河内塔问题简介

合集下载

河内塔实验报告绪论(3篇)

河内塔实验报告绪论(3篇)

第1篇一、引言河内塔实验,又称为汉诺塔问题,是认知心理学中一个经典的实验,起源于古印度的一个传说。

该传说讲述了神勃拉玛在贝拿勒斯的圣庙中留下了一根金刚石的棒,上面套着64个金环,最大的一个在底下,其余的一个比一个小,依次叠上去。

庙里的僧侣们必须将所有的金环从这根棒上移到另一根棒上,规定只能使用中间的一根棒作为帮助,每次只能搬一个圆盘,且大的不能放在小的上面。

当所有的金环全部移完时,就是世界末日到来的时候。

河内塔实验不仅是一个数学问题,更是一个心理学问题,它涉及到人类的问题解决策略、思维过程以及认知能力。

自20世纪50年代认知心理学兴起以来,河内塔实验被广泛应用于心理学、教育学、计算机科学等领域。

本文旨在通过对河内塔实验的综述,探讨其理论背景、实验方法、结果分析以及应用价值,以期为我国心理学研究和教育实践提供有益的借鉴。

二、河内塔实验的理论背景1. 问题解决理论河内塔实验是问题解决理论的一个典型案例。

问题解决是指个体在面对问题时,运用已有的知识和技能,通过一系列的认知活动,找到解决问题的方案。

河内塔实验通过模拟现实生活中的问题解决过程,有助于揭示人类问题解决的心理机制。

2. 认知心理学河内塔实验是认知心理学的一个重要实验,它揭示了人类在解决问题过程中的认知过程。

认知心理学认为,人类解决问题是通过信息加工、记忆、思维等心理过程实现的。

河内塔实验通过观察被试在解决问题过程中的心理活动,有助于了解人类认知能力的局限性。

3. 计算机科学河内塔实验在计算机科学领域也有着广泛的应用。

它为计算机算法的研究提供了启示,有助于设计出更高效、更智能的计算机程序。

三、河内塔实验的方法1. 实验对象河内塔实验的被试通常为不同年龄、性别、教育背景的个体。

实验过程中,要求被试完成从柱子1将所有圆盘移到柱子3的任务。

2. 实验材料河内塔实验的主要材料为三根柱子(柱子1、2、3)和一系列大小不同的圆盘。

圆盘的大小依次递增,构成金字塔状。

从汉诺塔的故事中领悟到的递推数列通项的求法

从汉诺塔的故事中领悟到的递推数列通项的求法

又 S =叮 +盯 +可 + … +耵 =盯r ・ r 2
[ )()()… (), ( 。 } } + ” }+ + + }]
所 以l S =百 2 — — i r・ m :4 .
所 以 A :2 .
同理可得 A =2. r
从 而 A += +r l +, 1 A + n =2 j +
落 蘸蘸 矮 枣
遴 爨 壤 攥 逶 救蕊


杨 苍洲 ( 建省 惠安 高级 中学) 福
0- |

二 ,
汉 诺 塔 ( 称 河 内塔 ) 问 题 是 印度 的 到 C杆 ,则 必 然 要 把 一1 金 片 从 杆 必 须 弄 明 白构 成 数 列 的 前 一项 和 后 一 项 的 又 个
棒 ,第一 根上 面套着 6 4个 圆形 的金片 , 最 大的一个 在底下 ,其余 一个 比一 个小 ,
1阶汉 诺 塔 的 移 动 :A C,需 1次 ; —
2阶汉诺 塔 的移动 :A一曰 ,A—C, 个 以图象为背景的递推数列通项 的求法. 依次叠上去 ,寺 院的僧侣依照一个古老的 曰 ,需 3次 ; 一c 例 1 (o o年湖 北高考理科卷)如 2l 预言,不知疲倦地把它们一个个地从这根 3阶汉诺 塔 的移 动 :A—c,A一日, 图2 ,在 半 径 为 r的 圆 内作 内接 正 六边 形 ,再 作 正六边 形 的 内切 圆 ,又在 此 内 切 圆 内作 内接 正六边 形 ,如 此无 限继续 下去 .设 为前 n个 圆 的面积 之和 ,则
究前 后 两 个 圆 的 半 径 与
的 关 系 ,得
到递推 关系式 ,并利 用等 比数 列的 定义 所 以僧侣 们需 要搬 动 2 “一1 才 能 求 解 . 次 动多少 次才能把 金片 从 杆 全部 移到 c 把金 片从 A杆全部 移到 C杆 ,这是 个非 解 :记 为第 n个 圆 0 的半径 ,则 杆? 常大的天文数字 ,看来 ,众僧们耗尽毕生 下面我们来计算一下 ,僧侣们需要搬

