科学记数法与近似数专题-教师版

合集下载

近似数、有效数字、科学计数法

近似数、有效数字、科学计数法

近似数、有效数字、科学计数法知识点一科学记数法:一般地,一个数可以表示成a×10n的形式,其中1≤|a|<10,n是整数,这种记数方法叫做科学记数法.知识点二近似数:(1)精确度一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.如:近似数2.8与2.80,它们的不同点有三点:①精确度不同.2.8精确到十分位,2.80精确到百分位;②有效数字不同.2.8有2个有效数字是2、8,2.80有3个有效数字是2、8、0.③精确范围不同.2.75≤2.8<2.85,2.795≤2.80<2.805.因此,在近似数中,小数点后末位的零不能任意增减或不写.(2)近似数:接近真实数值的一个数。

知识点三有效数字:从近似数的左边第一个不是0的数字起,到精确到的数位止,所有的数字叫做这个近似数的有效数字.如:近似数0.003725,左边第一个不是0的数是3,最后一位是5,故这个近似数有四个有效数字是3、7、2、5.在使用和确定近似数时要特别注意:(1)一个近似数的位数与精确度有关,不能随意添上或去掉末位的零。

(2)确定有效数字时一定要弄清起始位置和终止位置,初学时可分别做上记号,以免出错。

(3)求精确到某一位的近似值时,只需把下一位的数四舍五入,而不看后面各数位上的数的大小。

典型试题:一、选择题1. 北京市申办2008年奥运会,得到了全国人的热情支持,据统计,某日北京申奥网站的访问人次为201 949,用四舍五入法取近似值保留两个有效数字,得( )A.2.0×105 B.2.0×106 C.2×105 D.0.2×1062. 据2006年末的统计数据显示,免除农村义务教育阶段学杂费的西部地区和部分中部地区的学生约有52 000 000名,这个学生人数用科学记数法表示正确的是( )A.5.2×105B.5.20×106 C.5.2×107D.0.52×106 3.下列说法正确的是( )A.近似数4000和4万的精确度一样B.将圆周率π精确到千分位后有四个有效数字3,1,4、2 C.近似数7.250与近似数3.25的精确度一样 D.354 600精确到万位是355 0004.若有一个数用四舍五入法得到m和n两个近似数,它们分别是3.54和3.540,则以下说法正确的是( )A.n的精确度高B.m的精确度高C.m与n的精确度相同D.m、n的精确度不能确定5.近似数5和5.0的准确值的取值范围的大小关系是( )A.5.0的取值范围大 B.5的取值范围大 C.取值范围相同 D.不能确定6.用四舍五入法得到a的近似数0.270,其准确数a的范围是( )A.0.265≤a<0.275 B.0.2695≤a<0.270 5 C.0.25≤a<0.28 D.0.2695≤a≤0.2705 7.下列说法中正确的是( )A.近似数1.70与近似数1.7的精确度相同 B.近似数5百与近似数500的精确度相同C.近似数4.70×104是精确到百位的数,它有三个有效数字是4、7,0D.近似数24.30是精确到十分位的数,它有三个有效数字是2、4、38.沈阳市水质监测部门2006年全年共监测水量达48 909.6万吨,水质达标率为100%,用科学记数法表示2006年全年共监测水量为________万吨(保留三个有效数字)( )A.4.89×104 B.4.89×105 C.4.90×104 D.4.90×1059.由四舍五入得到的近似数是3.75,下面数字中不可能是真值的是( )A .3.7514 B.3.7493 C.3.7504 D.3.75510.近似数1.30所表示的精确数n 的范围是( )A.35.125.1<≤nB.35.125.1<<nC.305.1295.1<≤nD.305.1295.1<<n11. 由四舍五入得到的近似数0.600的有效数字是 ( )。

科学计数法-近似数教案全

科学计数法-近似数教案全

可编辑修改精选全文完整版科学记数法教学目标:1、借助身边熟悉的事物体会大数,并会用科学记数法表示大数2、通过用科学记数法表示大数的学习,让学生从多种角度感受大数,促使学生重视大数的现实意义,以发展学生的数感。

重点:正确使用科学记数法表示大于10的数难点:正确掌握10n 的特征以及科学记数法中n 与数位的关系【情景引入】1、 数据,如:太阳的半径约696 000千米;全世界人口数大约是6 100 000 000;光速约300 000 000米/秒地球上的陆地面积约为149 000 000平方公里2、提出问题:这样的大数,读、写都不方便,这些大数怎样表示才好?我们可以用一种简单的方法来表示这些读和写都比较困难的大数,那就是科学记数法.【教学过程】1、观察10的乘方的特点:210=100,310=1000,410=10000,……猜想:10n 在1的后面有多少个0?得出结论:一般地,10的n 次幂,在1的后面有n 个0.练习:(1) 把下面各数写成10的幂的形式:1000,100000000,100000000000.(2) 指出下列各数是几位数:103,105,1012,101002、刚才出示的图片中的大数能这样表示吗?怎样表示?有什么规律?696 000=6.96×100 000=6.96×1056 100 000 000=6.1×1 000 000 000=6.1×109149 000 000=1.49×100 000 000=1.49×108根据上面例子,我们把大于10的数记成a ×10n 的形式(其中a 是整数数位只有一位的数,n 是正整数),这种记数法叫做科学记数法.说明:与10的幂相乘的数a ,必须是大于等于1且小于10,这是科学记数法的规定。

