函数的概念解读

函数的概念解读
函数的概念解读

函数的概念

一、教材分析

函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

二、重难点分析

函数的概念既是本节课的重点,也应该是本章的难点。

三、学情分析

1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研

究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间

对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。

四、目标分析

1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义

域、值域。

2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻

辑思维、建模等方面的能力。

3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越

的创新品质。

五、教法学法

本节课的教学以学生为主体、教师是数学课堂活动的组织者、引导者和参与者,我一方面精心设计问题情景,引导学生主动探索。另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。

学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

六、教学过程

(一)创设情景,引入新课

情景1:提供一张表格,把上次运动会得分前10的情况填入表格,我报名次,学生提供分数。

名次 1 2 3 4 5 6 7 8 9 10

得分

汽车的行驶速度为时过早80千米/小时,汽车行驶的距离y与行驶时间x之间的关系式为:y=80x某市一天24小时内的气温变化图:(图略)

提问(1):这三个例子中都涉及到了几个变化的量?(两个)

提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的值也随之唯一确定)

提问(3):这样的关系在初中称之为什么?(函数)引出课题

[设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。第一个例子我改成提供给学生一张运动会成绩统计单。是为了创设和学生或者生活相近的情境,从而引起学生的兴趣,调节课堂气氛,引人入胜,第二个例子我改成一道简单的速度与时间问题,是因为学生对重力加速度的问题还不是很熟悉。同时这两个例子并没有改变课本用三个实例分别代表三种表示函数方法的意图。

这样学生可以从熟悉的情景引入,提高学生的参与程度。符合学生的认知特点。

(二)探索新知,形成概念

1、引导分析,探求特征

思考:如何用集合的语言来阐述上述三个问题的共同特征?

[设计意图]并不急着让学生回答此问,为引导学生改变思路,换个角度思考问题,进入本节课的重点。这里也是教师作为教学的引导者的体现,及时对学生进行指引。

提问(4):观察上述三问题,它们分别涉及到了哪些集合?(每个问题都涉及到了两个集合,具体略)

[设计意图]引导学生观察,培养观察问题,分析问题的能力。

提问(5):两个集合的元素之间具有怎样的关系?(对应)

及时给出单值对应的定义,并尝试用输入值,输出值的概念来表达这种对应。

2、抽象归纳,引出概念

提问(6):现在你能从集合角度说说这三个问题的共同点吗?

[设计意图]学生相互讨论,并回答,引出函数的概念。训练学生的归纳能力。 板书:函数的概念

上述一系列问题,始终在学生知识的“最近发展区”,倡导学生主动参与,通过不断探究、发现,在师生互动,生生互动中,在学生心情愉悦的氛围中,突破本节课的重点。

3、探求定义,提出注意

提问(7):你觉得这个定义中应注意哪些问题?

[设计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。

2、例题剖析,强化概念

例1、判断下列对应是否为函数:

(1);,0,2R x x x

x ∈≠→ (2).,,,2R y N x x y y x ∈∈=→这里

[设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。

例2、(1)1)(-=x x f ;

(2)y =x -1;

(3)2)1()(-=x x f ;

(4)2)1()(-=x x g

[设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。 例3、试求下列函数的定义域与值域:

(1)}3,2,1,0,1{,1)1()(2-∈+-=x x x f

(2)1)1()(2+-=x x f

[设计意图]让学体会理解函数的三要素。

4、巩固练习,运用概念

书本练习P24:1,2,3,4

5、课堂小结,提升思想

引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。

七、教学评价

1、我通过对一系列问题情景的设计,让学生在问题解决的过程中体验成功的乐趣,实现对本课重难点的突破。

2、为使课堂形式更加丰富,也可将某些问题改成判断题。

3、在学生分析、归纳、建构概念的过程中,可能会出现理解的偏差,教师应给予恰当的梳理。

4、本节课的起始,可以借助于多媒体技术,为学生创设更理想的教学情景。

函数概念及其表示(知识点总结例题分类讲解)

龙文教育教师1对1个性化教案 教导处签字: 日期:年月日

函数及其表示 【要点回顾】 函数的概念 1.函数的概念 定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的任意x ,在集合B 中都有唯一的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为 . 2.函数的定义域与值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(称为函数)(x f y =的值域. 函数的三要素:定义域、值域和对应法则 3.区间的概念 4.判断对应是否为函数 5.定义域的求法 6.函数值域的求法 7.复合函数(抽象函数)定义域的求法 函数的表示法 1.函数的三种表示法 图象法、列表法、解析法 2.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 3.映射的概念 设B A 、是两个非空的集合,如果按某一个确定的对应关系f ,对于集合A 中的任意一个元素,在集合B 中都有唯一确定的元素与之对应,那么就称对应B A f →:为从集合A 到集合B 的一个映射,通常记为B A f →: ,f 表示对应法则. 【例题讲解】 考点一:函数与映射概念考查