汉诺塔简介

汉诺塔简介

汉诺塔简介汉诺塔(又称河内塔)问题是印度的一个古老的传说。

开天辟地的神勃拉玛在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。

解答结果请自己运行计算,程序见尾部。

面对庞大的数字(移动圆片的次数)15,看来,众僧们耗尽毕生精力也不可能完成金片的移动。

后来,这个传说就演变为汉诺塔游戏:1.有三根杆子A,B,C。

A杆上有若干碟子2.每次移动一块碟子,小的只能叠在大的上面3.把所有碟子从A杆全部移到C杆上经过研究发现,汉诺塔的破解很简单,就是按照移动规则向一个方向移动金片: 如3阶汉诺塔的移动:A?C,A?B,C?B,A?C,B?A,B?C,A?C此外,汉诺塔问题也是程序设计中的经典递归问题。

算法思路:1.如果只有一个金片,则把该金片从源移动到目标棒,结束。

2.如果有n个金片,则把前n-1个金片移动到辅助的棒,然后把自己移动到目标棒,最后再把前n-1个移动到目标棒using System;using System.Text.RegularExpressions;class tower{private static void Move(int count, char A, char B, char C){if (count == 1){Console.WriteLine("Move disc {0}----->{1}", A, C);return;}Move(count-1, A, C, B);Console.WriteLine("Move disc {0}----->{1}", A, C);Move(count-1, B, A, C);}public static void Main(string[] args){Regex r = new Regex("^[0-9]*[1-9][0-9]*$");Match m = r.Match(args[0]);if (!m.Success){Console.WriteLine("输入有误,请输入正整数~");return;}int count = int.Parse(args[0]);Console.WriteLine("Task: Move {0} discs from A pass B to C", count); Move(count, 'A', 'B', 'C');}}当前位置: 首页 >> 程序设计 >> 数据结构和算法 >> 汉诺塔非递归算法汉诺塔非递归算法作者: 来源:zz 发表时间:2008-01-08 浏览次数: 6160 字号:大中小/*《数学营养菜》(谈祥柏著)提供的一种方法,编了一个程序来实现。

JAVA经典算法

JAVA经典算法

河内塔问题(Towers of Hanoi)问题说明:河內之塔(Towers of Hanoi)是法国人M.Claus(Lucas)於1883年从泰国带至法国的,河內为越战时北越的首都,即现在的胡志明市;1883年法国数学家 Edouard Lucas曾提及這个故事,据说创世紀时Benares有一座波罗教塔,是由三支钻石棒(Pag)所支撑,开始时神在第一根棒上放置64个由上至下依由小至大排列的金盘(Disc),並命令僧侣将所有的金盘从第一根石棒移至第三根石棒,且搬运过程中遵守大盘子在小盘子之下的原则,若每日仅搬一个盘子,则当盘子全数搬运完毕之时,此塔将损毁,而也就是世界末日來临之时。