3、例题分析:例1 用科学记数法表示下列各数:(1)1 000 000;(2)57 000 000;(3)123 000 000 000解:(1)1000 000=610 (2)57 000 000=5.7×710(3) 123 000 000 000=1.23×1110小组讨论:这些式子中,等号左边整数的位数与右边10的指数有什么关系?归纳结论:一个数的科学记数法中,10的指数比原数的整数位数少1,如57 000 000有8位整数,10的指数就是7.△ 填空:7101.6 =______________,它有____个整数位;81096.6⨯=_____________,它有_____个整数位;所以,用科学记数法表示的数,一个突出的特点,就是这个数的整数位数一目了然,这对于判断数的大小是非常方便的。

《科学计数法及近似数》教案

《科学计数法及近似数》教案

《科学计数法及近似数》教案章节一:科学计数法的概念与表示方法1. 引入:通过展示一个较大的数字,如地球到太阳的平均距离(约1.496×10^8公里),引导学生思考如何简便地表示这样大的数字。

2. 讲解科学计数法的定义:科学计数法是一种表示非常大或非常小数字的方法,形式为a×10^n,其中1≤|a|<10,n为整数。

3. 示例:将一些较大的数字,如1000000、0.000001转换为科学计数法表示。

4. 练习:让学生尝试将一些较大的数字和较小的数字转换为科学计数法表示,并互相检查。

章节二:科学计数法的运算规则1. 引入:通过展示一些例子,如2.5×10^3 + 1.2×10^3,引导学生思考如何进行科学计数法的加法运算。

2. 讲解科学计数法的加法和减法运算规则:同底数相加减,指数不变,系数相加减。

3. 示例:展示一些科学计数法的加法和减法运算,如2.5×10^3 + 1.2×10^3、4.7×10^-2 2.3×10^-2。

4. 练习:让学生尝试进行一些科学计数法的加法和减法运算,并互相检查。

章节三:科学计数法的乘法和除法运算1. 引入:通过展示一些例子,如2.5×10^3 ×3.2×10^2,引导学生思考如何进行科学计数法的乘法运算。

2. 讲解科学计数法的乘法运算规则:同底数相乘,指数相加,系数相乘。

3. 示例:展示一些科学计数法的乘法运算,如2.5×10^3 ×3.2×10^2、7.4×10^-5 ÷2.5×10^-3。

4. 练习:让学生尝试进行一些科学计数法的乘法和除法运算,并互相检查。

章节四:近似数的的概念与表示方法1. 引入:通过展示一些实际问题,如将一辆车的速度从60公里/小时近似为60公里/小时,引导学生思考如何表示近似数。

人教版七年级数学上学期同步教案:科学记数法、近似数

人教版七年级数学上学期同步教案:科学记数法、近似数

教学过程一、课堂导入1.天安门广场的面积约44平方万米,如果我们的军训在那里进行,你能想办法估计天安门广场最多可容纳多少站成方阵接受军训的学生吗?2.中国国家图书馆藏书约2亿册,居世界第五位.①请调查本校图书馆某个书架所存放图书的数量.中国图书馆所藏的书需多少个这样的书架?②如果你所在班级的同学每人借阅10本书,那么中国图书馆的藏书大约可以供多少个这样班级的学生借阅?二、复习预习复习巩固小学时的科学计数法,表示较大的数通常采用科学计数法,写出a×10n的形式。

其中a的范围是1~10之间,但取不到10.三、知识讲解考点1科学记数法生活中的大数(1)第五次人口普查时,中国人口约为1300000000人;(2)中国的国土面积约为9600000千米2(3)我国信息工业总产值将达到383000000000元.提出问题:(1)设问:可以用一种简单的方法来表示这些读和写都显得困难的大(2)操作计算器:在棋盘上放米,第一格放1粒米,第二格放2粒米,第三格放22粒米,然后是23粒、24粒、25粒……一直到63格,请用计算器计算第63格应放多少粒米?并观察计算器是如何显示263的.归纳:一个大于10的数可以表示成a×10n的形式,其中,n是正整数,这种记数方法叫科学计数法.考点2 近似数准确数和近似数:准确数:生活中用自然数表示的人数或是物体的个数。

