超高速加工技术
合集下载
(三)先进制造工艺3-超高速加工技术

of Mining & Technology
(2)汽车工业领域
高速加工在汽车生产领域的应用主要体现在模具和零件 两个方面。 加工两个方面。应用高速切削加工技术可加工零件的范围相 当广,其典型零件包括:伺服阀、各种泵和电机的壳体、 当广,其典型零件包括:伺服阀、各种泵和电机的壳体、电机 转子、汽缸体和模具等。汽车零件铸模以及内饰件注塑模的制 转子、汽缸体和模具等。 造正逐渐采用高速加工。 造正逐渐采用高速加工。
China University of Mining & Technology
China University of Mining & Technology
2、超高速加工技术的应用
(1)航空航天工业领域
高速加工在航空航天领域应用广泛,如大型整体结构件、 高速加工在航空航天领域应用广泛,如大型整体结构件、 薄壁类零件、微孔槽类零件和叶轮叶片等。 薄壁类零件、微孔槽类零件和叶轮叶片等。国外许多飞机及发 动机制造厂已采用高速切削加工来制造飞机大梁、肋板、 动机制造厂已采用高速切削加工来制造飞机大梁、肋板、舵机 壳体、雷达组件、热敏感组件、钛和钛合金零件、 壳体、雷达组件、热敏感组件、钛和钛合金零件、铝或镁合金 压铸件等航空零部件产品。现代飞机构件都采用整体加工技术, 压铸件等航空零部件产品。现代飞机构件都采用整体加工技术, 即直接在实体毛坯上进行高速切削,加工出高精度、 即直接在实体毛坯上进行高速切削,加工出高精度、高质量的 铝合金或钛合金等有色轻金属及合金的构件, 铝合金或钛合金等有色轻金属及合金的构件,而不再采用铆接 等工艺,从而可以提高生产效率,降低飞机重量。 等工艺,从而可以提高生产效率,降低飞机重量。
China University of Mining & Technology
(2)汽车工业领域
高速加工在汽车生产领域的应用主要体现在模具和零件 两个方面。 加工两个方面。应用高速切削加工技术可加工零件的范围相 当广,其典型零件包括:伺服阀、各种泵和电机的壳体、 当广,其典型零件包括:伺服阀、各种泵和电机的壳体、电机 转子、汽缸体和模具等。汽车零件铸模以及内饰件注塑模的制 转子、汽缸体和模具等。 造正逐渐采用高速加工。 造正逐渐采用高速加工。
China University of Mining & Technology
China University of Mining & Technology
2、超高速加工技术的应用
(1)航空航天工业领域
高速加工在航空航天领域应用广泛,如大型整体结构件、 高速加工在航空航天领域应用广泛,如大型整体结构件、 薄壁类零件、微孔槽类零件和叶轮叶片等。 薄壁类零件、微孔槽类零件和叶轮叶片等。国外许多飞机及发 动机制造厂已采用高速切削加工来制造飞机大梁、肋板、 动机制造厂已采用高速切削加工来制造飞机大梁、肋板、舵机 壳体、雷达组件、热敏感组件、钛和钛合金零件、 壳体、雷达组件、热敏感组件、钛和钛合金零件、铝或镁合金 压铸件等航空零部件产品。现代飞机构件都采用整体加工技术, 压铸件等航空零部件产品。现代飞机构件都采用整体加工技术, 即直接在实体毛坯上进行高速切削,加工出高精度、 即直接在实体毛坯上进行高速切削,加工出高精度、高质量的 铝合金或钛合金等有色轻金属及合金的构件, 铝合金或钛合金等有色轻金属及合金的构件,而不再采用铆接 等工艺,从而可以提高生产效率,降低飞机重量。 等工艺,从而可以提高生产效率,降低飞机重量。
China University of Mining & Technology
超高速加工技术

应用案例二:汽车发动机缸体加工
总结词
提高缸体质量和加工效率
详细描述
在汽车发动机缸体加工中,超高速加工技术能够提高缸体的加工效率和精度,同时降低废品率。通过高速旋转的 刀具和高效的切削液系统,可以快速去除材料,减少切削力和热量的产生,提高缸体的表面质量和耐久性。
应用案例三:模具钢材料加工
总结词
提高模具寿命和加工效率
发展趋势
随着新材料、新工艺的不 断涌现,超高速加工技术 正朝着智能化、绿色化、 复合化等方向发展。
主题重要性
促进制造业转型升级
满足市场需求
超高速加工技术的应用有助于提高生 产效率、降低成本,推动制造业向智 能化、柔性化、绿色化方向转型升级。