算法代码(Java):复制内容到剪贴板import java.io.*;public class Hanoi {public static void main(String args[]) throws IOException {int n;BufferedReader buf;buf = new BufferedReader(new InputStreamReader(System.in));System.out.print("请输入盘子个数");n = Integer.parseInt(buf.readLine());Hanoi hanoi = new Hanoi();hanoi.move(n, 'A', 'B', 'C');}public void move(int n, char a, char b, char c) {if(n == 1)System.out.println("盘 " + n + " 由 " + a + " 移至 " + c);else {move(n - 1, a, c, b);System.out.println("盘 " + n + " 由 " + a + " 移至 " + c);move(n - 1, b, a, c);}}}背包为题(Kanpsack Problem)问题说明:假设一个背包的负重最大可达8公斤,而希望在背包内放置负重范围你价值最高的物品。

5道经典智力测试题答案

5道经典智力测试题答案

5道经典智力测试题答案1. 河内塔问题(Hanoi Tower Problem)河内塔问题是一个经典的递归问题,需要将三个不同大小的圆盘从一根柱子移动到另一根柱子,每次只能移动一个圆盘,并且不能将一个较大的圆盘放在较小的圆盘上。

解决这个问题的关键是使用递归方法,首先将上面的n-1个圆盘移动到辅助柱子上,然后将最大的圆盘移动到目标柱子上,最后将辅助柱子上的n-1个圆盘移动到目标柱子上。

对于n个圆盘,最少需要2^n - 1步。

2. 逻辑推理题:谁是凶手?假设有五个人,A、B、C、D、E,他们中的一个是凶手。

根据线索:A说:“我不是凶手。

” B说:“C是凶手。

” C说:“D是凶手。

” D说:“我不是凶手。

” E说:“B是凶手。

” 只有一个人说真话。

通过逻辑推理,我们可以确定只有D的话是真话,因为如果A或D之外的人说真话,就会有多于一个人说真话。

所以,C是凶手。

3. 密码锁问题假设有一个密码锁,需要输入一个四位数字密码才能打开。

密码的每一位都是0-9之间的数字,且不重复。

如果我们知道密码的第一位是1,第二位是偶数,第三位比第四位大,且第四位是奇数,我们可以通过排除法来确定密码。

根据这些条件,我们可以列出所有可能的组合,然后逐一排除,最终找到正确的密码。

4. 渡河问题有一家人要过河,包括父亲、母亲、两个儿子、两个女儿、一个仆人以及一只狗。

只有父亲、母亲和仆人能划船,每次只能载两个人(或一个人和狗)。

如果父亲离开,母亲会打儿子;如果母亲离开,父亲会打女儿;如果仆人离开,狗会咬其他人。

如何安全地让所有人都过河?答案是通过一系列步骤,确保每次船上的人或狗不会对留下的其他人构成威胁。

5. 猜数字游戏猜数字游戏是一个简单的逻辑游戏,其中一个人想一个1到100之间的数字,另一个人通过提问来猜测这个数字。

提问者每次只能问一个问题,比如“这个数字是50吗?”或者“这个数字比50大吗?”,然后根据回答逐步缩小范围,直到猜中数字。

汉诺塔数学题

汉诺塔数学题

汉诺塔(又称河内塔)是一个经典的数学问题,起源于一个古老的传说。

问题是这样的:有三根柱子A、B、C,A柱子上从小叠到大地放着n个圆盘。

目标是将这些圆盘按照大小顺序重新摆放在C柱子上,期间只有一个原则:一次只能移动一个圆盘,且大盘子不能在小盘子上面。

解决汉诺塔问题的一个必然步骤是将最大的圆盘移出。

在移动最大圆盘之前,我们需要将其他所有圆盘从A柱子移动到B柱子上,并保持它们的顺序不变。

然后,将最大的圆盘从A柱子移动到C柱子上。

最后,再将B柱子上的所有圆盘按照同样的规则移动到C柱子上。

对于只有一个圆盘的情况,问题很简单,直接将圆盘从A柱子移动到C柱子即可。

对于有两个圆盘的情况,我们可以先将小圆盘移动到B柱子上,然后将大圆盘移动到C柱子上,最后将小圆盘从B柱子移动到C柱子上。

对于有三个或更多圆盘的情况,我们可以使用递归的方法来解决。

假设有n个圆盘需要移动,我们可以先将前n-1个圆盘从A柱子移动到B柱子上,然后将第n个圆盘(也就是最大的圆盘)从A柱子移动到C柱子上,最后将B柱子上的n-1个圆盘移动到C柱子上。