近似数:实际问题中有的量用有理数近似的表示出来,这个数就是近似值。

有效数字:一个近似数从左边第一个非0数字起到末尾数字为止,所有的数字都是这个数的有效数字。

近似数的精确度表示:近似数和准确数的接近程度可以用精确度表示,一个近似数四舍五入到哪一位,就称这个数精确到哪一位。

科学计数法是中考必考知识点。

近似数和精确度是难点,学生容易出错,不会确定精确度。

四、例题精析【例题1】【题干】2003年10月15日9时10分,我国“神舟”五号飞船准确进入预定轨道,16日5时59分,返回舱与推进舱分离,返回地面,其间飞船绕地球飞行了14圈,飞行的路程约60万千米,则“神舟”飞船绕地球平均每圈()㎞约飞行(用科学记数法表示,结果保留三个有效数字).A.4.28×104kmB.4.29×104kmC.4、28×105kmD.4.29×105km【答案】解:60万÷14≈4.29×104.故选B.【解析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.而保留三个有效数字,要观察第4个有效数字,四舍五入.【例题2】【题干】对于以下四种说法:(1)一个近似数,四舍五入到哪一位,就说它精确到哪一位;(2)一个近似数中,所有的数字都是这个数的有效数字;(3)一个近似数中,除0外的所有数字都是这个数的有效数字;(4)一个近似数,从左边第一个不为0的数字起到精确到的数位止,所有的数字都是它的有效数字。

【精品】小升初数学衔接教材第7讲:科学记数法和近似数教师版

【精品】小升初数学衔接教材第7讲:科学记数法和近似数教师版

第7讲科学记数法和近似数【教材精讲】教学目标:1、借助身边熟悉的事物进一步感受大数,会用科学记数法表示大数;2、理解精确度和有效数字的意义;3、要准确的说出精确位及按要求进行四舍五入取近似数;学习重点:掌握科学记数法表示大数,近似数、精确度和有效数字的意义.学习难点:科学记数法中指数与整数位之间的关系,确定近似数的精确度及有效数字,按给定的精确或有效数一个数的近似数.教学过程(一)合作探究一科学记数法(1)问题:你知道102,103,104,105分别等于多少吗?10n的意义和规律是什么?(教师应引导学生弄清楚)①102=100,103=1000,104=10000,···.②10n=10···0(在1的后面有n个0),所以可以利用10的乘方表示一些大数.它们表示时有什么规律?696 000=6.96×100 000=6.96×105.读作:“6.96乘10的5次方”.300 000 000=3×100 000 000=3×108.读作:“3乘10的次方”.从上边的读法和写法中可以看出,它不仅书写简短,而且还便于读出来.引导学生得出:把一个大于10的数表示成a×10n的形式(其中a是整数位只有一位的数,n是正整数且比整数位数小1),使用这种表示数的方法就是科学记数法.(2)例题解析.例题1:用科学记数法表示下列各数:1 000 000, 57 000 000, 123 000 000 000.解:1 000 000=106.57 000 000=5.7×107.123 000 000=1.23×108.(3)思考:一个大数用科学记数表示同学们会表示了,反过来,已知一个用科学记数表示的数,你能知道它的原数是多少吗?如.用科学记数法表示的数5.24×1010,原数是什么样的数?请你写出来.引导学生归纳出:用科学记数表示时,n与数位的关系是:n=位数-1或数位=n+1.(4)跟踪练习.1.用科学记数法记出下列各数:(1)7 000 000;(2)92 000; (3)63 000 000; (4)304 000;解:(1)7 000 000=7×106;(2)92 000=9.2×104; (3)63 000 000=6.3×107; (4)304 000=3.04×105.2.下列科学记数法表示的数原数是什么?(1)3.2×105, (2)-6×108.解:(1)3.2×105=320000, (2)-6×108=-60000000.(二)探究近似数与有效数字(1)现实生活中我们常会遇到这样的问题:(1)初一(4)班有42名同学;(2)每个三角形都有3个内角.(3)我国的领土面积约为960万平方千米;(4)王强的体重是约49千克.这里的42,3,960万、49是什么样的数?总结:43,3是准确数,而象960万、49这些是与实际数很接近的数,我们称它为近似数,是由四舍五入得来的,与实际数很接近的数.(2)在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也是就精确度的问题.学生阅读课本内容,思考并回答下面问题。

第一章 第19课 科学记数法和近似数-七年级上册初一数学(人教版)

第一章 第19课 科学记数法和近似数-七年级上册初一数学(人教版)