例1 判断下列图象能表示函数图象的是( ) 练习1:函数()y f x =的图象与直线x = a 的交点个数 ( ) A. 只有一个 B.至多有一个 C.至少有一个 D.0个 练习2:下述两个个对应是A 到B 的映射吗? (1)A R =,{|0}B y y =>,:||f x y x →= ; ( 2 ){| 0}A x x =>,{|}B y y R =∈,:f x y →= 练习3:下列是映射的是( ) 图1 图2 图3 图4 图5 (A)图1、2、3 (B)图1、2、5 (C)图1、3、5 (D)图1、2、3、5 函数相等:如果两个函数的定义域相同,并且对应关系完全一致. 例2 指出下列各函数中,哪个与函数y x =是同一个函数: (1)2 x y x =; (2)y = (3)s t =. 练习1:判定下列各组函数是否为同一个函数: (1)()f x x =, ()f x (2)()1f x x =+,21 ()1 x f x x -=- 练习2:试判断以下各组函数是否表示同一函数? (1)2)(x x f =,33)(x x g =; (A)

函数概念的历史发展(完整资料).doc

【最新整理,下载后即可编辑】 函数概念的历史发展 函数概念是中学中最重要的概念之一,它既是数学研究的对象,又是解决数学问题的基本思想方法。早在16、17世纪,生产和科学技术的发展要求数学不仅研究静止不动的量,而且要研究运动过程中各个量之间的依赖关系,从而促进数学由常量上学时期进入到变量数学时期。函数也就成为研究变量数学必不可少的概念。 函数(function )一词,始用于1692年,见著于微积分创始人之一莱布尼兹G.W.Leibnic,1646—1717)的著作。而f(x)则由欧拉(Euler )于1724年首次使用。我国于1859年引进函数的概念,它首次是在清代数学家李善兰与英国传教士伟烈亚历山大合译的《代微积拾级》中出现。函数在初高等数学中,在物理、化学和其他自然科学中,在经济领域和社会科学中,均有广泛的应用,起着基础的作用。 函数的概念随着数学的发展而发展,函数的定义在发展过程中不断地精确、完善、抽象,函数的概念也不断得到严谨化、精确化的表达。 牛顿在《自然哲学的数学原理》中提出的“生成量”就是函 数概念的雏形。最初,函数是表示代数上的幂(23,,,x x x …),1673 年,莱布尼兹把任何一个随着曲线上的点变动的几何量,如切线、法线,以及点的横坐标都成为函数。 一、解析的函数概念 在18世纪占主导地位的观点是,把函数理解为一个解析表达式. 1698年,瑞士著名数学家约翰·贝努利定义:由变量x 和常量用任何方式构成的量都可以称为x 的函数.这里任何方式包括代数式子和超越式子. 1748年,约翰的学生,杰出数学家欧拉在它著名的《无穷小分析引沦》中把函数定义为“由一个变量与一些常量通过任何方

函数教材分析解读

《函数》教材分析 1、哪儿发生变化,哪没变?从教材内容,(或添加、删减),内容 没变,但是呈现方式发生改变,体现的理念变化,为什么这么 变?实际上是要学有用的数学,身边的数学,应用数学,学是 为了用,设计思想,体现的理念。做数学,让学生参与。 2、新教材的重点和难点要分析出来,要将知识串起来。 3、变化的内容引起呈现方式的变化,技术所起的作用。技术的使用,引起学习方式的改变,怎么用?明确指出需要用技术的地方,形与数要结合。使用技术到非用不可,举例说明。重点! “函数是描述客观世界变化规律的重要数学模型。高中阶段用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学的始终。学生将学习指数函数、对数函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程与方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社

会中的简单问题。” 二、内容安排: 函数这章教材共分个大节:第一大节是函数的概念及函数的一般性质;第二大节是指数与指数函数;第三大节是对数与对数函数;第四大节是函数的应用举例和实习作业。 1、函数是中学数学中最重要的基本概念之一。中学的函数教学大致为三个阶段,初中初步探讨函数的概念、函数关系的表示法、函数图象,并具体学习正比例、反比例、一次函数、二次函数等,使学生获得感性知识;本章及三角函数的学习是函数教学的第二阶段,是对函数概念的再认识阶段,用集合、映射的思想理解函数的一般定义,通过指数函数、对数函数以及后续的三角函数,使学生获得较为系统的函数知识,并初步培养函数的应用意识。第三阶段在选修部分,极限、导数与微分、积分是函数及其应用的深化与提高。 高中的函数知识是在初中的基础上学习的,主要讲函数的概念、函数关系的表示法、并学习函数的一般性质。从映射的概念看,函数是集合A到集合B的映射(A、B是非空数集),映射是特殊的对应,函数是特殊的映射,反函数也是映射。 2、学生在初中的基础上学习有理指数幂及其运算法则是不困难的。指数函数及其图象和性质是这一节的重点,要通过具体实例了解指数函数模型的实际背景,通过具体函数的图象来观察、归纳函数的性质,反之,函数性质又直观反映在图象上,指导准确作出函数图象。