这个过程可以用以下公式表示:H(n) = 2 * H(n-1) + 1其中,H(n)表示移动n个圆盘所需的最少步骤数。

这个公式说明,移动n个圆盘所需的步骤数是移动n-1个圆盘所需步骤数的两倍加1。

通过递归调用这个函数,我们可以计算出移动任意数量圆盘所需的最少步骤数。

例如,移动4个圆盘需要15步,移动5个圆盘需要31步,以此类推。

需要注意的是,虽然汉诺塔问题看起来很简单,但实际上它的复杂度是指数级的。

对于较大的n值,移动圆盘所需的步骤数会迅速增长,变得非常庞大。

因此,在实际应用中,我们可能需要考虑使用其他方法来解决类似的问题。

河内塔问题

河内塔问题

河内塔问题智力游戏数学书上有一道河内塔的问题,这是一个流传很广的游戏:1.有三根杆子A、B、C。

A杆上有三个碟子。

2.每次移动一个碟子,大碟子不能移在小碟子上面。

3.把A杆上的三个碟子移到C杆上需要多少步?如果A杆上有四个、五个碟子各需要多少步?河内塔问题的由来1883年,一位法国的数学家 Edouard Lucas 教授在欧洲的一份杂志上介绍了一个相当吸引人的难题──迷人的智力游戏。

这个游戏名为河内塔(Tower of Hanoi),它源自古印度神庙中的一段故事(也有人说是 Lucas 教授为增加此游戏之神秘色彩而捏造的)。

传说在古老的印度,有一座神庙,据说它是宇宙的中心。

在庙宇中放置了一块上面插有三根长木钉的木板,在其中的一根木钉上,从上至下被放置了64片直径由小至大的圆环形金属片。

古印度教的天神指示他的僧侣们将64片的金属片移至三根木钉中的其中一根上。

规定在每次的移动中,只能搬移一片金属片,并且在过程中必须保持金属片由上至下是直径由小至大的次序,也就是说不论在那一根木钉上,圆环形的金属片都是直径较小的被放在上层。

直到有一天,僧侣们能将64片的金属片依规则从指定的木钉上全部移动至另一根木钉上,那么,世界末日即随之来到,世间的一切终将被毁灭,万物都将至极乐世界。

我们先测算一下按上述规则移完这64片金属盘所要花费的时间吧!要按上述规则移动这64片金属片至少要几次的搬移才能完成呢?设a n 表示当金属盘总共有n片时至少所需搬动的次数,则a1=1….….….恰好是21-1a2=3….….….恰好是22-1a3=7….….….恰好是23-1a4=15……….恰好是24-1a5=31……….恰好是25-1a6=63……….恰好是26-1于是我们得到一个递归的公式: a n=2n-1,假如这位僧侣每秒搬移一次金属盘的话,那么64片金属盘至少需要经过264 -1=18,446,744,073,709,551,615 秒的搬移才能完成。

关于汉诺塔的知识

关于汉诺塔的知识

关于汉诺塔的知识汉诺塔,又称河内塔,是一个古老而著名的数学智力游戏。

它由法国数学家Edouard Lucas于1883年发明,以讲故事的形式广为流传。

汉诺塔问题的背后蕴含着深刻的数学原理和逻辑思维,被广泛应用于计算机科学、算法设计和数学教育领域。

汉诺塔问题的设定是这样的:有三根柱子,标记为A、B和C,起初在柱子A上有n个盘子,盘子从小到大依次摆放,最大的盘子在最底下。

现在的目标是将这n个盘子从柱子A移动到柱子C上,期间可以借助柱子B作为辅助。

但是有一个规则需要遵守:每次只能移动一个盘子,并且在移动过程中大盘子不能放在小盘子上面。

那么,如何解决这个问题呢?我们需要分析问题的特点和规律。

当只有一个盘子时,我们只需要直接将它从柱子A移动到柱子C上即可。

当有两个盘子时,我们可以将第一个盘子从柱子A移动到柱子B上,然后将第二个盘子从柱子A移动到柱子C上,最后将第一个盘子从柱子B移动到柱子C 上。

接下来,我们可以推论出当有n个盘子时的移动步骤。

我们将n个盘子从柱子A移动到柱子C上的步骤分解为三个子问题:将n-1个盘子从柱子A移动到柱子B上,将最大的盘子从柱子A 移动到柱子C上,再将n-1个盘子从柱子B移动到柱子C上。