第一章第19课科学记数法和近似数-七年级上册初一数学(人教版)1. 科学计数法科学计数法是一种表示非常大或非常小的数字的方法。

它用于简化大数或小数的表达和计算。

科学计数法的一般形式为:a × 10^b,其中a称为尾数,b称为指数。

1.1 大数的科学计数法将一个大数用科学计数法表示时,尾数a应该是大于等于1且小于10的数字,指数b则表示尾数a向左或向右移动了几位。

例如,25900000可以表示为2.59× 10^7。

1.2 小数的科学计数法将一个小数用科学计数法表示时,尾数a应该是大于等于1且小于10的数字,指数b则表示尾数a向左或向右移动了几位。

例如,0.00000721可以表示为7.21 × 10^(-6)。

1.3 科学计数法的运算在进行科学计数法的加减乘除运算时,首先调整尾数的位数,使得两个尾数的位数相同,然后根据指数的正负,进行相应的运算。

最后,根据结果的大小调整尾数的位数和指数的值。

2. 近似数近似数是指一个数与给定数非常接近的数。

在实际计算中,我们常常会使用近似数来简化问题和加快计算速度。

2.1 近似数的表示一个近似数可以用一个带有误差的测量值或一个舍入后的数来表示。

例如,将3.14159265近似为3.14或3.1416都是对原数的近似。

2.2 近似数的运算在进行近似数的加减乘除运算时,同样需要注意保留适当的位数,并根据运算的要求和所得结果进行正确的舍入。

2.3 误差的计算当使用近似数进行计算时,由于近似数与原数之间存在着一定的误差,因此计算结果也是一个近似值。

我们可以通过计算目标数与近似数之间的差值来衡量误差的大小。

3. 总结科学计数法和近似数在数学和科学领域中都起着重要的作用。

科学计数法可以简化大数和小数的表达和计算,而近似数则可以用于简化问题和加快计算速度。

在使用科学计数法和近似数时,我们需要注意保留适当的位数,并根据具体情况进行正确的舍入。

另外,需要注意的是,近似数在运算中会引入一定的误差,因此在进行计算时要注意误差的范围和影响。

科学记数法与近似数

科学记数法与近似数

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.12科学计数法与近似数【名师点睛】1.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.【科学记数法形式:a×10n,其中1≤a<10,n为正整数.】规律方法总结:科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.2.近似数和有效数字(1)有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.(2)近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.(3)规律方法总结:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.【典例剖析】【例1】(2022春•南岸区校级月考)我国约有9600000平方千米的土地,平均1平方千米的土地一年从太阳得到的能量相当于燃烧150000吨煤所产生的能量.(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤所产生的能量?(2)若1吨煤大约可以发出8000度电,那么(1)中的煤大约发出多少度电?(结果用科学记数法表示)【分析】(1)根据乘法的意义列出算式(9.6×106)×(1.5×105)计算,再用科学记数法表示即可;(2)用(1)的结果乘以8×103,求出结果后再用科学记数法表示即可.【解析】(1)(9.6×106)×(1.5×105)=(9.6×1.5)×(106×105)=1.44×1012(吨).答:一年内我国土地从太阳得到的能量相当于燃烧1.44×1012吨煤.(2)(1.44×1012)×(8×103)=(1.44×8)×(1012×103)=1.152×1016(度).答:(1)中的煤大约发出1.152×1016度电.【变式1.1】(2021秋•岚皋县期末)将如图所示的长为1.5×102cm,宽为1.2×102cm,高为0.8×102cm的大理石运往某地进行建设革命历史博物馆.(1)求每块大理石的体积.(结果用科学记数法表示)(2)如果一列火车总共运送了3×104块大理石,每块大理石约重4×103千克,请问这列火车总共运送了约重多少千克大理石?(结果用科学记数法表示)【分析】(1)根据长方体的体积=长×宽×高,先求出它的体积,再用科学记数法表示.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数;(2)根据总重量=大理石块数×每块大理石的重量列出代数式,再计算求值并用科学记数法表示即可.【解析】(1)根据题意,得1.5×102×1.2×102×0.8×102=(1.5×1.2×0.8)×(102×102×102)=1.44×106.答:每块大理石的体积为1.44×106cm3;(2)根据题意,得3×104×4×103=(3×4)×104×103=1.2×108.答:这列火车总共运送了约重1.2×108千克大理石.【例2】(2020秋•肇源县期末)一个半圆形教具,它的半径为5分米,它的周长是多少分米?面积是多少平方分米?(π取3.14,结果保留两位小数)【分析】根据周长和面积公式列出算式,再利用近似数的概念计算结果即可.【解析】它的周长是12×2π×5+2×5=5π+10≈25.70(分米),面积是12×π×52≈39.25(平方分米),答:它的周长是25.70米,面积是39.25平方分米.【变式2.1】(2019秋•闵行区期末)“2019年11月5日至10日,第二届中国国际进口博览会在中国上海国家会展中心举行,参加会展的国家、地区和国际组织从第一届的130个增加到180个,此次进博会交易采购成果丰硕,按一年计,累计意向成交约711.3亿美元,比第一届增长23%.”根据以上资料计算:(1)参加第二届进博会的国家、地区和国际组织的数量与第一届相比增加的百分数是多少?(精确到0.1%)(2)第一届进口博览会的累计意向成交额约多少亿美元?(保留一位小数)【分析】(1)根据增长率的公式计算180130130×100%即可;(2)利用增长率的意义计算711.3÷(1+23%)即可.【解析】(1)增长率=180130130×100%≈38.5%,答:与第一届相比增加的百分数是38.5%;(2)711.3÷(1+23%)≈578.3答:第一届进口博览会的累计意向成交额约578.3亿美元.