随着市场对产品品质和性能要求的不 断提高,超高速加工技术的应用能够 满足消费者对高品质产品的需求。
超高速加工技术能够大幅提高航空航天材料的加工效率,缩 短生产周期,降低制造成本,同时保证零部件的加工精度和 质量。
汽车制造
汽车制造领域需要大量高精度零部件 ,超高速加工技术能够快速、准确地 加工出汽车发动机缸体、缸盖、变速 器壳体等复杂零部件。
超高速加工技术能够提高汽车零部件 的加工效率,降低生产成本,同时提 高零部件的耐磨性、耐腐蚀性和疲劳 强度等性能。
数字化
超高速加工技术将向数字化方向发展, 实现数字化的加工模型和加工过程的 仿真与优化。
05
超高速加工技术的实际案例
应用案例一:航空叶片加工
总结词
提高加工效率,降低生产成本
详细描述
超高速加工技术应用于航空叶片加工,能够显著提高加工效率,缩短生产周期, 降低生产成本。通过高转速的刀具和精确的数控系统,可以快速、准确地完成 叶片的切削和磨削,提高表面质量和精度。
_超高速加工技术

2、超高速主轴系统动态特性及热态特性研究:动刚度、固有 频率等参数的影响。 3、超高速主轴系统的润滑和冷却技术研究:润滑充分问题、 冷却效果问题。 4、超高速主轴系统多目标优化设计、虚拟设计技术研究。
第四节 超高速加工进给单元制造技术
超高速加工进给单元是超高速加工机床的重要组成部分。 一、超高速加工进给单元的基本要求: 1、要求具有大的加、减速度:在瞬时达到高速,瞬时准停。 2、要求具有搞的定位精度:能精确控制零件的尺寸精度。 二、超高速加工进给单元的关键技术: 1、高速位置环芯片研制;
4、超高速加工中工件状态的测试技术; 5、超高速加工中自适应控制技术; 6、超高速加工中智能控制技术。
第五节 超高Βιβλιοθήκη 加工测试技术从某种意义上讲,超高速加工测试技术是超高速加工得到应 用的技术关键。 一、超高速加工测试技术的概念: 主要是指在超高速加工过程中,通过传感、分析、信号处理 等,对超高速机床及系统的状态进行实时在线监测和控制的监测 技术。 监测主要基于对切削力、声发射、切削功率和温度等信息参 数检测,来监测加工状态。 二、超高速加工测试的关键技术: 1、基于监控参数的在线检测技术; 2、超高速加工的多传感器融合检测技术; 3、超高速加工机床中各单元系统功能部件的测试技术;
3、超高速进给单元制造技术; 4、超高速加工用刀具和磨具材料; 5、超高速机床支承; 6、超高速加工测试技术。
二、超高速切削机理: 1、萨洛蒙超高速切削理论: 三个切削速度区: ⑴ 常规的切削速度区:现行的切削加工速度范围; ⑵ 不能切削区:此区切削速度下,切削温度过高,刀具不能 承受; ⑶ 高速切削区:当切削速度达到某一数值后,切削温度不再 升高,反而随切削速度继续增加,切削温度呈下降趋势,切削 温度降到刀具能承受的切削速度时,即为高速切削的最低速度。 试验表明,萨洛蒙超高速切削理论并不适用于所有的加工 材料,有些材料在超高速切削时不存在不能切削区。 2、超高速磨削最大切屑厚度hmax理论: 在保持其它参数不变,仅增大磨削速度情况下, hmax会减 小,每个磨削刃上的作用切削力也会减小。
超高速超精密加工技术主要内容

加工方法及机理研究 刀具、 刀具、磨具的研究 加工装备技术研究 测量技术研究
超精密加工技术的应用 超精密加工技术的发展趋势
作 业
(1)超高速、超精密加工技术二者选择其一。 超高速、超精密加工技术二者选择其一。 (2)按照上述提纲要求查阅文献,然后归纳总结写出 按照上述提纲要求查阅文献, 文献综述” “文献综述”。 (3)要求条理清晰,内容精练,3000~5000字。 要求条理清晰,内容精练,3000~5000字 (4)必需手写,不能打印。 必需手写,不能打印。 (5)该作业作为本课程平时成绩的一部分,占15%。 该作业作为本课程平时成绩的一部分, 15%。
超高速超精密加工技术主要内容
一 超高速加工技术
超高速加工技术的内涵 超高速加工技术的关键技术(重点) 超高速加工技术的关键技术(重点)
加工机理研究 主轴单元制造技术研究 进给单元制造技术研究 刀具、 刀具、磨具研究
Байду номын сангаас
超高速加工技术的应用 超高速加工技术的发展趋势
二 超精密加工技术