这样,我们可以通过递归的方式,不断将大问题分解为小问题,直到问题规模减少到只有一个盘子时,再按照前面的规则进行移动,最终完成整个汉诺塔问题的解决。

通过上述的分析,我们可以总结出解决汉诺塔问题的算法步骤:1. 当只有一个盘子时,直接将它从柱子A移动到柱子C上。

2. 当有n个盘子时,将n-1个盘子从柱子A移动到柱子B上。

3. 将最大的盘子从柱子A移动到柱子C上。

4. 将n-1个盘子从柱子B移动到柱子C上。

通过不断重复上述步骤,我们可以解决汉诺塔问题,并且移动的次数是最少的。

具体来说,移动n个盘子所需的最少次数可以用公式2^n - 1来表示。

汉诺塔问题虽然看似简单,但实际上涉及到了递归、分治和数学原理等多个领域的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由来法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。

印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔。

不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面。

僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇和众生也都将同归于尽。

[2]不管这个传说的可信度有多大,如果考虑一下把64片金片,由一根针上移到另一根针上,并且始终保持上小下大的顺序。

这需要多少次移动呢?这里需要递归的方法。

假设有n 片,移动次数是f(n).显然f(1)=1,f(2)=3,f(3)=7,且f(k+1)=2*f(k)+1。

此后不难证明f(n)=2^n-1。

n=64时,假如每秒钟一次,共需多长时间呢?一个平年365天有31536000 秒,闰年366天有31622400秒,平均每年31556952秒,计算一下:18446744073709551615秒这表明移完这些金片需要5845.54亿年以上,而地球存在至今不过45亿年,太阳系的预期寿命据说也就是数百亿年。

真的过了5845.54亿年,不说太阳系和银河系,至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭。

印度传说和汉诺塔故事相似的,还有另外一个印度传说:舍罕王打算奖赏国际象棋的发明人──宰相西萨·班·达依尔。

国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里赏给我一粒麦子,在第2个小格里给2粒,第3个小格给4粒,以后每一小格都比前一小格加一倍。

请您把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人吧!”国王觉得这个要求太容易满足了,就命令给他这些麦粒。

当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求。

那么,宰相要求得到的麦粒到底有多少呢?总数为1+2+2^2 + … +2^63=2^64-1等于移完汉诺塔所需的步骤数。

我们已经知道这个数字有多么大了。

人们估计,全世界两千年也难以生产这么多麦子! [3]相关预言编辑有预言说,这件事完成时宇宙会在一瞬间闪电式毁灭。

也有人相信婆罗门至今还在一刻不停地搬动着圆盘。

其他相关编辑宇宙寿命如果移动一个圆盘需要1秒钟的话,等到64个圆盘全部重新落在一起,宇宙被毁灭是什么时候呢?让我们来考虑一下64个圆盘重新摞好需要移动多少次吧。

1个的时候当然是1次,2个的时候是3次,3个的时候就用了7次......这实在是太累了因此让我们逻辑性的思考一下吧。

3个的时候能够移动最大的3盘时如图所示。

到此为止用了7次。

接下来如右图,在上面再放上3个圆盘时还要用7次(把3个圆盘重新放在一起需要的次数)。

因此,4个的时候是“3个圆盘重新摞在一起的次数”+1次+“3个圆盘重新摞在一起需要的次数”=2x“3个圆盘重新摞在一起的次数”+1次=15次。

那么,n个的时候是2x“(n-1)个圆盘重新摞在一起的次数”+1次。

由于1 个的时候是1次,结果n个的时候为(2的n次方减1)次。

1个圆盘的时候2的1次方减12个圆盘的时候2的2次方减13个圆盘的时候2的3次方减14个圆盘的时候2的4次方减15个圆盘的时候2的5次方减1........n个圆盘的时候2的n次方减1也就是说,n=64的时候是(2的64次方减1)次。