【变式2.2】(2017秋•官渡区期末)某粮店有10袋小麦准备出售,称得质量如下(单位:千克):182.3,178,177.7,183,183.2,182,182,176.8,177,180.(1)计算10袋小麦的总质量为多少千克?(2)若每千克小麦的售价为2.6元,则这10袋小麦能卖多少元?(精确到1元)【分析】(1)首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.(2)10袋玉米的金额=10袋玉米的质量×单价.【解答】(1)解法1:182.3+178+177.7+183+183.2+182+182+176.8+177+180=1802(千克)答:10袋小麦总重量为1802千克.解法2:以180千克为标准,每袋小麦超过180千克的千克数记作正数,不足的千克数记作负数,10袋小麦对应的数分别为+2.3,﹣2,﹣2.3,+3,+3.2,+2,+2,﹣3.2,﹣3,0,则2.3+(﹣2)+(﹣2.3)+3+3.2+2+2+(﹣3.2)+(﹣3)+0=[2.3+(﹣2.3)]+[3+(﹣3)]+[3.2+(﹣3.2)]+[(﹣2)+2]+2+0=2180×10+2=1802(千克).答:10袋小麦总重量为1802千克.(2)1802×2.6=4685.4≈4685(元).答:这10袋小麦能卖4685元.【满分训练】一.选择题(共10小题)1.(2022春•温州期末)中国天宫空间站距离地面约400000米,其中数据400000用科学记数法表示为( )A.4×105B.40×104C.4×104D.0.4×106【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解析】400000=4×105.故选:A.2.(2022•长春)长春轨道客车股份有限公司制造的新型奥运版复兴号智能动车组,车头采用鹰隼形的设计,能让性能大幅提升,一列该动车组一年运行下来可节省约1800000度电,将数据1800000用科学记数法表示为( )A.18×105B.1.8×106C.1.8×107D.0.18×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解析】1800000=1.8×106,故选:B.3.(2022春•锦江区期末)2022年6月13日,由四川省文物考古研究院和三星堆研究院、三星堆博物馆联合主办的“考古中国”重要项目——三星堆遗址考古发掘阶段性成果新闻通气会在三星堆博物馆举行,会上发布三星堆遗址祭祀区考古工作阶段性重大成果:6座坑共计出土编号文物近13000件.将数据13000用科学记数法表示为( )A.0.13×106B.1.3×105C.1.3×104D.13×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解析】13000=1.3×104.故选:C.4.(2022•盘锦模拟)今年4月,盘锦港举行31400吨外贸进口散装氧化铝“潘神”轮接卸剪彩仪式,数据31400用科学记数法表示为( )A.0.314×105B.3.14×104C.31.4×103D.314×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解析】31400用科学记数法表示为31400=3.14×104.故选:B.5.(2022•贵阳)中国科学技术大学利用“墨子号”科学实验卫星,首次实现在地球上相距1200公里的两个地面站之间的量子态远程传输,对于人类构建全球化量子信息处理和量子通信网络迈出重要一步,1200这个数用科学记数法可表示为( )A.0.12×104B.1.2×104C.1.2×103D.12×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解析】1200=1.2×103.故选:C.6.(2022春•杨浦区校级期中)如果近似数1.00是由四舍五入法得,那么它所表示的准确数A的范围是( )A.1.000≤A<1.005B.1.00<A<1.05C.0.95<A≤1.05D.0.995≤A<1.005【分析】近似值是通过四舍五入得到的,1.00可以由大于或等于0.995的数,0后面的一位数字,满5进1得到.或由小于1.005的数,舍去0后的数字得到,因而求得A的范围.【解析】近似数1.00表示的精确数A的范围是0.995≤A<1.005.故选:D.7.(2022•商城县一模)2022年1月20日,河南省统计局公布2021年全省地区生产总值为58887.41亿元,同比增长6.3%,这里的近似数“58887.41亿”是精确到( )A.百万位B.亿位C.万位D.百分位【分析】看最后一位数字1所在数位即可.【解析】近似数“58887.41亿”精确到百万位,故选:A.8.(2021秋•射阳县校级期末)小明体重为48.94kg,这个数精确到十分位的近似值为( )A.48kg B.48.9kg C.49kg D.49.0kg【分析】把百分位上的数字4进行四舍五入即可.【解析】48.94kg精确到十分位的近似值为48.9kg.故选:B.9.(2021秋•广饶县期末)由四舍五入法得到的近似数42.3万精确到的数位是( )A.十分位B.十位C.百位D.千位【分析】根据近似数的精确度求解.【解析】近似数42.3万精确到0.1万位,即千位.故选:D.10.(2022春•松江区校级期中)下列说法正确的是( )A.近似数4.20和近似数4.2的精确度一样B.近似数4.20和近似数4.2的有效数字相同C.近似数3千万和近似数3000万的精确度一样D.近似数52.0和近似数5.2的精确度一样【分析】根据近似数和有效数字的定义,可以判断各个选项中的说法是否正确.【解析】近似数4.20和近似数4.2的精确度不一样,近似数4.20精确到百分位,近似数4.2精确到十分位,故选项A错误,不符合题意;近似数4.20和近似数4.2的有效数字不相同,近似数4.20有三个有效数字,近似数4.2有两个有效数字,故选项B错误,不符合题意;近似数3千万和近似数3000万的精确度不一样,近似数3千万精确到千万位,近似数3000万精确到万位,故选项C错误,不符合题意;近似数52.0和近似数5.2的精确度一样,故选项D正确,符合题意;故选:D.二.填空题(共8小题)11.(2022春•北碚区校级期末)2022年新华社发文总结2021年中国取得的科技成就,其中包括奋斗者号载人潜水器最深下潜约至10900米,其中数据10900用科学记数法表示为 1.09×104 米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解析】10900=1.09×104.