超精密加工技术的内涵 超精密加工技术的关键技术(重点) 超精密加工技术的关键技术(重点)
第三章先进制造工艺技术(超高速加工)

➢ 虽然切削深度和厚度小,但主轴转速高,进给速度快,单 位时间内的金属切除量反而增加了,由此加工效率也提高 了。
➢ 将粗加工、半精加工、精加工合为一体,在一台机床上完 成,减少了机床台数,避免由于多次装夹使精度产生误差。
➢ 可加工高硬度、难加工材料(62左右),可以钻ø1以下的小 孔。
➢ 加工时间短,经济性能好。
内装式同轴电动机驱动优点
➢主轴是电机的转子,定子装入主轴套筒内, 取消了传统的电机经齿轮和皮带传动主轴的 结构,减少了振动,增加了可靠性,
➢可获得高转速和高的加(减)角速度,转速达到 0~42000,甚至更高。
➢结构简化,造价下降,精度和可靠性提高。 ➢噪声、振动源消除,主轴自身热源消除。 ➢回转精度高,摩擦振动小, ➢主轴箱成为紧凑、独立、方便移动的部件,
➢ 硬的、难切削的材料,如耐热不锈钢等。
五、超高速加工技术发展趋势
超高速切削的发展趋势: 高效高速化; 实用廉价化; 复合化等
超高速磨削技术的发展趋势: 高柔性自动化系统+超硬磨料磨具+各种高速高
效磨削技术。
超高速加工技术关键技术
关键技术: 超高速切削、磨削机理; 超高速主轴单元制造技术; 超高速加工进给单元制造技术; 超高速加工用刀具、磨具; 超高速加工机床支承及辅助单元制造技术; 超高速加工测试技术。
1、超高速切削、磨削机理
随着切削线速度的增加,温度及刀具磨损会剧烈增加,当 切削线速度达到超过某临界值时,切削温度及切削力会减 小,然后又随着切削速度的增加而急剧增加
2、 超高速主轴单元制造技术
主轴的驱动方式 电动机通过带传动:变频电机,电机经精密动
平衡,置于单独地基,柔软丝质传动带。 (优点:可隔离电机振动;缺点:布置不方 便) 电动机通过柔性联轴器驱动:电机、主轴在同 一轴线上,变频电机,电机经精密动平衡, 柔性联轴器联结。(优点:结构紧凑,回转 精度高;缺点:轴向尺寸增加,机床尺寸增 加) 内装式同轴电动机驱动:电机轴即机床主轴,
➢ 将粗加工、半精加工、精加工合为一体,在一台机床上完 成,减少了机床台数,避免由于多次装夹使精度产生误差。
➢ 可加工高硬度、难加工材料(62左右),可以钻ø1以下的小 孔。
➢ 加工时间短,经济性能好。
内装式同轴电动机驱动优点
➢主轴是电机的转子,定子装入主轴套筒内, 取消了传统的电机经齿轮和皮带传动主轴的 结构,减少了振动,增加了可靠性,
➢可获得高转速和高的加(减)角速度,转速达到 0~42000,甚至更高。
➢结构简化,造价下降,精度和可靠性提高。 ➢噪声、振动源消除,主轴自身热源消除。 ➢回转精度高,摩擦振动小, ➢主轴箱成为紧凑、独立、方便移动的部件,
➢ 硬的、难切削的材料,如耐热不锈钢等。
五、超高速加工技术发展趋势
超高速切削的发展趋势: 高效高速化; 实用廉价化; 复合化等
超高速磨削技术的发展趋势: 高柔性自动化系统+超硬磨料磨具+各种高速高
效磨削技术。
超高速加工技术关键技术
关键技术: 超高速切削、磨削机理; 超高速主轴单元制造技术; 超高速加工进给单元制造技术; 超高速加工用刀具、磨具; 超高速加工机床支承及辅助单元制造技术; 超高速加工测试技术。
1、超高速切削、磨削机理
随着切削线速度的增加,温度及刀具磨损会剧烈增加,当 切削线速度达到超过某临界值时,切削温度及切削力会减 小,然后又随着切削速度的增加而急剧增加
2、 超高速主轴单元制造技术
主轴的驱动方式 电动机通过带传动:变频电机,电机经精密动
平衡,置于单独地基,柔软丝质传动带。 (优点:可隔离电机振动;缺点:布置不方 便) 电动机通过柔性联轴器驱动:电机、主轴在同 一轴线上,变频电机,电机经精密动平衡, 柔性联轴器联结。(优点:结构紧凑,回转 精度高;缺点:轴向尺寸增加,机床尺寸增 加) 内装式同轴电动机驱动:电机轴即机床主轴,
超高速加工技术

(2)汽车制造。
1
2
3
4
钻孔 表面倒棱 内侧倒棱 铰孔
高速钻孔 表面和内侧倒棱
专用机床 5轴×4工序 = 20轴(3万件/月)
刚性(零件、孔数、孔径、孔型固 定不变)
高速加工中心 1台1轴1工序(3万件/月)
柔性(零件、孔数、孔径、 孔型可变)
图12 汽车轮毂螺栓孔高速加工实例(日产公司)
(3)模具制造。