函数概念发展的历史过程

实习报告 2011年10月5日 题目函数概念发展的历史过程 作者组长:张婕组员:王笑晗,李良芳,薛兰瑞宁,严娟娟 摘要函数概念是全部数学概念中最重要的概念之一,也是数学的核心,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。本文通过对函数概念的发展与比较的研究,对函数概念的几个方面进行一些探索,分为这几个方面: 1 早期函数概念——几何观念下的函数 2 十八世纪函数概念——代数观念下的函数 3 十九世纪函数概念——对应关系下的函数 4现代函数概念——集合论下的函数 正文第一方面:早期函数概念——几何观念下的函数 在欧洲,函数这一名词,是微积分的奠基人莱布尼兹首先采用的,他在年发1692表的数学论文中,就应用了函数这一概念,不过莱布尼兹仅用函数一词表示幂。后来,在十七世纪,伽俐略在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。 第二方面:十八世纪函数概念——代数观念下的函数 1718年瑞士数学家约翰·贝努利使用变量概念在莱布尼兹函数概念的基础上,对函数概念进行了明确定义给出了不同于几何形式的函数定义:函数就是变量和常量以任何方式组成的量,并首先采用符号作为函数的记号。也就是把变量x和常量按任何方式构成的量叫“x 的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。 数学家欧拉在其著作《无穷小分析论》中,把凡是给出解析式表示的变量统称为函数。1734年,欧拉首先创造十分形象且沿用至今的符号作为函数的记号,欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍,形象,但关于函数的定义,欧拉并没有真正揭示出函数概念的实质。 第三方面: 十九世纪函数概念——对应关系下的函数 1822年傅里叶发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从

函数定义的理解

函数的定义 函数的传统定义: 设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。 我们将自变量x取值的集合叫做函数的定义域,和自变量x对应的y的值叫做函数值,函数值的集合叫做函数的值域。函数的近代定义: 设A,B都是非空的数的集合,f:x→y 是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域,显然有C含于B。 符号y=f(x)即是“y是x的函数”的数学表示,应理解为: x是自变量,它是法则所施加的对象;f是对应法则,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述; y是自变量的函数,当x为允许的某一具体值时,相应的y值为与该自变量值对应的函数值,当f用解析式表示时,则解析式为函数解析式。y=f(x)仅仅是函数符号,不是表示“y等于f 与x的乘积”,f(x)也不一定是解析式,在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等符号来表示。 对函数概念的理解函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。这样,就不难得知函数实质是从非空数集A到非空数集B的一个特殊的映射。由函数的近代定义可知,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。y=f(x)的意义是:y等于x在法则f下的对应值,而f是“对应”得以实现的方法和途径,是联系x与y的纽带,所以是函数的核心。至于用什么字母表示自变量、因变量和对应法则,这是无关紧要的。 函数的定义域(即原象集合)是自变量x的取值范围,它是构成函数的一个不可缺少的组成部分。当函数的定义域及从定义域到值域的对应法则完全确定之后,函数的值域也就随之确定了。因此,定义域和对应法则为“y是x的函数”的两个基本条件,缺一不可。只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数,这就是说: 1)定义域不同,两个函数也就不同; 2)对应法则不同,两个函数也是不同的; 3)即使是定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则。 例如:函数y=x+1与y=2x+1,其定义域都是x∈R,值域都为y∈R。也就是说,这两个函数的定义域和值域相同,但它们的对应法则是不同的,因此不能说这两个函数是同一个函数。定义域A,值域C以及从A到C的对应法则f,称为函数的三要素。由于值域可由定义域和对应法则唯一确定。两个函数当且仅当定义域与对应法则分别相同时,才是同一函数。

函数概念的发展

初中数学新课程标准解读 一、函数概念的发展 从古希腊到十七世纪末这样一个漫长的时期内,并不存在一般函数的定义,就是到了牛顿、莱布尼兹的微积分问世时,函数的一般定义仍没诞生,原因在于:数学家们一直同具体的函数打交道,对具体函数求导、积极分、讨论各种各样的问题,并没有感到定义一般函数概念的需要和动机。 "function"这个词来自于莱布尼兹,他首先用"function"表示"幂",后来他又用它表示曲线上的点的横坐标、纵坐标、切线长度、垂线长度等所有与曲线上的点有关的几何量,莱布尼兹的两次定义,正反映出函数的几何的和代数的特性。 1718年,莱布尼兹的学生约翰·贝努利继承了代数的思想,把"function"的含义固定在"解析表达式上",他说:"所谓变量的函数,就是指由这些变量和常量所组成的解析表达式"。而欧拉则继承了几何的思想,认为"function"思想指任意画出的曲线,并把这种函数叫"随意函数"。 这时出现了争论,欧拉认为函数是指任意的曲线,即任意曲线都是函数。而达朗贝尔则认为不是这样,他从解析式出发认为,只有可以用单一解析式表达的曲线才是函数,而且认为能用单一解析式表达的曲线只有连续且光滑的曲线。因而,只有连续曲线才是函数。可以看出,两位数学家争论的焦点在于曲线与解析式之间的

