若规定盈利为“+”,亏损为那么“-50”元表示()A. 收入50元;B. 支出50元;C. 盈利50元;D. 亏损50元.2.2014的相反数是();A. 2014;B. −12014; D. -2014.C. 12014第9页共12页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训第10页 共12页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训3.下列具有相反意义的量是( ) A. 向西走2米与向南走3米; B. 胜2局与负3局;C. 气温升高3℃与气温为﹣3℃;D. 盈利3万元与支出3万元.4.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果气温升高30C 时气温变化记作+30C ,那么气温下降30C 时气温变化记作( ) A. −60C B. −30C C. 00C D. +30C5.如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数为( )A. −6;B. 6;C. 0;D. 无法确定.6.已知下列各数:−3.14,24,+17,−712,516,−0.01,0,其中整数有________个,负分数有________个, 非负数有________个.7.四位同学画数轴如下图所示,你认为正确的是( )A.B.C.D.8.数轴上的一个点在点﹣1.5的右边,相距3个单位长度,则这个点所表示的数是()A. 1.5和4.5 B. 1.5 C. 1.5和﹣4.5 D. ﹣4.59.如图,数轴上A,B两点所表示的数互为倒数,则关于原点的说法正确的是()A. 一定在点A的左侧;B. 一定与线段AB的中点重合;C. 可能在点B的右侧;D. 一定与点A或点B重合.10.(3÷x)的倒数与(2x-9)÷3互为相反数,那么x的值是()A. 1.5B. -1.5C. 3D. -311.如图,半径为1个单位长度的圆从点A沿数轴向右滚动(无滑动)一周到达点B,若点A对应的数是﹣1,则点B对应的数是.12.把下列各数填在相应的大括号里(将各数用逗号分开):﹣4,0.62,,18,0,﹣8.91,+100正数:{…}负数:{…}整数:{…}分数:{…}.13.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C点A、点B的距离相等,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t大于0)秒.(1)点C表示的数是;(2)求当t等于多少秒时,点P到达点A处?(3)点P表示的数是(用含字母t的式子表示);(4)求当t等于多少秒时,P、C之间的距离为2个单位长度.第11页共12页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训14.某灯具厂计划一天生产300盏景观灯,但由于各种原因,实际每天生产景观灯数与计划每天生产景观灯数相比有出入.下表是某周的生产情况(增产记为正、减产记为负):(1)求该厂本周实际生产景观灯的盏数;(2)求产量最多的一天比产量最少的一天多生产景观灯的盏数.15.如图,A、B分别为数轴上两点,A点对应的数为﹣20,B点对应的数为80.(1)现有甲电子蚂蚁从B点出发,以7单位/秒的速度向左运动,同时乙电子蚂蚁恰好从A点出发,以3单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(2)若当甲电子蚂蚁从B点出发时,以7单位/秒的速度向左运动,同时乙电子蚂蚁恰好从A点出发,以3单位/秒的速度也向左运动,设两只电子蚂蚁在数轴的D点相遇,你知道D点对应的数是多少吗?(3)若当甲电子蚂蚁从B点出发时,以7单位/秒的速度向左运动,同时乙电子蚂蚁恰好从A点出发,以3单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上相距40单位时,你知道此时乙电子蚂蚁所在位置对应的数是(直接写出答案).● 引导学生构建只是脑图直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个。
认识有理数

认识有理数一、学习目标1.认识正数和负数;2.有理数的定义;3.有理数的分类。
二、知识点讲解1、认识正数和负数①正数:像3,3.5这种大于0的数叫做正数;②负数:像-3,-4.5这样在正数前加上“-”号的叫做负数;③符号:一个数前面的“+”、“-”号叫做它的符号。
知识点解读一般,我们会把上升、运送、零上、收入、前进、高出等规定为正;而它的相反意义的量,如:下降、运出、零下、支出、后退、低于等规定为负。
2、负数和正数①负数:比0小的数。
负数是数学术语,比0小的数叫做负数,负数与正数表示意义相反的量。
负数用负号(即相当于减号)“-”和一个正数标记,如−2,代表的就是2的相反数。
②正数:比0大的数。
正数是数学术语,比0大的数叫正数,0本身不算正数。
正数与负数表示意义相反的量。
正数前面常有一个符号“+”,通常可以省略不写,负数用负号(即相当于减号)“-”和一个正数标记,如−2,代表的就是2的相反数。
③0既不是正数,也不是负数。
注意事项①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a 是正数;当a表示0时,-a仍是0。
②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
典型例题、认识正数和负数五个数中,负数共有()个。
1.题干:在-5、-2.3、0、0.89、1-43A、2个B、3个C、4个D、5个个人分析:负数的定义是_______。
答案:B、解析:根据负数定义,正数前带有“-”号的是负数,符合条件的有3个,故选B错因分析:______A.没有理解清楚定义B.看错条件了C.题目没读懂总结:本题主要考察正数和负数的相关概念,需要分清他们的定义。
2.题干:-5属于()。
(填正数或者负数)个人分析:负数的定义是_______;正数的定义是______。
答案:负数解析:根据负数定义,正数前带有“-”号的是负数,故为负数。
错因分析:______A.没有理解清楚定义B.看错条件了C.题目没读懂3.题干:-8是正数。
2.1认识有理数第3课时数轴课件北师大版七年级数学上册

有 5,2,0.4 。
思考
解:如图所示:
· -4 -3 -2 -1 0 1 2 3 4 -1.5
☀归纳 任何一个有理数都可以用数轴上的点来表示.