b)高速模具加工的过程
图14 两种模具加工过程比较
生产剃须刀的石墨电极
生产球形柄用的铜电极
图15 高速切削加工电火花加工用工具电极
(4)难加工材料领域。硬金属材料(HRC55~62),可 代替磨削,精度可达IT5~IT6级,粗糙度可达0.2~1um。
(5)超精密微细切削加工领域。
粗铣整体铝板; •精铣去口; •钻680个直径为3mm的小孔。 时间为32min。
在机床的主轴上,定子安装在主轴单元的壳体中,采用水冷 或油冷。精度高、振动小、噪声低、结构紧凑。
高速加工技术的发展与应用
图5 HSM600U型数控五轴高速加工中心
生产厂家:瑞士Mikron 主轴转速:最高42000 rpm
主轴功率:13 KW 进给速度:最高40 m / min
定位精度:0.008 mm
重复定位精度:0.005mm
图6 HSM 系列高速五轴联动小型立式加工中心
图7 HSM800 图9 HSM400
• Bremen大学在高效深磨的研究方面取得了世界公 认的高水平成果,并积极在铝合金、钛合金、铬镍 合金等难加工材料方面进行高效深磨的研究。
近年来,我国在高速、超高速加工的各关键领域 (如大功率高速主轴单元、高加减速直线进给电机、 陶瓷滚动轴承等方面)也进行了较多的研究并有相应 的研究成果。
超高速加工技术ppt课件

。随着数控机床、加工中心和柔性制造系统的应 用,使机械加工的辅助工时大大缩短。在这种情 况下,辅助工时在生产过程中占的比重已经较小 ,所以不能通过一味的减小辅助工时来提高生产 率。而切削工时占了总工时的主要部分,成为主 要矛盾,只有大幅减少切削工时,提高切削速度 和进给速度等,才能大幅提高生产率。
概述 • 超高速加工技术的历史背景
超高速加工技术的应用
高速切削的应用领域
• 航空航天工业轻合金的加工:飞机上的零件通常 采用“整体制造法”,其金属切除量相当大〔一 般在70%以上),采用高速切削可以大大缩短切 削时间。
超高速加工技术的应用
• 美国波音公司的F15战斗机两个方向舵之间的气动减速板 以前需要500多个零件装配而成,制造一个需要交货期为3 个月;而现在应用高速切削技术直接在实体铝合金毛坯上 铣削加工出来交货期只需要几天时间。
超高速加工技术的应用
高速切削的应用领域
✓难加工材料的加工〔如:Ni基高温合金和Ti合金) ✓ 纤维增强复合材料加工 ✓ 精密零件加工 ✓ 薄壁易变形零件的加工
3.2 超高速加工技术
• 概述 • 超高速加工技术的机理及特征 • 超高速加工技术的应用 • 超高速加工技术的相关技术
超高速加工技术的相关技术
概述
• 超高速加工技术的内涵和范围 • 超高速加工技术是指采用超硬材料刀具磨具和能
可靠地实现高速运动的高精度、高自动化、高柔 性的制造设备,以极大地提高切削速度来达到提 高切除率、加工精度和加工质量的现代制造加工 技术。
概述
内涵
高速切削是一个相对概念,是相对常规切削而言,用较高
的切削速度对工件进行切削。一般认为应是常规切削速度的
超高速加工技术的发展现状和趋势
• 超高速加工技术的发展趋势 • 超高速加工技术的发展趋势应符合加工中心或
概述 • 超高速加工技术的历史背景
超高速加工技术的应用
高速切削的应用领域
• 航空航天工业轻合金的加工:飞机上的零件通常 采用“整体制造法”,其金属切除量相当大〔一 般在70%以上),采用高速切削可以大大缩短切 削时间。
超高速加工技术的应用
• 美国波音公司的F15战斗机两个方向舵之间的气动减速板 以前需要500多个零件装配而成,制造一个需要交货期为3 个月;而现在应用高速切削技术直接在实体铝合金毛坯上 铣削加工出来交货期只需要几天时间。
超高速加工技术的应用
高速切削的应用领域
✓难加工材料的加工〔如:Ni基高温合金和Ti合金) ✓ 纤维增强复合材料加工 ✓ 精密零件加工 ✓ 薄壁易变形零件的加工
3.2 超高速加工技术
• 概述 • 超高速加工技术的机理及特征 • 超高速加工技术的应用 • 超高速加工技术的相关技术
超高速加工技术的相关技术
概述
• 超高速加工技术的内涵和范围 • 超高速加工技术是指采用超硬材料刀具磨具和能
可靠地实现高速运动的高精度、高自动化、高柔 性的制造设备,以极大地提高切削速度来达到提 高切除率、加工精度和加工质量的现代制造加工 技术。
概述
内涵