关系,欧拉认为他的定义更广泛,因为任意描画的曲线比任意解析式具有更广的意义,解析表达式可以描为某曲线,而任意曲线不一定有相应的解析式。达朗贝尔则认为只有连续曲线才能用唯一的解析式表达,才是函数,至于任何唯一解析式的所代表的曲线是否连续,他则没有考虑。然而,付里叶的研究使数学界大吃一惊,付里叶的结论是:"由不连续曲线给出的函数,可以用一个三角函数式表示,"并举例指出下图那样的不连续曲线虽然用 这单一的式子表示出来。 付里叶的研究表明:在解析式与曲线之间并没有不可逾越的鸿沟,通过级数可以把它们相互勾通。那种视函数为解析式的观点终于得以澄清。历史的缩影可以在学生的学习中找到,中学生把函数与解析式等同是及其普遍的。 既然函数不再要求用唯一的解析式来表示,所以,无论y是用一个式子还是用多个式子表示都无关紧要,只要对于x的每一个值,y有完全确定的值与之对应,则y就是x的函数,柯西便给出了函数如下定义:对于x每个值,如果y有完全确定的值与之对应,则y叫做x的函数。 由于认识到了解析式对于x与y的关系并无多大意义,所以黎曼和狄里克需更进一步,他们完全抛弃解析式的限制,定义了我们所常说的结论的函数定义:对于x的每个值,如果y有完全确定的值与之对应,不论x、y所建立的对应方式如何,y都叫做x的函数。

如何正确理解函数的概念

如何正确理解函数的概念 1.为学生概括和领悟函数概念搭建“脚手架” 函数概念是中学阶段最难理解的概念之一,其原因主要是:由f(x)的形式化表达方式所带来的高度抽象性;变量的概念涉及到用运动、变化的观点看待和思考问题,具有辩证思维特征;有许多下位概念(如自变量、因变量、定义域、值域、单调性、奇偶性……),是派生数学概念的强大“固着点”;具有广泛应用性,建立函数模型不仅需要具备较强的数学能力,而且与学生的人生阅历有关;等.其中最根本的还是其高度抽象性. 众所周知,越是基础性的概念,其包摄性就越强,应用范围就越广,学生从这些概念的学习中所领悟到的数学就越本质,所形成的思维方式、养成的思维习惯对学生的终身发展将具有根本性的影响.所以,对这些概念就越要强调理解的深刻性、基础的稳固性.但事情都有两面性,这些概念的理解和掌握往往难度很大,需要较长的时间,需要较多的经验积累.“是非经过故知难”,亲身经历过的事情感觉才会深刻.这些概念的教学要非常讲究从简单到综合地组织学习内容,要特别耐心地进行循序渐进的渗透和提高,要特别强调让学生经历从具体到抽象的概括过程.中学数学中,扮演这种奠基角色的概念不是很多(如数及其运算、空间观念、数形结合、向量、导数、统计观念、随机思想等),但函数概念是当之无愧的一员.为此,教材特别注意以具体例证为载体化解函数的抽象性,为学生搭建理解的平台,铺设概括的路线和阶梯,以帮助学生感悟到函数概念的“本来面目”.其中特别注重典型实例、表格和图象直观等的作用,并强调在思想方法上给予明确、具体的指导. (1)铺设概括路线.教材在简要回顾初中函数概念的基础上,以三个有真实背景的实例为载体,先从“变量说”出发,并用集合与对应的语言详细讲解第一个实例的对应关系,再引导学生通过模仿叙述后两个实例的对应关系,然后以“你能概括一下这三个实例的共同特征吗?”为引导,使学生用集合与对应语言概括实例的本质而形成“对应说”.接着,在函数的表示、函数的性质等内容中,不断强化对函数这一类特殊“对应关系”的认识,强化对函数所研究的问题和思想方法的理解.教材希望通过这样的概括路线,引领学生逐步领悟函数的本质. (2)实例的作用.在实例的选择中,我们特别在意它们的典型性和丰富性,因为我们相信这些例子在学生理解函数概念中能起到奠基性的“参照物”作用.教材在函数概念的引入、表示、性质和应用等各阶段,都借助实例为学生提供思考、探究、交流的机会,以便使学生在具体例子的支持下开展思维,形成函数概念理解活动的强大背景支撑. (3)表格、图象的作用.表格、函数图象不仅是“表示法”的一种,从学生学习的角度看,它们使抽象的函数符号形象化,为学生提供了直观的机会.例如图象的种种形象和基本性质使得学生直观地“看到”、想象到函数的定义域、值域、单调性等种种性质,看到a的取值是如何决定y=a x的特性的,看到 y=sin(2x+)什么时候取正值或负值等.所以,图象是帮助学生理解函数概念的重要载体.另外,用函数图象分析和解决问题时体现出的数形结合思想,是培养学生数学能力的重要载体. (4)思想方法的明确和具体指导.从知识分类角度看,“内容所反映的数学思想方法”属“隐性知识”,是人类在认识客观世界中的“数量关系”“空间形式”和“随机性中的规律性”的过程中产生的,

函数的起源与发展

函数的起源与发展 今天的数学大厦已有数千年历史,这是世界数代数学家不断建设完善的结果,伴随着数学思想的发展,函数概念由模糊逐渐严密,对于数学和科学来说,函数是一个最重要,最有意义的数学概念,是人类心智发展的重要标志。 ——引言 众所周知,函数概念是在集合论的基础上产生的。 设A,B是非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素?和它对应,那么就称??为从集合A到集合B的一个函 数,记作??或?。