典例精析
例1 (1)如图,数轴上点A,B,C,D分别表示什么数?
ADC
B
···
·
-4 -3 -2 -1 0 1 2 3 4
解:(1)点A 表示-2;点B 表示2;点C 表示0;点D 表示-1。 (2)如图所示:
原点表示0. 3.定方向:确定正方向,用箭头表示出来(一般规定从原点向
右的方向为正方向)。
4.定单位长度:确定单位长度,用细短线画出,并对应地标注各数.
0
0
-3 -2 -1 0 1 2 3
针对练习 1、下列选项中,表示数轴正确的是( D )
A.
B.
C.
D.
2.在数轴上表示数-3,0,5,2,0.4,的点中,在原点右边的
合作探究
数轴的概念包含三层含义:
①数轴是一条直线,可以向两端无限延伸,但直线不一定是数轴;
②数轴三要素:原点、正方向、单位长度,三者缺一不可。
③原点的选定,正方向的选取(一般规定向右为正),单位长度
大小的确定,都是根据实际需要规定的,但同一数轴上的单位长
度必须一致.
原点
单位长度
正方向
合作探究
数轴的画法: 1.画一条水平的直线; 2.定原点:在这条直线上的适当位置取一点作为原点(如图),
典例精析
解:(1)-2<+6 (正数大于负数); (2)0>-1.8 (负数小于零); -4 -3 -2 -1 0 1 2 3 4
随堂检测 1.下列图形表示数轴正确的是( B )
有理数的意义包括知识点与配合练习

有理数的意义、数轴、绝对值第一部分:有理数1、正负数的概念:比0大的数是正数,比0小的数是负数。
“—”用正数和负数表示相反意义的量Ⅰ. 相反意义的量必须包含两个因素:1、它们的意义相反;2、它们都具有数量,而且一定是同类量。
Ⅱ.相反意义的量可以人为的规定其正负。
在实际生活中,习惯把零以上的温度、上升的高度、收入、买入物品等规定为正数,而把它们相反意义的量规定为负的,用负数表示。
2、对“0”的理解:0不在正、负数的范围内,它是正数和负数的分水岭。
它的意义非常特殊,它既可以表示无意义,也可以表示其他特殊的意义。
3、有理数的概念:整数和分数统称为有理数;正数、负数、零都是有理数。
4、有理数的分类:例1:(1)如果把收入50元记做50元,那么下列各数分别表示什么意义?20元 2.5元 -80元 0元(2)如果6摄氏度用6C︒表示,那么零下4摄氏度如何表示?例2:把13121271 2.80734%0.67247--、、、、、、、、、、、、、、-、、分别填在表示正数和负数的圈内。
正数负数巩固练习:1、如果规定向南走为正,那么﹣100米表示向________走100米。
2、某公司股票上周五的收盘价是27元,下表为本周内每日该股票的涨跌情况(上涨为正):由上表知,星期一收盘时,每股价格是元,星期四收盘时,每股价格是元。
3、下列说法正确的是()A.一个有理数不是正数就是负数B.一个有理数不是正数就是分数C.有理数是指整数、分数(正有理数、0、负有理数)D.以上说法都正确4、把下列各数填入相应的大括号内:-7,3.01,300%,-0.142,0.1,0,5/3,-355/113,12 (1)正整数集:{ };(2)分数集:{ } (3)负数集:{ };(4)非负整数集:{ }5、下列判断正确的是( )A.所有的整数都是正数B.正整数,负整数统称为整数C.分数一定是有理数D.有理数包括小数和整数6、某市2009年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A.-10℃ B.-6℃ C.6℃ D.10℃第二部分:数轴的再认识与相反数1、数轴的再认识(1)数轴的三要素:原点、正方向、长度单位。
1.2.1有理数的概念+1.2.2数轴+1.2.3相反数(课件)人教版(2024)七年级上册

分数集合
-8-
任务五:课堂小结,形成体系
回顾数的产生和发展历程,引入负数后我们对数的认识已扩大到有理数范围。
相反意义的量
正数和负数 0
有理数
1.你对有理数有哪些认识?你会对有理数分类吗?
