3.1.2函数的表示法+教案-2022-2023学年高一上学期数学人教A版(2019)必修第一册
人教A版必修第一册3.1.2函数的表示法PPT课件

课本P72,习题3.1 3 , 7 P101 7
例如,当x=2时, M(2)=max{f(2),g(2)}=max{3,9}=9,请分别用图 像法和解析法表示M(x)
P73页13.函数f (x) [x]的函数值表示不超过x的最大整数, 例如,[3.5] 4,[2.1] 2.当x (2.5,3]时, 写出函数f (x)的解析式,并画出函数的图像。
2.求抽象函数的定义域的方法:
已知f(x)的定义域,求f(g(x))的定义域:
已知f(g(x))的定义域,求f(x)的定义域:
(1)定义域是指x的取值范围; (2)f(x)与f(g(x))这两个括号的范围是一致的
探索点二 求函数的值域 (金版 P49)
【例 2】 (1)函数 y= 的值域为 (-∞,2)∪(2,+∞) .
4
x, x 0
3
y x, x 0
2
1
-3 -2 -1 O 1 2 3 x
在定义域内不同部分上,有不同的 解析表达式的函数通常叫做分段函数
分段函数:对于一个函数,在定义域的不同部 分,有不同的表达式,图象由不同的几段构成.
(1)分段函数是一个函数, 不要把它误认为是几个函数;
(2)分段函数的定义域是各段定义域的 并集,值域是各段值域的并集.
测 试
成绩 序 第1次
号 姓名
第2次
第3次 第4次
第5次 第6次
王伟
98
87
91
92
88
95
张城
90
76
88
75
86
80
赵磊
68
65
73
72
75
82
班级平均分 88.2 78.3 85.4 80.3 75.7 82.6
3.1.2函数的表示法-高一数学课件(人教A版2019必修第一册)

= 0.8 × 189600 − 117360 = 34320.
将t的值代入(1)中,得y = 0.03 × 34320 = 1029.6.
所以,小王应缴纳得综合所得税税额为1029.6元.
练习巩固
2x + 1,x < 1,
练习1:已知函数f(x) =
则f(9) =( )
f(x − 3),x ≥ 1,
(1)在同一直角坐标系中画出f(x),g(x)的图象;
解:在同一直角坐标系中画出函数f(x),g(x)的图象.
练习巩固
例6:给定函数f(x) = x + 1,g(x) = (x + 1)2 ,x ∈ R,
(2)∀x ∈ R,用M(x)表示f(x),g(x)中的最大者,记为M(x) = max{f(x),g(x)}.
解:由2 (−) + () = ,①
可得2 + − = −.②
联立①②,得:f x = −x.
小结
解析法
常用表示法
列表法
图像法
函数的表示法
定义
分段函数
图像
函数的实际应用
练习巩固
例8:依法纳税是每个公民应尽的义务,个人取得的所得应依照 《中华人民共和国
个人所得税法》向国家缴纳个人所得税(简称个税).2019年1月1日起,个税税
额根据应纳税所得额、税率和速算扣除数确定,计算公式为:个税税额=应纳税所
得额×税率-速算扣除数.应纳税所得额的计算公式为:应纳税所得额=综合所得收
复习导入
新知探究
问题1:我们初中已经接触过了函数常见的三种表示方法,你还记得是三种
方法吗?
解析法:用数学表达式表示两个变量之间的对应关系。
3.1.2 函数的表示法(一)课件- 高一上学期数学人教A版(2019)必修第一册

∴ 2f
消去f
1
x
1
x
+f x
1
x
1
f
x
1
=
x
解得 = −2 + 1 .
= x x ≠ 0 ,求f x 的解析式.
=x x≠0 ,
Байду номын сангаас
x≠0 ,
,解得f x =
2x
3
−
1
,x
3x
≠ 0.
知识梳理·自主探究
师生互动·合作探究
方法总结
当同一个对应关系f 中的两个变量之间有互为相反数
1
(或互为倒数)关系时,可以用−x(或 )代替原式中的x
x
所得方程与原方程联立构造方程组求解.
,
知识梳理·自主探究
师生互动·合作探究
角度3 赋值法求函数解析式
例6:已知对任意实数x,y都有f x + y − 2f y = x 2 + 2xy − y 2 + 3x − 3y,
求函数f x 的解析式.
2
x
x
x
1
2
1
+ +1 −2 +1 +3
x2
x
x
2
1
1
+ 1 − 2 + 1 + 3,
x
x
1
1 2
1
f 1+ = 1+
− 2 1 + + 3,
x
x
x
1
2
f x = x − 2x + 3. 又∵ 1 + ≠ 1,
x
高中数学第3章函数的概念与性质3.1函数的概念及其表示3.1.2第1课时函数的表示法学案含解析第一册