仍然是未知的。(定义?5)这实际是“列表定义”,好像有一个“表格”,其中一栏是?x值,另一栏是与它相对应的?y值。这个定义指出了对应关系(条件)的必要性,把函数的“对应”思想表现出来,而“对应”概念正是函数概念的本质与核心。 十九世纪法国数学家柯西(?Cauchy)更明确的给出定义:有两个互相联系的变量,一个变量的数值可以在某一范围内任意变化,这样的变量叫做自变量,另一个变量的数值随着自变量的数值而变化,这个变量称为因变量,并且称因变量为自变量的函数。 直到1930年,现代的函数概念才“出炉”,若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数。 函数的应用领域是非常广泛的,几乎每个领域都有它的身影。下面来看一道千古谜题。 题目要求相当简单:只用圆规和没有刻度的直尺,作出一个正十七边形。(尺规作图) 要作正十七边形,还只能用尺规,谈何容易。然而一个数学天才只用一个晚上就解决了,他的名字就是高斯。 作图方法: 步骤一:?? ?给一圆O,作两垂直的半径OA、OB,????作C点使OC=1/4OB,????作D点使∠OCD=1/4∠OCA,?? ?作AO延长线上E点使得∠DCE= ???步骤二:?? ?作AE中点M,并以M F 点,此圆交直线OA于G4和G6两点。 ?步骤三:?? ??过G4作OA垂直线交圆O于P4 有2(cosa+cos2a+…+cos8a)=-1?? 注意到 cos15a=cos2a,cos12a=cos5a, 令x=cosa+cos2a+cos4a+cos8№a?? y=cos3a+cos5a+cos6a+cos7a???? 有:x+y=-1/2?? 又xy=(cosa+cos2a+cos4a+cos8a)(cos3a+cos5a+cos6a+cos7a)???? =1/2(cos2a+cos4a+cos4a+cos6a+…+cosa+cos15a)???? 经计算知xy=-1又有?? x=(-1+根号17)/4,y=(-1-根号17)/4?? 其次再设 x1=cosa+cos4a,x2=cos2a+cos8a??? ?y1=cos3a+cos5a,y2=cos6a+cos7a???? 故有x1+x2=(-1+根号17)/4????y1+y2=(-1-根号17)/4?? 最后,由cosa+cos4a=x1,cosacos4a=(y1)/2??

函数概念的历史发展

函数概念的历史发展 众所周知,函数是数学中一个重要概念,它几乎渗透到每一个数学分支,因此考察函数概念的发展历史及其演变过程,无疑有助于我们学生更深刻、更全面地理解函数的本职,并且从中得到有益的方法论启示。 1 函数概念的产生阶段—变量说 马克思曾认为,函数概念是源于代数中自罗马时代就已经开始的不定方程的研究,那时,伟大的数学家丢番图对不定方程的研究已有相当程度,据此,可以认为函数概念至少在那时已经萌芽。实际上作为变量和函数的朴素概念,几乎和数学源于同一时期,因为数学家在研究物体的大小及位置关系时,自然会导致通常称为函数关系的那种从属关系。但是,真正导致函数概念得以迅速发展则是在16世纪以后,特别是由于微积分的建立,伴随这一学科的产生、发展和完善,函数概念也经历了产生、发展和完善的演变过程。 哥白尼的天文学革命以后,运动成为文艺复兴时期科学家共同感兴趣的问题,到了16世纪,对于运动的研究已变成自然科学的中心问题。在这一时期,函数概念在不同科学家那里有着不同形式的描述。在伽利略的《两门新科学》一书中,几乎从头到尾包含着函数的思想,他用文字和比例的语言表述函数关系。例如,他提出:“两个等体积圆柱体的面积之比,等于它们高度之比的平方根。”“两个侧面积相等的正圆柱,其体积之比等于它们高度之比的反比。”他又说:“从静止状态开始以定常加速度下降的物体,其经过的距离与所用时间的平方成正比。”这些描述非常清楚地表明伽利略已涉及并讨论变量和函数,但他并没有做出一般的抽象,并且也没有把文字叙述表示为符号形式。 几乎与此同时,许多数学家,如托里拆利、瓦里斯、笛卡儿、牛顿、莱布尼兹等,从不同角度对函数进行了不同程度的研究.有的数学家是把一些具体的函数看成曲线进行研究,尽管当时还没有建立实连续的概念,但数学家却默认曲线都是连续的。托里拆利就曾对曲线()0≥ y ex进行过研究;而瓦里斯在他的《动学》中研究过正弦曲 =x ae 线,并注意到了这一函数的周期性。麦尔先纳研究了旋轮线等等,总的来讲,当时关于对数曲线和指数曲线的研究比较普遍。在解析几何产生前后,人们除了已认识的代数曲线外,还确定了相当多的超越曲线。笛卡儿在其著作中提到了几何曲线与机械曲线的区别并由此引出代数曲线(函数)和超越曲线(函数)的区别。

函数的定义域及求法讲解

函数 一、函数的定义域及求法 1、分式的分母≠0;偶次方根的被开方数≥0; 2、对数函数的真数>0;对数函数的底数>0且≠1; 3、正切函数:x ≠kπ+ π/2 ,k∈Z;余切函数:x ≠kπ,k ∈Z ; 4、一次函数、二次函数、指数函数的定义域为R; 5、定义域的相关求法:利用函数的图象(或数轴)法;利用其反函数的值域法; 6、复合函数定义域的求法:推理、取交集及分类讨论. [例题]: 1、求下列函数的定义域

3、已知函数y=lg(mx2-4mx+m+3)的定义域为R,求实数m的取值范围.[解析]:[利用复合函数的定义域进行分类讨论] 当m=0时,则mx2-4mx+m+3=3,→原函数的定义域为R; 当m≠0时,则mx2-4mx+m+3>0, ①m<0时,显然原函数定义域不为R; ②m>0,且△=(-4m)2-4m(m+3)<0 时,即0<m<1,原函数定义域为R, 所以当m∈[0,1) 时,原函数定义域为R.