因此,如果移动一个圆盘需要1秒的话,宇宙的寿命=2的64次方减1(秒)2的64次方减1到底有多大呢?动动计算器,答案是一个二十位的数字约是1.84467440*10^19用一年=60秒x60分x24小时x365天来算的话,大约有5800亿年吧。

太阳及其行星形成于50亿年前,其寿命约为100亿年。

汉诺塔问题在数学界有很高的研究价值,而且至今还在被一些数学家们所研究。

也是我们所喜欢玩的一种益智游戏,它可以帮助开发智力,激发我们的思维。

经典题目有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,要把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方,请问至少需要多少次移动,设移动次数为H(n)。

首先我们肯定是把上面n-1个盘子移动到柱子C上,然后把最大的一块放在B上,最后把C上的所有盘子移动到B上,由此我们得出表达式:H⑴ = 1H(n) = 2*H(n-1)+1 (n>1)那么我们很快就能得到H(n)的一般式:H(n) = 2^n - 1 (n>0)并且这种方法的确是最少次数的,证明非常简单,可以尝试从2个盘子的移动开始证,你可以试试。

进一步加深问题(解法原创*_*):假如现在每种大小的盘子都有两个,并且是相邻的,设盘子个数为2n,问:⑴假如不考虑相同大小盘子的上下要多少次移动,设移动次数为J(n);⑵只要保证到最后B上的相同大小盘子顺序与A上时相同,需要多少次移动,设移动次数为K(n)。

⑴中的移动相当于是把前一个问题中的每个盘子多移动一次,也就是:J(n) = 2*H(n) = 2*(2^n - 1)= 2^(n+1)-2在分析⑵之前,我们来说明一个现象,假如A柱子上有两个大小相同的盘子,上面一个是黑色的,下面一个是白色的,我们把两个盘子移动到B上,需要两次,盘子顺序将变成黑的在下,白的在上,然后再把B上的盘子移动到C上,需要两次,盘子顺序将与A上时相同,由此我们归纳出当相邻两个盘子都移动偶数次时,盘子顺序将不变,否则上下颠倒。

现在回到最开始的问题,n个盘子移动,上方的n-1个盘子总移动次数为2*H(n-1),所以上方n-1个盘子的移动次数必定为偶数次,最后一个盘子移动次数为1次。

讨论问题⑵,综上两点,可以得出,要把A上2n个盘子移动到B上,首先可以得出上方的2n-2个盘子必定移动偶数次,所以顺序不变,移动次数为:J(n-1)= 2^n-2然后再移动倒数第二个盘子,移动次数为2*J(n-1)+1 = 2^(n+1)-3,最后移动最底下一个盘子,所以总的移动次数为:K(n) = 2*(2*J(n-1)+1)+1 = 2*(2^(n+1)-3)+1 = 2^(n+2)-5开天辟地的神勃拉玛(和中国的盘古差不多的神吧)在一个庙里留下了三根金刚石的棒,第一根上面套着64个圆的金片,最大的一个在底下,其余一个比一个小,依次叠上去,庙里的众僧不倦地把它们一个个地从这根棒搬到另一根棒上,规定可利用中间的一根棒作为帮助,但每次只能搬一个,而且大的不能放在小的上面。

计算结果非常恐怖(移动圆片的次数)大约是1.84467440*10^19,众僧们即便是耗尽毕生精力也不可能完成金片的移动了。

算法介绍其实算法非常简单,当盘子的个数为n时,移动的次数应等于2^n – 1(有兴趣的可以自己证明试试看)。

后来一位美国学者发现一种出人意料的简单方法,只要轮流进行两步操作就可以了。

首先把三根柱子按顺序排成品字型,把所有的圆盘按从大到小的顺序放在柱子A上,根据圆盘的数量确定柱子的排放顺序:若n为偶数,按顺时针方向依次摆放A B C;若n为奇数,按顺时针方向依次摆放A C B。