故答案为:1.09×104.12.(2022春•沙坪坝区校级期末)目前,中国生产的新冠疫苗已在10个国家注册上市,130多个国家明确提出使用需求,整体年产能超过710000万剂.则710000用科学记数法可表示为 7.1×105 .【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解析】710000=7.1×105.故答案为:7.1×105.13.(2022春•靖江市期末)2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场的预定区域成功着陆.翟志刚、王亚平、叶光富3名航天员结束了6个月的“太空之旅”,成为了我国有史以来在轨任务时间最长的航天员乘组.某网站关于该新闻的相关搜索结果约为43700000条,将43700000用科学记数法表示为 4.37×107 .【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解析】将43700000用科学记数法表示为4.37×107.故答案为:4.37×107.14.(2022•高邮市模拟)2022年4月16日,神舟十三号载人飞船返回舱以15000米/秒的速度返回,在东风着陆场预定区域成功着陆,数据15000用科学记数法表示为 1.5×104 .【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解析】15000=1.5×104.故答案为:1.5×104.15.(2022春•静安区期中)月球沿着一定的轨道围绕地球运动,它在近地点时与地球的距离约为363300千米,把这个近似数保留三个有效数字,则可表示为 3.63×105 千米.【分析】对于大于1的数,科学记数法的书写要求是:a×10n,其中1≤|a|<10,n比整数位数小1,再结合有效数字的取法可解本题.【解析】363300=3.633×105≈3.63×105.故答案为:3.63×105.16.(2021秋•南关区校级期末)把9.831精确到百分位得到的近似数为 9.83 .【分析】根据四舍五入法可以将题目中的数据精确到百分位.【解析】9.831精确到百分位得到的近似数为9.83,故答案为:9.83.17.(2022春•睢宁县月考)我县九年级考生约14978人,该人口数精确到千位大约为 1.5×104 .【分析】根据四舍五入法,可以将题目中的数据精确到千位.【解析】14978≈1.5×104,故答案为:1.5×104.18.(2021秋•虎林市校级期末)2020年,面对严峻复杂的国内外环境,特别是新冠肺炎疫情的巨大冲击,在党中央坚强领导下,我省发展质量稳步提升,人民生活持续改善,黑龙江全面振兴全方位振兴取得新的重大进展.初步核算,2020年全省实现地区生产总值13698.5亿元,把13698.5精确到千位表示为 1.4×104 亿元.【分析】用科学记数法a×10n(1≤a<10,n是正整数)表示的数的精确度的表示方法是:先把数还原,再看首数的最后一位数字所在的位数,即为精确到的位数.【解析】把13698.5亿元精确到千位表示为1.4×104亿元,故答案为:1.4×104.三.解答题(共6小题)19.(2022春•江阴市校级月考)光的速度约为3×105km/s,太阳光照射到地球上大约需要5×102s,地球离太阳大约多远(结果用科学记数法表示)?【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n是负数.【解析】3×105×5×102=1.5×108(km).答:地球离太阳大约1.5×108km.20.(2022春•碑林区校级月考)已知1平方千米的土地上,一年内从太阳得到的能量相当于燃烧1.3×108千克煤所产生的能量,那么我国约960万平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤所产生的能量?【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.据此解答即可.【解析】1.3×108×960万=1.3×108×9.6×106=1.248×1015(千克),答:相当于燃烧1.248×1015千克煤所产生的能量.21.(2021•朝阳区校级开学)光速约为3×108米/秒,太阳光射到地球上的时间约为5×102秒,地球与太阳的距离约是多少米?【分析】先计算地球与太阳的距离,再根据科学记数法的形式选择即可.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解析】3×108×5×102=1.5×1011(米),故地球与太阳的距离约是1.5×1011米.22.(2021秋•岳麓区校级期中)在一次水灾中,大约有2.5×107个人无家可归,假如一顶帐篷占地100平方米,可以放置40个床位(一人一床位),为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多少地方?若某广场面积为5000平方米.要安置这些人,大约需要多少个这样的广场?(所有结果用科学记数法表示)【分析】用人数除以每一顶帐篷的床位数,计算即可求出帐篷数;用帐篷数乘以每一顶帐篷所占的面积计算即可求出占地面积;用所有帐篷的占地面积除以广场的面积计算即可求出广场的个数.【解析】帐篷数:2.5×107÷40=6.25×105;这些帐篷的占地面积:6.25×105×100=6.25×107;需要广场的个数:6.25×107÷5000=1.25×104.23.(2021秋•闵行区期末)神舟十三号飞船在太空中绕地球飞行,飞行时离地面高度约400千米,每秒钟约飞行7.9千米,求飞船绕地球飞行一周大约需要多少小时.(地球半径约为6400千米,π取3.14,结果保留两位小数)【分析】用飞船在太空中绕地球飞行一周的周长除以速度得到飞行的时间.【解析】2×π×(6400+400)÷7.9×13600≈1.50(小时),所以飞船绕地球飞行一周大约需要1.50小时.24.(2020秋•苏州期末)已知电路振荡1838526354次的时间为0.2s.(1)1s内电路振荡 9192631770 次.(2)用四舍五入法将(1)中的结果精确到千万位,并用科学记数法表示.【分析】(1)1s内电路振荡的次数=18385263540.2.(2)根据近似数的精确度进行求解即可.【解析】(1)根据题意知,18385263540.2=9192631770.故答案是:9192631770;(2)9192631770≈9190000000=9.19×109.。