2.0是有理数吗?0有什么特殊之处?
3.你还有什么疑问吗?
-9-
布置作业: 1.教材P16 习题1.2,第1题 2.阅读教材P18 -P19: “图说数学史——慢慢长路识负数”, 写写你的感想。
-29-
任务五:尝试练习,巩固内化 解答:教材P12练习1、2、3、4
-30-
任务六:课堂小结,形成体系
1.反思与交流: (1)只有符号不同的两个数互为相反数。你是如何理解“只有”两个字的? (2)说说你对相反数的其它认识? (3)你还有疑问吗?
2.知识结构
相反意义的量
正数和负数 0
有理数
数 与 点 的 对 应
-17-
任务三:认识数轴,体验数轴的作用。 2.请画一条数轴。
提醒:规定了原点、正方向和单位长度的直线叫数轴。
数轴三要素: 原点、
正方向、 单位长度。
-18-
任务三:认识数轴,体验数轴的作用。
3.(教材P10例2)画出数轴,并在数轴上表示下列各数:
3 , -4 , 4 ,0.5 , 5 ,-1 2
-27-
任务四:求有理数的相反数 1.解答:(教材P12例3) (1)分别写出 -7 和 4 的相反数;
3 (2)a的相反数是2.4,写出a的值。
2.解答:写出下列各数的相反数
-7的相反数是7, 不能写出-7=7
归纳: (1)a和-a只有符号不同, a和-a互为相反数。其中,a表示任意一个有理数,可以 是正有理数、负有理数,也可以是0.
有理数的认识

1.有理数的认识知识回顾1、正数和负数的有关概念 (1)正数:比0大的数叫做正数;负数:比0小的数叫做负数; 0既不是正数,也不是负数。
(2)正数和负数表示相反意义的量。
2、有理数的概念及分类有理数是整数和分数的统称。
通常有两种分类:0⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数有理数正分数分数负分数 0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正数正分数有理数负整数负数负分数小试牛刀【例题1】下面说法中,错误的是( )A .有理数是正数和负数的总称B .有理数是整数和分数的总称C .有理数是非负数和负数的总称D .有理数是非正数和正数的总称【例题2】判断对错1.无限循环小数不是有理数 ( ) 2.凡小数都是有理数 ( ) 3.凡是有理数,都可以写成分数的形式 ( ) 4.如果a 是有理数,那么a 不是整数,就是分数 ( )5.正数都带“+”号 ( ) 6.小学数学中学过的数都是正有理数 ( ) 7.“-2”既可以看成“负2”,也可以看成“减2”,还可以看成“-1乘以2” ( )【例题3】.多选题.下面说法中,正确的是( )A .在有理数中,零的意义仅表示没有;B .0不是正数,也不是负数,但是有理数;C .0是最小的整数;D .0是偶数.【例题4】把下列各数分别填在相应的表示集合的圈里.分析:自然数包括正整数和0,非正数的集合包含负数和零.应注意有限小数和无限循环小数都可以写成分数的形式,都是有理数.变式训练1.把下列各数分别填在相应的大括号内:(1)正数集合:{};(2)负数集合:{};(3)非负数集合:{};(4)奇数集合:{};3. 有关数轴(1)数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
(2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
(3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
4. 绝对值与相反数(1)绝对值:在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。
小学数学认识简单的整数与有理数

小学数学认识简单的整数与有理数人们在日常生活中经常会遇到各种数字,而这些数字又可以分为不同的类型。
其中,整数和有理数是我们常常接触到的两种类型。
本文将介绍小学生对整数和有理数的简单认识。
一、整数整数是由正整数、负整数和0组成的数集。
正整数是小学生在学习自然数后接触到的第一个扩展数集。