3。
1。
2 函数的表示法第1课时函数的表示法学习目标核心素养1。
掌握函数的三种表示法:解析法、图象法、列表法.(重点) 2.会根据不同的需要选择恰当的方法表示函数.(难点)1.通过函数表示的图象法培养直观想象素养.2.通过函数解析式的求法培养运算素养。
(1)已建成的京沪高速铁路总长约1 318千米,设计速度目标值380千米/时,若京沪高速铁路时速按300千米/时计算,火车行驶x小时后,路程为y千米,则y是x的函数,可以用y=300x来表示,其中y=300x叫做该函数的解析式.(2)如图是我国人口出生率变化曲线:(3)下表是大气中氰化物浓度与污染源距离的关系表污染源距离50100200300500氰化物浓度0.6780。
3980.1210.050。
01问题:根据初中所学知识,请判断问题(1)、(2)、(3)分别是用什么法表示函数的?提示:解析法、图象法和列表法.函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗?提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D(x)=错误!列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.1.思考辨析(正确的画“√”,错误的画“×”)(1)任何一个函数都可以用解析法表示.()(2)函数的图象一定是定义区间上一条连续不断的曲线.()[答案](1)×(2)×2.已知函数f(x)由下表给出,则f(3)等于()x1≤x<222<x≤4f(x)123A。
1B.2C.3D.不存在C[∵当2〈x≤4时,f(x)=3,∴f(3)=3。
]3.已知函数y=f(x)的图象如图所示,则其定义域是______.[-2,3][由图象可知f(x)的定义域为[-2,3].]4.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,则f(-1)=________。
3.1.2.1 函数的表示法 课件-人教A版高中数学必修第一册

温故知新
函数的概念
定义域 函数定义域的求法
函数的三要素 值域
对应关系f
函数的符号表示 y=f(x)
特殊函数的定义域、值域
同一函数的判断
区间的表示
新课导入
回想函数的表示方法有哪几种?
解析法,列表法,图象法.
用图象表示两个变量之 间的对应关系
列出表格来表示两个变量之间的对应关系
笔记本数m 1 2 3 4 5
5
钱数y 5 10 15 20 25
0 1 2 34 5
m
在用三种方法表示函数时要注意:
【1】解析法必须标明函数的定义域 【2】列表法必须罗列出所有的自变量与函数值之间的对应关系 【3】图像法必须搞清楚函数图像是“点”还是“线”
(1)比较函数的三种表示法,它们各有什么特点? (2)所有函数都能用解析法吗?列表法与图像法 呢?请你举出实例加以说明
同学的成绩变化情况.如果将每位同学的成绩和测试序号之间的函数关系分别用
图像表示出来,就可以直观的看到他们成绩变化的情况.
【分析】从图像中我们可以直观地看到:王伟同学的成绩一直稳定在班级的前茅, 张城同学的成绩波动较大,赵磊同学的成绩整体有下降趋势,但三位同 学的成绩基本上都大幅领先于班级平均水平.
(2)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类 型设出函数解析式,再根据条件列方程(或方程组),通过解方程(组)求出待 定系数,进而求出函数解析式.
(3)换元法(有时可用“配凑法”):已知函数f(g(x))的解析式求f(x)的解析 式可用换元法(或“配凑法”),即令g(x)=t,反解出x,然后代入f(g(x))中求 出f(t),从而求出f(x).
类型二 图象法表示函数
最新人教A版高中数学必修一课件:3.1.2 第一课时 函数的表示法

【对点练清】 1.已知函数f(x)的图象如图所示,则此函数的定义域是________,
值域是________. 解析:结合图象,知函数f(x)的定义域为[-3,3],值域为[-2,2]. 答案:[-3,3] [-2,2]
2.画出下列函数的图象: (1)y=x+1(x≤0); (2)y=x2-2x(x>1或x<-1). 解:(1)y=x+1(x≤0)表示一条射线,图象如图1. (2)y=x2-2x=(x-1)2-1(x>1或x<-1)是抛物线y=x2-2x去掉-1≤x≤1 之间的部分后剩余曲线.如图2.
3.1.2 函数的表示法
明确目标
发展素养
1.掌握函数的三种表示方法:解 1.通过用图象法表示函数,培养直观想
析法、图象法、列表法. 象素养.
2.会根据不同的需要选择恰当的 2.通过求函数解析式及分段函数求值,
方法表示函数.理解函数图象 培养数学运算素养.
的作用. 3.利用分段函数解决实际问题,培养数
【学透用活】 [典例 3] 求下列函数的解析式: (1)已知函数 f( x+1)=x+2 x,求 f(x); (2)已知函数 f(x)是二次函数,且 f(0)=1,f(x+1)-f(x)=2x,求 f(x); (3)已知函数 f(x)对于任意的 x 都有 f(x)-2f(-x)=1+2x,求 f(x).
题型三 函数解析式的求法 [探究发现] (1)什么是函数解析式? (2)一次函数、二次函数、反比例函数的解析式各是什么? 提示:(1)用数学表达式表示两个变量 x,y 之间的对应关系. (2)一次函数的解析式是 y=kx+b(k≠0),二次函数解析式是 y=ax2+bx+
c(a≠0),反比例函数的解析式是 y=kx(k≠0).
()
第三章-3.1.2 函数的表示法高中数学必修第一册人教A版