高速切削是一个相对概念,是相对常规切削而言,用较高
的切削速度对工件进行切削。一般认为应是常规切削速度的
超高速加工技术的发展现状和趋势
• 超高速加工技术的发展趋势 • 超高速加工技术的发展趋势应符合加工中心或
超高速加工技术 2

粗加工
传统加工方法 精加工
高速切削 少量手工精修
手工精修
加工时间 100 % 图 采用高速加工缩短模具制作周期(日产汽车公司)
精选课件
12
电极制造
1毛坯 → 2粗铣 → 3半精铣 → 4热处理 →5电火花加工→6精铣→7手工磨修
a)传统模具加工的过程
1硬化毛坯→2粗铣→3半精铣→4精铣→5手工磨修 b)高速模具加工的过程
超高速加工技术
超高速加工的基本概念 超高速加工的内涵
高速加工切削速度的范围
超高速加工的特点
超高速加工的应用
超高速加工的关键技术
高速磨削加工精选课件
1
超高速加工的基本概念
高速加工技术:
采用超硬材料的刀具和磨具,能可靠地实现高速运动的自 动化制造设备,极大地提高材料的切除率,并保证加工精度和 加工质量的现代制造加工技术。
精物理学家萨洛蒙(Carl Salomon)博士于1931年提出的著名切削理 论认为:一定的工件材料对应有一个临界切 削速度,在该切削速度下其切削温度最高。
在常规切削速度范围内,切削温度温度 随着切削速度的增加而提高。在切削速度达 到临界切削速度后,随着切削速度的增大切 削温度反而下降。
➢工艺系统振动小 在超高速加工中,由于机床主轴转
速很高,激励振动的频率远离机床固有振动频率,因此
可使工艺振动减小,提高加工质量。
精选课件
8
超高速加工的特点
➢ 高精度 切削激振频率远高于机床系统固有频率,加 工平稳、振动小;
➢ 热变形小 温升不超过3ºC,90%切削热被切屑带走;
A为高速切削加工时的热传导过程 B为传统加工的热传导过程
◎钛(Ti):100-1000m/min
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4讲 高速加工技术
本节要点
高速加工的概念与特征 高速加工的切削速度范围 高速加工的切削理论 高速切削加工的优点和应用 高速切削加工的关键技术 高速磨削加工
高速加工的概念与特征
高速加工技术: 采用超硬材料的刀具和磨具,能可靠地实现高速运动的自
动化制造设备,极大地提高材料的切除率,并保证加工精度和 加工质量的现代制造加工技术。
图8 HSM600
加工极高表面光洁度的硬钢 HRC62、铝、铜、塑料工件
高速切削加工应用
(1)航空航天领域。 大型整体结构件、薄壁类零件和叶轮零件等。
图10 波音公司的F15战斗机的起动减速板
图11 高速铣削典型工件
铝合金整体零件: 整体零件“掏空”,
切除量大 零件有薄壁,要求小
切削力 小直径刀具 较长的刀具悬伸
超高速加工包括超高速切削和超高速磨削。 超高速切削(Super High-speed Cutting):采用比常规速度 高得多的切削速度进行加工的一种高效新工艺方法。
➢以切削速度和进给速度界定: 高速加工的切削速度和进给速度为普通切削的5~10倍。
➢以主轴转速界定:高速加工的主轴转速≥10000 r/min。
2400
3000
切削速度v/(m/min)
图1 Salomon切削温度与切削速度曲线
在1931 年4 月,根据实验曲线,提出著名的“萨洛蒙曲线” 和高速切削理论。
图2 切削速度变化和切削温度的关系
3.高速加工的特点
➢切削力低 切削变形小,切屑流出速度加快,切削力 比常规降低30-90%,可高质量地加工出薄壁零件;
10 1
0.1 0.01 0.001
粗加工
传统加工方法 精加工
高速切削 少量手工精修
手工精修
加工时间
100 %
图13 采用高速加工缩短模具制作周期(日产汽车公司)
电极制造
1毛坯 → 2粗铣 → 3半精铣 → 4热处理 →5电火花加工→6精铣 →7手工磨修
a)传统模具加工的过程
1硬化毛坯→ 2粗铣 → 3半精铣 → 4精铣 →5手工磨修
➢ 高速加工切削速度范围随加工方法不同也有所不同
◎车削(Turing):700-7000 m/min ◎铣削(Milling):300-6000 m/min ◎钻削(Drilling):200-1100 m/min ◎磨削(Grinding):50-300 m/s ◎ 镗削(Boring):35-75m/min