第十二讲科学计数法-近似数精选全文

第十二讲科学计数法-近似数精选全文

可编辑修改精选全文完整版第十二讲科学计数法、近似数第一部分、教学目标:1、借助身边熟悉的事物体会大数,并会用科学记数法表示大数2、通过用科学记数法表示大数的学习,让学生从多种角度感受大数,促使学生重视大数的现实意义,以发展学生的数感。

3、了解近似数和有效数字的概念;4、会按精确度要求取近似数;5、给一个近似数,会说出它精确到哪一位,有几个有效数字。

第二部分、教学重点、难点重点:1、正确使用科学记数法表示大于10的数2、近似数、精确度、有效数字概念难点:1、正确掌握10的特征以及科学记数法中n与数位的关系2、由给出的近似数求其精确度及有效数字第三部分、教学过程例题讲解:例1、求n个相同因数的积的运算叫做乘方。

乘方的结果n a叫做幂。

在n a中,a 叫做底数,n叫做指数,n a读作a的n次幂(或a的n次方)。

210= 10×10 =100310=10×10×10 =1 00010 000=10×10 ×10×10=410300=3×100=3×2108 000=8 ×1000=8 ×3 10仿照上面的例子填空100 000=__________________400 000= _________________1 000 000=_________________ 10 000 000=_______________________【分析】科学记数法的表示形式为n a 10⨯的形式,其中1≤a <10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数。

【解答】解:100 000=510400 000=4×100000=4×5101 000 000=610 10 000 000=710 练1.1、把65000用科学计数法表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

科学记数法与近似数专题
1.截止2020年5月10日,全球新冠肺炎感染累计确诊人数大约为3940000人,用科学记数法可表示为( )
A .70.39410⨯
B .63.9410⨯
C .73.9410⨯
D .639.410⨯
【答案】B
2.随着全球疫情持续蔓延,中国政府在做好国内疫情防控的基础上,尽己所能为国际社会提供支持和帮助,从海关统计的数据上看,2020年3月1日至4月25日,全国共验放出口主要防疫物资价值550亿元,将550亿用科学记数法表示为( )
A .105.510⨯
B .115.510⨯
C .125.510⨯
D .195.510⨯ 【答案】A
3.宜宾五粮液机场已于2019年12月5日正式投运,预计到2020年,通航的城市将达到30个,年旅客吞吐量达200万人次,该项目中航站楼总建筑面积约2.4万平方米,用科学记数法表示2.4万为( )
A .32.410⨯
B .42.410⨯
C .52.410⨯
D .50.2410⨯ 【答案】B
4.从今年6月1日起,在我国各大超市,市场实行塑料购物袋有偿使用制度,这一措施有
利于控制白色污染.已知一个塑料袋丢弃在地上的面积为2500cm ,如果100万名游客每人丢弃一个塑料袋,那么会污染的最大面积用科学记数法表示是( )
A .42510m ⨯
B .62510m ⨯
C .32510m ⨯
D .22510m -⨯ 【答案】A
5.传说孙悟空的一个筋斗是十万八千里(1里500=米),那么它的百万分之一是( )
米.
A .1.0810⨯
B .5.410⨯
C .25.410⨯
D .5.4 【答案】B
6.一个数用科学记数法表示为52.3710⨯,则这个数是( )
A .237
B .2370
C .23700
D .237000 【答案】D
7.光的速度约是5310/km s ⨯,太阳光照射到地球表面所需的时间约是2510s ⨯,那么地球与
太阳之间的距离约是(用科学记数法表示)( )
A .71.510km ⨯
B .81.510km ⨯
C .81510km ⨯
D .71510km ⨯
【答案】B
8.近似数1.05万精确到( )
A .百分位
B .十分位
C .个位
D .百位 【答案】D
9.已知20.18a =是由四舍五入得到的近似数,则a 的可能取值范围是( )
A .20.17520.185a
B .20.17520.185a <
C .20.17520.185a <
D .20.17520.185a << 【答案】B
10.下列说法错误的是( )
A .近似数0.350精确到0.001
B .35600精确到千位是3.6万
C .近似数302.51精确到十分位
D .近似数2.20是由数a 四舍五入得到的,那么数a 的取值是2.195 2.205a <
【答案】C
11.用四舍五入法按要求对0.05019取近似值,精确到百分位是( )
A .0.1
B .0.05
C .0.0502
D .0.050 【答案】B
12.宁波市2018年上半年地方财政收入约837.90亿元,这个数精确到( )
A .百万位
B .百分位
C .千万位
D .十分位 【答案】A
13.近似数3.5的准确值a 的取值范围是( )
A .3.45 3.55a
B .3.4 3.6a <<
C .3.45 3.55a <
D .3.45 3.55a < 【答案】C
14.用四舍五入法得到的近似数42.1810⨯,下列说法正确的是( )
A .它精确到百分位
B .它精确到百位
C .它精确到万位
D .它精确到0.01 【答案】B
15.用科学记数法来表示4500000
-,应记作___________.
【答案】6
-⨯
4.510
16.把数6100000000用科学记数法表示为10n
m⨯,则m=,n=.
【答案】6.1,9
17.据《光明日报》报道:截至2020年5月31日,全国参与新冠肺炎疫情防控的志愿者约为8810000,将数据8810000科学记数法表示为___________.
【答案】6