正整数表示为1、2、3、4、5……,可以用于计数、量化和序数等方面。
小学生应当学会将正整数进行加、减、乘、除等基本运算。
负整数在小学数学中通常在四、五年级学习。
通过负整数的概念,小学生可以在数轴上理解并表示一些低于零的数。
负整数用负号“-”表示,例如-1、-2、-3、-4、-5……。
小学生在学习负整数时应掌握其与正整数之间的大小关系,以及负整数之间的大小比较。
零(0)是整数的一个重要成员,它是一个不大不小的特殊数字。
零不是正整数,也不是负整数,它位于正整数和负整数之间。
在小学中学习整数的过程中,零经常被用作中间值或起点值,例如在数轴上标记正负整数的位置。
二、有理数有理数是整数和分数的集合。
分数是两个整数之间的比值,可以是正数、负数或零。
小学生在学习有理数时,需要理解分数的概念和运算规则。
例如,小学生可以用一个饼图来表示一个整饼,然后将其分成若干块,每一块代表一个分数。
小学生可以通过分数的相互比较,了解分数的大小关系。
在分数的运算中,小学生需要学会对分子和分母进行加、减、乘、除等操作。
在小学数学中,有理数是加法和乘法封闭的集合,即两个有理数的和或积仍然是一个有理数。
小学生应掌握有理数的运算性质,能够运用有理数进行简单的计算和问题求解。
总结:小学数学认识简单的整数与有理数是数学学习的基础之一。
整数包括正整数、负整数和零,小学生需要学会理解和运用整数进行基本的运算。
有理数则由整数和分数组成,小学生通过分数的概念和运算来扩展对数字的认识。
通过学习整数和有理数,小学生可以逐渐形成对数字的整体认知,并能够应用数学知识解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的认识 Modified by JEEP on December 26th, 2020.
有理数的认识
教学目标:
1、整理之前学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2、能区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
引入负数:
例1、2-1=1 那么1-2=
例2、在日常生活中经常会遇到这样一些量:
汽车向东行驶3千米和向西行驶2千米
温度是零上10℃和零下5℃。
收入500元和支出237元。
水位升高1.2米和下降0.7米。
买进100辆自行车和卖出20辆自行车。
分析:这些例子中出现的量具有共同特点向东和向西、零上和零下、收入和支出、升高和下降、买进和卖出都具有相反意义,那么怎么用数来准确的表示这些相反的量呢
小结:上面的例子中,加号可以省略不写,为了表示具有相反意义的量,上面我们引进了―5,―2,―237,―等数。
像这样的一些新数叫做负数。
过去学过的那些数(零除外),如10,3,500,等叫做正数。
正数前面有时也可放一个“+”读作“正”如5可以写成+5,一般情况下是省略不写的,但是负数前面的“-”不能省略。
注意零既不是正数,也不是负数。
例3:请将下列数值填入相应的圈内:
2
1
2,―97,5,0,32,,,+2,―3, 正数集合 负数集合
【有理数】:数1,2,3,4…做正整数,―1,―2,―3,―4…做负
整数,正整数、负整数和零统称为整数。
数32,41,854
,+,…叫做正分数;―97,―7
6,―,…叫做负分数;正分数和负分数统称为分数;整数和分数统称为有理数。
注: 1. 整数和分数统称为有理数,任何一个有理数都可以写成分数m/n (m ,n 都是整数,且n ≠0)的形式。
2. 无限不循环小数和开根开不尽的数叫无理数 ,比如π
3. 而有理数恰恰与无理数相反,整数和分数统称为有理数,包括整数和通常所说的分数,此分数亦可表示为有限小数或无限循环小数。
例4:―18,7
22,,0,2001,53 ,―,95℅. 负数集
①先将有理数按“整”和“分”的属性分,再按每类数的“正”、“负”分,即得如下分类表:
②先将有理数按“正”和“负”的属性分,再按每类数的“整”、“分”分,即得如下分类表:
注:①“0”也是自然数。
②“0”的特殊性。
③分数和小数可以互化,在此统称为分数
例5:把下列各数填入相应集合的括号内:
29,―,2002,7
6,―1,90%,,0,―23
1,―,―2,1
(1)整数集合:{ } (2)分数集合:{ } (3)正数集合:{ } (4)负数集合:{ } (5)正整数集合:{ } (6)负整数集合:{ }
(7)正分数集合:{ } (8)负分数集合:{ }
(9)正有理数集合:{ } (10)负有理数集合:{ }
课堂练习
1、吐鲁番盆地海拔高度为-155米的意义是:_______
2、前进了2米记作+2米,那么后退5米记作:________
3、气球上升5米,记作+5米,那么-3米表示_________,不升不降记作:________
4、某班男生平均身高165cm ,若高于平均身高记为正,低于平均身高记为负,甲、乙的身高分别记为-3cm ,+4cm ,则甲比乙矮___________cm 。
5、下列各数+6,―,―2,97,210,5
1
3-,0,中,正数有
___________,负整数有___________,分数有____________。
6某天温度上升了―4℃的意义是( )
A 、上升了4℃
B 、没有变化
C 、下降了4℃
D 、下降了―4℃
7下列说法中错误的是( ) A 、一个正数的前面加上负号就是负数
B 、不是正数的数一定是负数
C 、0既不是正数,也不是负数
D 、正负数可以用来表示具有相反意义的量
8巴黎与北京的时差为―7(正数表示同一时刻比北京时间早的小时数),如果北京时间是5月3日10∶00,那么巴黎时间是 ( ) A 、5月3日3∶00 B 、5月3日17∶00 C 、5月2日13∶00 D 、5月4日10∶00 9把下列各数填在相应的集合中:
―4,5
1
,,2
13-,0,+235,―,+3,―2005,10
3
,76 正数集合:{ },负数集合:{ } 整数集合:{ },分数集合:{ } 负整数集合:{ },正整数集合:{ } 负分数集合:{ },正分数集合:{ } 10、5分钟内背过5个单词为过关,超过的记为正,现有五名同学的记录如下:-3,0,+1,+2,-1 (1)这五个人中有几个人过关 (2)他们分别背过了几个单词 (3)记录中的五个数都属于哪类有理数 课后练习
1.正常水位为0m ,水位高于正常水位0.2m 记作 ,低于正常水位0.3m 记作 。
2.乒乓球比标准重量重0.039g 记作 ,比标准重量轻0.019g 记作 ,标准重量记作 。
3.一个物体沿东西两个相反的方向运动时可以用正负数表示它们的运动,如果向东运动4m 记作4m ,向西运动8m 记作 ;如果―7m 表示物体向西运动7m ,那么6m 表明物体怎样运动 4.下列说法正确的是( )
①零是整数;②零是有理数;③零是自然数;④零是正数;⑤零是负数;⑥零是非负数。
A :①②③⑥
B :①②⑥
C :①②③
D :②③⑥
5.下列说法正确的是( ) A :在有理数中,零的意义表示没有 B :正有理数和负有理数组成全体有理数 C :既不是整数,也不是分数,因而它不是有理数 D :零是最小的非负整数,它既不是正数,又不是负数 6.―100不是( ) A :有理数
B :自然数
C :整数
D :负有理数 7.判断:(1)0是正数
( )
(2)0是负数
( )
(3)0是自然数 ( ) (4)0是非负数 ( ) (5)0是非正数
( )
(6)0是整数 ( )
(7)0是有理数 ( )(8)在有理数中,0仅表示没有。
( ) (9)0除以任何数,其商为0( ) (10)正数和负数统称有理数。
( )
8.观察下面一列数,然后与同伴一起探求规律:
-1,6
1 51 4
1 31 2
1
,-,,-,,……
(1)写出紧接后面的三个数;
(2)第2005个数是什么
(3)如果这一列数无限排列下去,与哪个数越来越接近
(4)1,2,-3,―4,5,6,―7,―8……写出这列数的第100个和第2005个数分别是______,_______。
9.在下表适当的空格里打上“∨”号.
10.一零件的长度在图纸上标为10±(单位:毫米),表示这种零件的长度为10毫米,则加工时要求最大不超过多少最小不少于多少实际生产时,测得一零件的长为毫米,问此零件合格吗。