4、求函数y=log x + 1 (x≥4) 的反函数的定义域. 2 [解析]:[求原函数的值域] 由题意可知,即求原函数的值域, ∵x≥4,∴log2x≥2∴y≥3 所以函数y=log2x + 1 (x≥4) 的反函数的定义域是[3,+∞). 5、函数f(2x)的定义域是[-1,1],求f(log x)的定义域. 2 [解析]:由题意可知2-1≤2x≤21→f(x)定义域为[1/2,2] → 1/2≤log2x≤2→√ ̄2≤x≤4. x)的定义域是[√ ̄2,4]. 所以f(log 2 二、函数的值域及求法 1、一次函数y=kx+b(k≠0)的值域为R; 2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时, y≤-△/4a ; 3、反比例函数的值域:y≠0 ; 4、指数函数的值域为(0,+∞);对数函数的值域为R; 5、正弦、余弦函数的值域为[-1,1](即有界性);正切余切函数的值域为R; 6、值域的相关求法:配方法;零点讨论法;函数图象法;利用求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法. [例题]::求下列函数的值域

函数的概念解读

函数的概念 一、教材分析 函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。 本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。 二、重难点分析 函数的概念既是本节课的重点,也应该是本章的难点。 三、学情分析 1、有利因素:一方面学生在初中已经学习了变量观点下的函数定义,并具体研 究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。 2、不利因素:函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间 对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度。 四、目标分析 1、理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义 域、值域。 2、通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻 辑思维、建模等方面的能力。 3、通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越 的创新品质。

函数概念的形成与发展

函数概念的发展简史 1、函数概念的萌芽时期(自然函数、代数函数时期)[1] 函数思想是随着数学开始研究事物的运动变化而出现的。而事实上,早期的数学是不研究事物的运动变化的。古希腊科学家亚里士多德曾经认为,数学研究的是抽象的概念,而抽象的概念来自事物静止不动的属性。例如,数学中的数、线、形等数学对象都不包括运动,运动变化是物理学研究的对象等等。受其影响,直至14世纪,数学家们才逐渐开始研究物体的运动问题。到了16世纪,由于实践的需要,自然科学开始转向对运动的研究,自然中各种变化和各种变化着的物理量之间的关系也就成为数学家关注的对象。伽利略就是最早开展这方面研究的科学家之一,在他的著作里多处使用比例的语言表达了量与量之间的依赖关系。例如,从静止状态自由下落的物体所经过的距离与所用时间的平方成正比,这正是函数概念所表达的思想意义。 16世纪法国数学家笛卡尔在研究曲线问题时,发现了量的变化及量与量之间的依赖关系,并在数学中引进了变量思想,在他的《几何学》中指出:所谓变量是指:“不知的和未定的量”,成为数学发展的里程碑,也为函数概念的产生奠定了思想基础。直到17世纪下半期,牛顿—莱布尼兹的微积分问世时,数学上还没有明确的函数概念。把“函数”(function)一词最早用作数学术语的是莱布尼兹,当时,莱布尼兹用“函数”(function)一词表示幂,如都叫函数。后来又用函数表示任何一个随着曲线上的点变动而变动的量。例如曲线上的点的横坐标、纵坐标、切线的长度、垂线的长度等等。从这个定义看出,莱布尼兹利用几何概念,在几何的范围内揭示了某些量之间的依存关系。可以说出现了函数概念的一点端倪,但函数的一般定义仍没有诞生。原因在于:数学家们一直在同具体的函数打交道,对具体函数或求导,或积分,讨论各种各样的具体问题,并没有感到有定义一般函数概念的需要。\ 2、函数概念的初步形成(解析函数时期)[2] 18世纪微积分的发展促进了函数概念“解析定义”的发展。瑞士著名数学家约翰·贝努利在研究积分计算问题时,提出:积分工作的目的是在给定变量的微分中,找出变量本身之间的关系。而在对待“找出变量本身之间的关系”的表示上,显然用莱布尼兹定义的函数表示是很困难的。于是,在1718年约翰·贝努利从解析的角度,把函数定义为:“变量的函数就是由某个变量及任意一个常数结合而成的量。”意思是凡变量和常量构成的式子都叫做的函数。贝努利所强调的函数要用公式来表示。后来,数学家觉得不应该把函数概念局限在只能用公式来表达上,只要一些变量变化,另一些变量能随之而变化就可以,至于这两个变量的关系是否要用公式来表示,则不作为判别函数的标准18世纪,瑞士数学家欧拉在他的《无穷小分析引论》中进一步推广了他老师约翰·贝努利的定义:“一个变量的函数是由变量和一些数或常量以任何一种方式构造的解析式”。并且早在1734年欧拉就已经用表示的函数,这个函数符号至今仍在沿用。1755年,欧拉又在他的《微积分原理》的序言中把函数定义为:“如果某些变量以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”在欧拉的这个定义中,已经不强调函数要用公式表示了。由于函数不一定用公式来表示,欧拉曾把画在坐标系上的曲线也叫函数。他认为:“函数是随意画出的一条曲线。”欧拉用“解析表达式”代替了约翰的“任意形式”,明确地表达了变量之间相互依赖的变化关系,这促进我们对函数概念的认识在严密性上前进了一大步。但是,当时有些数学家对于不用公式来表示函数感到很不习惯,有的数学家甚至抱着怀疑的态度。他们把能用公式表示的函数叫“真函数”,把不能用公式表示的函数叫“假函数”。。 3、函数概念的确立(变量函数)[3] 在对前人函数概念的认识与发展的基础上,1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其它变数的值也可以随着确定时,则将最初的变数叫做自变量,其它各变数叫做函数”。在柯西的函数定义中,首先引入了“自变量”一词。按照这个定义,只要有自变量的一个值可以确定的相应值,则就是的函数。显然,这个函数定义比以往的要广泛的多。 1834年,德国数学家罗巴切夫斯基进一步提出函数定义:“x的函数是这样一个数,它对于每一个x都有确定的值并且随着x一起变化。函数值可以由解析式给出,也可以由一个条件给出,这个条件提