1, 为有理数,
分别定义如下:对任意的 ∈ ,函数 = ቊ
称为狄利克雷函数;记
0, 为无理数,
[]为不超过的最大整数,则称 = []为高斯函数.下列关于狄利克雷函数与高斯
函数的结论,错误的是( C
A.
=1
C. + − = 0
)
B. + 1 =
(1)写出函数的解析式;
【解析】由题设条件知,当 = 2时, = 100,当 = 14时, = 28,代入关系式得
2
2 + = 100,
= 1,
൞
解得ቊ
= 196.
14 + = 28,
14
所以 =
196
+ .
又 ≤ 20,且为正整数,所以函数的定义域是{|0 < ≤ 20, ∈ + }.
围,否则易出错),则 = − 1 2 ,所以
= −1
2
+ 2 − 1 = 2 − 1 ≥ 1 ,
所以函数 的解析式为 = 2 − 1 ≥ 1 .
方法2 (配凑法)
+ 1 = + 2 = + 2 + 1 − 1 = ( + 1)2 − 1.
= ( + ) = ( + ) + = 2 + + = 4 + 6,
= 2, = −2,
2 = 4,
于是有ቊ
解得ቊ
或ቊ
= −6,
=2
+ = 6,
所以 = 2 + 2或 = −2 − 6.
高一数学人教A版选择性必修第一册3.1.2函数的表示法 课件【共17张PPT】