8.8110
18.据统计:我国微信用户数量已突破8.87亿人,近似数8.87亿精确到位.
【答案】百万
π=⋯精确到千分位,结果是___________.19.用四舍五入法,将圆周率 3.1415926
【答案】3.142
20.截止到2017年11月份,泰兴市人口总数达到1 212 200人,则1 212 200人精确到10 000人应表示为___________.
【答案】6

1.2110
21.近似数6.0的标准值a的取值范围是___________.
a<
【答案】5.95 6.05
22.290200精确到万位的近似数___________.
【答案】5

2.910
23.我国国土面积约为9596960平方千米,四舍五入精确到万位为___________平方千米.【答案】960万或(6
9.6010
⨯)
24.近似数1.60亿精确到位.
【答案】百万
25.把12064900精确到万位是___________.
【答案】7

1.20610
26.用四舍五入法对0.06398取近似值,精确到千分位是___________.
【答案】0.064
27.某工人执行爆破任务时,点燃导火索后往100m外的安全地带奔跑的速度为7/
m s,已知导火索燃烧的速度为0.11/
m s,求:导火索的长度至少多长才能保证安全?(精确到
0.1m)
【答案】解:根据题意,得
导火索的长度至少为1000.11 1.6()7
m ⨯≈; 答:导火索的长度至少1.6m 才能保证安全.
28.用四舍五入法按括号里的要求对下列各数取近似值 .
(1) 0.00149 (精确到0.001);
(2) 204500 (精确到千位);
(3) 0.08904 (精确到千分位).
【答案】(1)0.001;(2)52.0510⨯(或20.5万);(3)0.089
29.用科学记数法表示下列各小题中的量
(1)光的速度是300000000米/秒;
(2)银河系中的恒星约有160000000000个;
(3)地球离太阳大约有一亿五千万千米;
(4)月球质量约为100734734000个万吨.
【答案】(1)8310⨯;(2)111.610⨯;(3)81.510⨯;(4)157.3410⨯
30.40200000200020100÷=可改写为734(4.0210)(210) 2.0110⨯÷⨯=⨯.仿照上面的改写方
法自选一个等式试一试,你发现(10)(10)m n a b ⨯÷⨯的算法有什么规律吗?请用你发现的规律直接计算134(610)(1.210)⨯÷⨯.
【答案】解:134(610)(1.210)⨯÷⨯
134(6 1.2)(1010)=÷⨯÷
9510=⨯.
31.先计算,然后根据计算结果回答问题:
(1)计算:
①24(110)(210)⨯⨯⨯=
②47(210)(310)⨯⨯⨯
③74(310)(410)⨯⨯⨯=
④510(410)(510)⨯⨯⨯=
【答案】①6210⨯;②11610⨯;③121.210⨯;④16210⨯
(2)已知式子(10)(10)10n m p a b c ⨯⨯⨯=⨯成立,其中a 、b 、c 均为大于1或等于1而小于
10的数,m 、n 、p 均为正整数,你能说出m 、n 、p 之间存在的等量关系吗?
【答案】(10)(10)1010n m m n p a b ab c +⨯⨯⨯=⨯=⨯, a 、b 、c 均为大于1或等于1而小于10的数,m 、n 、p 均为正整数, ∴当10ab <时,m n p +=;当10ab 时,1m n p ++=.。

相关文档
最新文档