2. 切削理论的提出
德国切削物理学家Carl Salmon 博士1929年进行了超高速 模拟实验。
1600
切削温度 /℃
1200
青铜
铸铁
钢
硬质合金980℃ Stelite合金850℃
800
400
软铝
非铁金属
高速钢650℃
碳素工具钢 450℃
0 切削不 600
1200
切削适应区 适应区 切削适应区
1800
高速加工技术的发展与应用
图5 HSM600U型数控五轴高速加工中心
生产厂家:瑞士Mikron 主轴转速:最高42000 rpm
主轴功率:13 KW 进给速度:最高40 m / min
定位精度:0.008 mm
重复定位精度:0.005mm
图6 HSM 系列高速五轴联动小型立式加工中心
图7 HSM800 图9 HSM400
3.高性能的CNC控制系统
4.先进的机床结构
图21 六杆机床(并联机床结构)
5. 高速切削的刀具系统
图22 德国HSK型刀柄及其联接结构
刀具角度选择:
工件材料 铝合金
铜材 铸铁 铜合金 纤维强化复合材料
最佳前角数值 12°~15° 0°~5° 0° 8° 20°
最佳后角数值 13°~15° 12°~16° 12° 16° 15°~ 20°
陶瓷轴承高速主轴结构
密封 陶瓷球 圈 轴承
电主 轴
陶瓷球 冷却水 轴承 出口
旋转变 压器
图17 陶瓷轴承高速主轴
冷却水 入口
磁浮轴承主轴结构
前径向轴 电主轴 前辅助轴 承
承
后径向轴 承
双面轴 向推力 轴承
后辅助轴 承
前径向8 磁浮轴承高速主轴 器
器
控
放
制
表1 超高速切削刀具最佳前角和后角推荐值
高速磨削加工
磨削(Grinding): 借助于砂轮表面大量磨粒作切削 刃去除材料的一种方法。
磨削速度(Grinding speed): 指砂轮表面磨粒在 工件材料上进行刻划切削的运动速度,通常就是砂 轮周边的回转线速度,单位m/s。
高速磨削(High-speed grinding):磨削速度在100 m/s以上。
图 3 加工零件
➢ 材料切除率高 单位时间内切除率可提高3-5倍;
➢ 高精度 切削激振频率远高于机床系统固有频率, 加工平稳、振动小;
➢ 热变形小 温升不超过3ºC,90%切削热被切屑带走;
A为高速切削加工时的热传导过程 B为传统加工的热传导过程
图4 热传导对比图
➢ 减少工序 工件加工可在一道工序中完成,称为 “一次过”技术(One pass machining)。
图16 高速切削加工医用药盒
高速切削加工的关键技术
1. 高速主轴 高速化指标:dm n值,至少达到1×106 电主轴:交流伺服电动机内置式集成化结构。转子套装
在机床的主轴上,定子安装在主轴单元的壳体中,采用水冷 或油冷。精度高、振动小、噪声低、结构紧凑。
采用的轴承有:滚动轴承(陶瓷轴承)、磁浮轴承、气 体静压轴承、液体静压轴承。
(2)汽车制造。
1
2
3
4
钻孔 表面倒棱 内侧倒棱 铰孔
高速钻孔 表面和内侧倒棱
专用机床 5轴×4工序 = 20轴(3万件/月)
刚性(零件、孔数、孔径、孔型固 定不变)
高速加工中心 1台1轴1工序(3万件/月)
柔性(零件、孔数、孔径、 孔型可变)
图12 汽车轮毂螺栓孔高速加工实例(日产公司)
(3)模具制造。
b)高速模具加工的过程
图14 两种模具加工过程比较
生产剃须刀的石墨电极
生产球形柄用的铜电极
图15 高速切削加工电火花加工用工具电极
(4)难加工材料领域。硬金属材料(HRC55~62),可 代替磨削,精度可达IT5~IT6级,粗糙度可达0.2~1um。
(5)超精密微细切削加工领域。
粗铣整体铝板; •精铣去口; •钻680个直径为3mm的小孔。 时间为32min。
1)要求: ➢ 砂轮基体的机械强度必须能承受高速磨削时的磨削力,
必须考虑高速离心力作用; ➢ 砂轮磨粒突出高度要大,以便能容纳大量的长切屑。 ➢ 结合剂具有很高的耐磨性,以减少砂轮的磨损; ➢ 高度磨削时要安全可靠。 2)材料:CBN、PCD。 3)结合剂:多孔陶瓷和电镀镍。 4)结构 4、冷却润滑液及其供液过滤系统
5、主轴轴承
图25 高速砂轮典型结构
1. 高速加工切削速度的范围
➢ 高速加工切削速度范围因不同的工件材料而异