函数概念的学习与理解

函数概念的学习与理解 丹阳五中 吴延俊 摘要:函数概念是重要的数学概念,学好函数概念是应用函数知识解决问题的前提.函数的传统定义与近代定义叙述不同,但实质都是从非空数集A 到非空数集B 的一个特殊的对应;函数概念包括定义域、值域及对应法则三个要素,缺一不可;映射从集合论的角度进一步定义函数,学习映射也有利于函数概念的学习. 一、函数定义 (一)基本定义 定义1:设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说y 是x 的函数,x 叫自变量,与x 值对应的y 值叫函数值. 定义2 :设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 值对应的y 值叫做函数值,函数值的集合{}()|f x x A ∈叫做函数的值域.显然,值域是集合B 的子集. (二)定义分析 定义1是函数的传统定义,定义2是函数的近代定义.两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合的观点出发.函数的实质都是从非空数集A 到非空数集B 的一个特殊的对应. 举例:(1)正比例函数3y x =.(2)反比例函数1y x = 解析:(1)是对于每一个实数x ,都有惟一的实数y 与其对应,y 是x 的3倍;非空数集A 、B 是实数集R ,对应关系f 是乘3. (2)对每个不等于0的实数,都有惟一的实数y 与其对应,y 是x 的倒数; 非空集合A 是不等于0的全体实数组成的集合{}|0x R x ∈≠,非空集合B 可以是实数集R (只要B 包含集合{}|0y y ≠即可),对应关系f 是求倒数. 从以上两个例子中,可以进一步明确函数的两个定义本质上是相同的,只是叙述方式略有不同.符号()y f x =表示的是“y 是x 的函数”的数学表示,理解为:x 是自变量,它是对应关系所施加的对象;f 是对应关系,它可以是一个或几个解析式,可

数学函数的发展史

总课题:数学的发展史 子课题:函数的发展史 一、组长:李 组员:刘田仁姬孙二、指导老师:张

三、班级:高一12班 四、成员简介: 李:性格开朗、刻苦认真担任组长 刘:喜欢英语、大方担任搜集 仁:喜欢信息、刻苦认真担任写作 姬:开朗大方、热情担任搜集 孙:爱好动漫、画画性格外向担任整理 田:开朗大方刻苦认真担任整理 五、选题的原因: 开阔视野,增长见识。提高我们的数学修养‘可以使我们更好的融合在一起,加强团结,了解数学。 六:研究计划: 共六人:姬刘担任搜集 李仁担任写作 孙田整理资料 七:研究成果: 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分 有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用. (一)1.早期函数概念——几何观念下的函数 十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1673年前后 (Descartes,法,1596-1650)在他的中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期、建立时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。 马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源.