⑴按顺时针方向把圆盘1从现在的柱子移动到下一根柱子,即当n为偶数时,若圆盘1在柱子A,则把它移动到B;若圆盘1在柱子B,则把它移动到C;若圆盘1在柱子C,则把它移动到A。

⑵接着,把另外两根柱子上可以移动的圆盘移动到新的柱子上。

即把非空柱子上的圆盘移动到空柱子上,当两根柱子都非空时,移动较大的圆盘。

这一步没有明确规定移动哪个圆盘,你可能以为会有多种可能性,其实不然,可实施的行动是唯一的。

⑶反复进行⑴⑵操作,最后就能按规定完成汉诺塔的移动。

所以结果非常简单,就是按照移动规则向一个方向移动金片:如3阶汉诺塔的移动:A→C,A→B,C→B,A→C,B→A,B→C,A→C汉诺塔问题也是程序设计中的经典递归问题,下面我们将给出递归和非递归的不同实现源代码。

相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。

该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置64个金盘(如下图)。

游戏的目标:把A杆上的金盘全部移到C杆上,并仍保持原有顺序叠好。

操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上。

[2]汉诺塔问题图示[2]分析:对于这样一个问题,任何人都不可能直接写出移动盘子的每一步,但我们可以利用下面的方法来解决。

设移动盘子数为n,为了将这n个盘子从A杆移动到C杆,可以做以下三步:(1)以C盘为中介,从A杆将1至n-1号盘移至B杆;(2)将A杆中剩下的第n号盘移至C杆;(3)以A杆为中介;从B杆将1至n-1号盘移至C杆。

[2]这样问题解决了,但实际操作中,只有第二步可直接完成,而第一、三步又成为移动的新问题。

以上操作的实质是把移动n个盘子的问题转化为移动n-1个盘,那一、三步如何解决?事实上,上述方法设盘子数为n, n可为任意数,该法同样适用于移动n-1个盘。

因此,依据上法,可解决n -1个盘子从A杆移到B杆(第一步)或从B杆移到C杆(第三步)问题。

现在,问题由移动n个盘子的操作转化为移动n-2个盘子的操作。

依据该原理,层层递推,即可将原问题转化为解决移动n -2、n -3… … 3、2,直到移动1个盘的操作,而移动一个盘的操作是可以直接完成的。

至此,我们的任务算作是真正完成了。

而这种由繁化简,用简单的问题和已知的操作运算来解决复杂问题的方法,就是递归法。

在计算机设计语言中,用递归法编写的程序就是递归程序。

[2]汉诺塔问题是用递归方法求解的一个典型问题,在实际教学中,可以在传统教学方式的基础上,利用计算机辅助教学进行算法的模拟演示教学,使学生更容易接受和理解递归算法的思想,不但能提高学生的学习兴趣,而且还能取得较好的教学效果。

[3]解决汉诺塔问题的多种观点编辑计划能力决定圆盘移动顺序关于汉诺塔问题解决的一个最主要的观点认为,完成汉诺塔任务时要对圆盘的移动顺序进行预先计划和回顾性计划活动。

当问题呈现后,在开始第一步的移动之前,大多数被试都会根据设定好的目标状态,对圆盘的移动顺序进行预先计划。

以决定圆盘的移动顺序,但是这种计划能力的作用可能会受到问题难度的影响。

[4]抑制能力参与汉诺塔问题也有研究者认为,不是计划能力而是抑制能力参与汉诺塔问题的解决过程。

为了把更大的圆盘先放置于指定位置,必须让较小的圆盘暂时偏离其最终应该放置的位置,但被试的自然反应总是“尽快”将圆盘移动到最终的目的地,如此反而导致错误,使移动步数更多,完成时间更长。

相关文档
最新文档