◎铝合金(Aluminum Alloy):1000-7000 m/min ◎铜(Cu):900-5000 m/min ◎钢(Steel):500-2000 m/min ◎灰铸铁(Gray cast iron):800-3000 m/min ◎钛(Ti):100-1000m/min
大
器
器
电磁铁(定子) 传感器
转子
图19 磁悬浮轴承工作原理
2.快速进给系统 伺服电动机+大导程高速精密滚珠丝杠副; 直流直线电机、交流永磁同步直线电动机、交流感应异步直 线电动机的进给系统。
3 基座 4 磁性轨道 5 直线电机 6 直线导轨7 直线光栅 8 平台 9 接口电缆 10 防护罩
图20 结构图
超高速磨削( Super high-speed grinding):150 m/s以 上即常规速度五倍以上的高速磨削。
1.高速主轴
高速磨削关键技术
图23 高速主轴动平衡系统
1-信号传送单元 2-紧固发兰盘 3-内装电子驱动平衡块 4-磨床主轴
2.高速磨床结构
图24 直线电机驱动高速平面磨床
3.高速磨削砂轮
本节要点
高速加工的概念与特征 高速加工的切削速度范围 高速加工的切削理论 高速切削加工的优点和应用 高速切削加工的关键技术 高速磨削加工
高速加工的概念与特征
高速加工技术: 采用超硬材料的刀具和磨具,能可靠地实现高速运动的自
动化制造设备,极大地提高材料的切除率,并保证加工精度和 加工质量的现代制造加工技术。
图8 HSM600
加工极高表面光洁度的硬钢 HRC62、铝、铜、塑料工件
高速切削加工应用
(1)航空航天领域。 大型整体结构件、薄壁类零件和叶轮零件等。
图10 波音公司的F15战斗机的起动减速板
图11 高速铣削典型工件
铝合金整体零件: 整体零件“掏空”,
切除量大 零件有薄壁,要求小
切削力 小直径刀具 较长的刀具悬伸
超高速加工包括超高速切削和超高速磨削。 超高速切削(Super High-speed Cutting):采用比常规速度 高得多的切削速度进行加工的一种高效新工艺方法。
➢以切削速度和进给速度界定: 高速加工的切削速度和进给速度为普通切削的5~10倍。
➢以主轴转速界定:高速加工的主轴转速≥10000 r/min。
2400
3000
切削速度v/(m/min)
图1 Salomon切削温度与切削速度曲线
在1931 年4 月,根据实验曲线,提出著名的“萨洛蒙曲线” 和高速切削理论。
图2 切削速度变化和切削温度的关系
3.高速加工的特点
➢切削力低 切削变形小,切屑流出速度加快,切削力 比常规降低30-90%,可高质量地加工出薄壁零件;
10 1
0.1 0.01 0.001
粗加工
传统加工方法 精加工
高速切削 少量手工精修
手工精修
加工时间
100 %
图13 采用高速加工缩短模具制作周期(日产汽车公司)
电极制造
1毛坯 → 2粗铣 → 3半精铣 → 4热处理 →5电火花加工→6精铣 →7手工磨修
a)传统模具加工的过程
1硬化毛坯→ 2粗铣 → 3半精铣 → 4精铣 →5手工磨修
➢ 高速加工切削速度范围随加工方法不同也有所不同
◎车削(Turing):700-7000 m/min ◎铣削(Milling):300-6000 m/min ◎钻削(Drilling):200-1100 m/min ◎磨削(Grinding):50-300 m/s ◎ 镗削(Boring):35-75m/min
2. 切削理论的提出
德国切削物理学家Carl Salmon 博士1929年进行了超高速 模拟实验。
1600
切削温度 /℃
1200
青铜
铸铁
钢
硬质合金980℃ Stelite合金850℃
800
400
软铝
非铁金属
高速钢650℃
碳素工具钢 450℃
0 切削不 600
1200
切削适应区 适应区 切削适应区
1800
高速加工技术的发展与应用
图5 HSM600U型数控五轴高速加工中心
生产厂家:瑞士Mikron 主轴转速:最高42000 rpm
主轴功率:13 KW 进给速度:最高40 m / min
定位精度:0.008 mm
重复定位精度:0.005mm
图6 HSM 系列高速五轴联动小型立式加工中心
图7 HSM800 图9 HSM400
3.高性能的CNC控制系统
4.先进的机床结构
图21 六杆机床(并联机床结构)
5. 高速切削的刀具系统
图22 德国HSK型刀柄及其联接结构