函数概念中对应法则

函数概念中对应法则 【知识概述】函数知识是形成函数思想、数性结合与等价变换等数学思想方法的基础。函数是高中数学最主要的概念之一,更是高中数学的主要内容,同时又是高考重点考查的对象。要切实掌握函数的有关概念,并会用定义证明函数的性质。而函数概念的掌握关键是对其中的对应法则的理解和把握。 通常教师依据课本内容,先介绍映射,然后用其来定义函数。这从表面上看似乎解决了问题,其实则不然。因为映射中的对应法则即对应关系并未被学生所掌握。或者说学生对书上的图表映射例子能接受,但不深刻,不能把其运用到抽象的函数解析式中来.这一点往往被教师忽略,在以后的学习中将会产生深远的影响。这当中有一个大的思维跨度,能否越过这个槛,将会对学生高中数学学习有着重要影响。 一般有经验的老师都通过以下的方式来理解函数中的对应关系 第一种方式,教师只停留在书本所给的几个直观例子上,或者简单的找些类似例子,特别是集合文示图的例子。虽然有的教师也枚举诸如指数、开算术根、二次函 数等例子(22 36,y x y x y ==+=如①,②③用“定义”来进行文字解说,试着让学生通过几个不同函数中的对应法则的“定义”嵌套,就能“整合”函数对应法则,从而“内消”掌握该知识点。但却因没有进一步对函数对应法则进行分析,易导致学生对该知识点的理解不够到位,或者说是笼统的,还是停留在“定义”字面上。这将会制约学生对后继课程的学习。 第二种方式,函数的对应法则被看作“加工厂”,这种观点是把函数中自变量的取值看作“原材料”,而把函数值看作“产品”。既形象又直观,类比贴切,但还不够全面。因为用这种观点不好做“原材料”是“初级产品”的题。也即是“自变量位置”不是某个单一字母(即不是“自变量”本身)的情形(其系数与指数都不是1时,或者说是某个字母的非正比例中系数是1的表达式时)。在处理迭代时学生会有较大障碍。【例如:①()()21,21f x x f t t =+=+ 是同一函数吗?②()2132,f x x +=-

函数的概念(第一课时)解读

函数的概念(第一课时) ------郑州外国语学校乔慧娜【三维目标】 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数概念,培养学生观察问题,提出问题的探究能力,进一步培养学生学习数学的兴趣和抽象概括能力;启发学生用函数模型表述和解决现实世界中蕴含的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识. 2.掌握构成函数的三要素,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性. 【教学重点】正确理解函数的概念,体会函数是描述变量之间的依赖关系的重要数学模型. 【教学难点】函数概念及符号y=f(x)的理解. 【教学方法】诱思教学法 【教学过程】 Ⅰ.创设情景引入课题 北京时间2007年10月24日18时05分,万众瞩目的“嫦娥一号”探月卫星成功发射,在“嫦娥一号”飞行期间,我们时刻关注着“嫦娥一号”离我们的距离随时间是如何变化的,数学上用函数来描述这种运动变化中的数量关系. 在初中已学习过函数的定义. 首先请同学们复习回顾初中学习的函数的定义: 设在某一变化过程中有两个变量x和y,如果对于每一个x值,y都有唯一的值和它对应,那么就说y是x的函数,x叫自变量,y叫因变量. 函数的定义从运动变化的观点描述了变量之间的依赖关系. Ⅱ.探索研究 上一章我们已学习过集合,并且知道集合是现代数学的基本语言,能否用集合和对应的语言来描述函数?函数又有哪些构成要素呢?将是本节课探讨的主要内容. 一、实例分析 (1)一枚炮弹发射后,经过26s落到地面击中目标. 炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是:h=130t-5t2. (﹡) 你能得出炮弹飞行5秒、10秒、20秒时距地面多高吗?其中,时间t的变化范围是什么?炮弹距离地面高度h的变化范围是什么? 炮弹距离地面的高度h随时间t的变化而变化,对于在(0,26)范围内变化

函数概念的发展历史

在公元前十六世纪之前,数学上占统治地位的是常量数学,其特点是用孤立\静止的观点去研究食物,具体的函数在数学中比比皆是,但没有一把的函数概念,十六世纪,随着欧洲过度到新的资本主义生产方式,迫切需要天文知识和力学原理,当时,自然科学研究的中心转向对 运动,对各种变化过程和变化着的梁之间依赖关系的研究,数学研究也从常量转向了变量数学,数学的这个转折主要是有法国数学家笛卡尔完成的,他在<几何学>一文中首先引入变量思想,称为”未知和未定的量”,同时引入了两个变量之间的相依关系,这便是函数概念的萌芽函数是数学中最重要的基本概念之一,它作为变量数学时期的开端,同变欲概念几乎同 时步入数学领域,至今已有三百余年历史.长期以来,经过众多数学家的探索和改进,函数概念从萌芽到成熟,反映了数学本身的日益进步和不断完善.回顾函数概念的演变历史.对加深函 数概念的理解大有裨益,同时对了解数学概念的物质性,说明事物是变化运动,相互联系的都 有了具体的实例.函数概念的演变大体上可分为五个阶段 函数概念是中学数学重要概念之一,从常量数学到变量数学的转变,是从函数概念的系统学习开始的。本文从自17世纪下半叶到现在300年来函数概念的纵向历史研究 函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。 函数概念的萌芽,可以追溯到古代对图形轨迹的研究,随着社会的发展,人们开始逐渐发现,在所有已经建立起来的数的运算中,某些量之间存在着一种规律:一个或几个量的变化,会引起另一个量的变化,这种从数学本身的运算中反映出来的量与量之间的相互依赖关系,就是函数概念的萌芽。 函数概念的发展历史 1.早期函数概念——几何观念下的函数 十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。 1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。 1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用“流量”来表示变量间的关系。 2.十八世纪函数概念──代数观念下的函数 1718年约翰·柏努利(Johann Bernoulli ,瑞,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。 1755,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。” 18世纪中叶欧拉(L.Euler,瑞,1707-1783)给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。”他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。不难看出,

相关文档
最新文档