刀具角度选择:
工件材料 铝合金
铜材 铸铁 铜合金 纤维强化复合材料
最佳前角数值 12°~15° 0°~5° 0° 8° 20°
最佳后角数值 13°~15° 12°~16° 12° 16° 15°~ 20°
陶瓷轴承高速主轴结构
密封 陶瓷球 圈 轴承
电主 轴
陶瓷球 冷却水 轴承 出口
旋转变 压器
图17 陶瓷轴承高速主轴
冷却水 入口
磁浮轴承主轴结构
前径向轴 电主轴 前辅助轴 承
承
后径向轴 承
双面轴 向推力 轴承
后辅助轴 承
前径向8 磁浮轴承高速主轴 器
器
控
放
制
表1 超高速切削刀具最佳前角和后角推荐值
高速磨削加工
磨削(Grinding): 借助于砂轮表面大量磨粒作切削 刃去除材料的一种方法。
磨削速度(Grinding speed): 指砂轮表面磨粒在 工件材料上进行刻划切削的运动速度,通常就是砂 轮周边的回转线速度,单位m/s。
高速磨削(High-speed grinding):磨削速度在100 m/s以上。
图 3 加工零件
➢ 材料切除率高 单位时间内切除率可提高3-5倍;
➢ 高精度 切削激振频率远高于机床系统固有频率, 加工平稳、振动小;
➢ 热变形小 温升不超过3ºC,90%切削热被切屑带走;
A为高速切削加工时的热传导过程 B为传统加工的热传导过程
图4 热传导对比图
➢ 减少工序 工件加工可在一道工序中完成,称为 “一次过”技术(One pass machining)。
图16 高速切削加工医用药盒
高速切削加工的关键技术
1. 高速主轴 高速化指标:dm n值,至少达到1×106 电主轴:交流伺服电动机内置式集成化结构。转子套装
在机床的主轴上,定子安装在主轴单元的壳体中,采用水冷 或油冷。精度高、振动小、噪声低、结构紧凑。
采用的轴承有:滚动轴承(陶瓷轴承)、磁浮轴承、气 体静压轴承、液体静压轴承。
(2)汽车制造。
1
2
3
4
钻孔 表面倒棱 内侧倒棱 铰孔
高速钻孔 表面和内侧倒棱
专用机床 5轴×4工序 = 20轴(3万件/月)
刚性(零件、孔数、孔径、孔型固 定不变)
高速加工中心 1台1轴1工序(3万件/月)
柔性(零件、孔数、孔径、 孔型可变)
图12 汽车轮毂螺栓孔高速加工实例(日产公司)
(3)模具制造。
b)高速模具加工的过程
图14 两种模具加工过程比较
生产剃须刀的石墨电极
生产球形柄用的铜电极
图15 高速切削加工电火花加工用工具电极
(4)难加工材料领域。硬金属材料(HRC55~62),可 代替磨削,精度可达IT5~IT6级,粗糙度可达0.2~1um。
(5)超精密微细切削加工领域。
粗铣整体铝板; •精铣去口; •钻680个直径为3mm的小孔。 时间为32min。
1)要求: ➢ 砂轮基体的机械强度必须能承受高速磨削时的磨削力,
必须考虑高速离心力作用; ➢ 砂轮磨粒突出高度要大,以便能容纳大量的长切屑。 ➢ 结合剂具有很高的耐磨性,以减少砂轮的磨损; ➢ 高度磨削时要安全可靠。 2)材料:CBN、PCD。 3)结合剂:多孔陶瓷和电镀镍。 4)结构 4、冷却润滑液及其供液过滤系统
5、主轴轴承
图25 高速砂轮典型结构
1. 高速加工切削速度的范围
➢ 高速加工切削速度范围因不同的工件材料而异
◎铝合金(Aluminum Alloy):1000-7000 m/min ◎铜(Cu):900-5000 m/min ◎钢(Steel):500-2000 m/min ◎灰铸铁(Gray cast iron):800-3000 m/min ◎钛(Ti):100-1000m/min
大
器
器
电磁铁(定子) 传感器
转子
图19 磁悬浮轴承工作原理
2.快速进给系统 伺服电动机+大导程高速精密滚珠丝杠副; 直流直线电机、交流永磁同步直线电动机、交流感应异步直 线电动机的进给系统。
3 基座 4 磁性轨道 5 直线电机 6 直线导轨7 直线光栅 8 平台 9 接口电缆 10 防护罩
图20 结构图
超高速磨削( Super high-speed grinding):150 m/s以 上即常规速度五倍以上的高速磨削。
1.高速主轴
高速磨削关键技术
图23 高速主轴动平衡系统
1-信号传送单元 2-紧固发兰盘 3-内装电子驱动平衡块 4-磨床主轴
2.高速磨床结构
图24 直线电机驱动高速平面磨床
3.高速磨削砂轮