=34320
将t的值代入③,得 y=0.03×34320=1029.6
所以, 小王应缴纳的综合所得个税税额为1029.6元。
同学们,函数的表示方法有哪几种?你能谈谈 它们的优缺点吗?
(3)图象法:就是用图象表示两个变量之间的对 应关系. 如3.1.1的问题3.
这三种方法是常用的函数表示法 .
例4 某种笔记本的单价是5元,买x (x∈{1,2, 3,4,5})个笔记本需要 y 元 . 试用函数的三种 表示法表示函数y=f(x).
解:这个函数的定义域是数集{1, 2, 3, 4, 5}. 用解析法可将函数y=f(x)表示为
y
4 3 2
1
-3 -2 -1 0 1 2 3 x
例6 给定函数f(x)=x+1,g(x)=(x+1)2,x∈R,
(1)在同一直角坐标系中画出函数f(x) , g(x)的图象; 解: (1)在同一直角坐标系中画出函数f(x) , g(x)
的图象,如图。
例6 给定函数f(x)=x+1,g(x)=(x+1)2,x∈R, (2)任意x∈R,用M(x)表示 f(x) , g(x) 中的较大者,
解析法:即全面地概括了变量之间的依赖关系,又 简单明了,便于对函数进行理论上的分析和研究 . 但有时函数不能用解析法表示,或很难找到这个函 数的解析式. 列表法:自变量的值与其对应的函数值一目了然, 查找方便.但有很多函数,往往不可能把自变量的 所有值与其对应的函数值都列在表中.
图像法:非常直观,可以清楚地看出函数的变化情 况.但是,在图像中找对应值时往往不够准确,而 且有时函数画不出它的图像,还有很多函数不可能 得到它的完整图像.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学课题:3.1.2 函数的表示法课型:新授课课时:2课时
课标要求:
1、在实际情境中,会根据不同的需要选择恰当的方法(如图象法,列表法、解析法)表示函数,理解函数图象的作用;
2、通过具体实例,了解简单的分段函数,并能简单应用。
学习目标:
1、在实际情境中,会根据不同的需要选择恰当的方法表示函数,理解函数图象和解析式之间相辅相成的关系;
2、通过具体实例,了解简单的分段函数,并能简单应用;
3、发展学生直观想象、逻辑推理核心素养。
重点:了解简单的分段函数,并能简单应用。
难点:在实际情境中,会根据不同的需要选择恰当的方法表示函数。
教学方法:启发式、自主探究式相结合
教学准备教师:多媒体课件学生:
教学过程
一、复习旧知、引入新课
引入1:(师)你还记得初中我们学习过的函数的表示方法有哪些?
(生)解析法、列表法和图像法
引入2:(师)你能分辨下列函数是用什么方法表示的吗?
(1)3.1.1的问题3:北京市2016年11月23日空气质量指数(AQI) I和时间t的关系;
(生)图象法,就是用图象表示两个变量之间的对应关系.
(2)3.1.1的问题4:恩格尔系数r与年份y的对应关系;
年份y2006200720082009201020112012201320142015
恩格尔系r(%)36.6936.8138.1735.6935.1533.5333.8729.8929.3528.57
(生)列表法,就是列出表格表示两个变量之间的对应关系.
(3)3.1.1的问题1:路程和时间的对应关系,s=350t,t{00.5}
∈≤≤
t t
(生)解析法,就是用数学表达式表示两个变量之间的对应关系.
设计意图:学生对初中学过的三种函数表示方法已经比较熟悉了,但是接触的例子有所欠缺,所以教师应引导学生回顾具体的例子,为学生深入研究这3种方法打下基础。
二、创设情境、提出问题
x x∈个笔记本需要y元,试用列表法和图情境1某种笔记本的单价是5元,买({1,2,3,4,5})
像法表示函数y=f(x).
解析:用列表法可将y=f(x)表示为
笔记本数x12345
钱数y510152025
用图象法发可将y=f(x)表示为
追问1(师)你发现图象上这些点有什么特征?
(生)这些点好像都经过一条直线。
追问2(师)那你能写出它的解析式吗?
x∈,可以看出确实是一次函数上的几个点。
(生)y=f(x)的解析式可写为y=5x,{1,2,3,4,5}
问题1:(师)比较函数的三种表示法,它们各自的特点是什么?
优点缺点
解析法 1.简明 2.抽象 1.有规律 2.不直观 列表法 直观形象
1.离散 2.点“少” 图像法
1.直观形象
2.变化趋势
1.不精准
2.不全面
问题2:(师)任何一种函数都可以用解析法、列表法和图象法表示吗?
(生)不一定,只有有规律的函数才能用解析法表示,离散型的函数才能用表格表示,理论所有函数都有图像,但是当自变量是无理数时,我们很难画出函数图象。
设计意图:此情境时一个比较简单的问题,教师可以让学生自己动手去做,教师的主要任务是引导学生体验函数三种表示方法的优缺点,为后面学生选择方法作铺垫。
三、例题练习、巩固理解 例1 画出函数y x =的图象 变式训练:画出函数2y x =-的图象
例2 给定函数2()1,()(1),f x x g x x x R =+=+∈ (1) 在同一直角坐标系中画出f(x),g(x)的图像; (2)x R ∀∈,用M(x)表示f(x),g(x)中的最大者,记为 M(x)=max{f(x),g(x)}.
例如,当x=2时,M(2)=max{f(2),g(2)} =max{3,9}=9. 请分别用图象法和解析式法表示M(x)
设计意图:例1和例2给了两种典型的分段函数:绝对值函数和求最大函数。
我们要分析出绝对值函数的变化趋势必须画图象,体现以形助数的思想;我们要想画出最大函数的函数图象,必须结合解析式,体现了以数辅形的思想。
所以这两个例子不仅让学生了解了简单的分段函数,还可以发展学生直观想象的能力,是本节课的重点。
四、选择方法、情境应用
情境2 下表是某校高一(1)班三名同学在高一学年度六次数学测试的成绩及班级平均分表.
测试成绩
姓名
第1次第2次第3次第4次第5次第6次王伟988791928895
张城907688758680
赵磊686573727582班级平均分88.278.385.480.375.782.6
请对这三位同学在高一学年度的数学学习情况做分析.
解析:从表中可以知道每位同学在每次测试中的成绩,但不容易看出每位同学的成绩的变化情况.可将“成绩”与“测试序号”之间的关系用函数图象表示,如图,可以较直观地看到成绩变化情况.
由图可知王伟同学的数学成绩始终高于班级平均水平,学习情况比较稳定.张诚同学成绩不稳定,在班级平均水平上下波动,且幅度较大.赵磊同学的数学成绩低于平均水平,但是他的成绩呈曲线上升的趋势,从而表明他的数学成绩在稳步提高.
设计意图:学生对数学知识的掌握有时候是很机械的,只会记忆,并不知道如何应用到生活当中去,于是我们应该引导学生用数学解决实际生活中的问题。
情境3依法纳税是每个公民应尽的义务,个人取得的所得应按照《中华人民共和国个人所得税法》向国家缴纳个人所得税(简称个税)。
2019年1月1日起,个税税额根据应纳税所得额、税率和速算扣除数确定,计算公式为个税税额=应纳税所得额×税率-速算扣除数①。
应纳税所得额的计算公式为:应纳税所得额=综合所得收入额-基本减除费用-专项扣除-专项附加扣除-依法确定的其他扣除 ②。
其中,“基本减除费用”(免征额)为每年60000元。
税率与速算扣除数见下表。
级数 全年应纳税所得额所在区间
税率(%)
速算扣除数
1 [0,36 000] 3 0
2 (36 000,144 000] 10 2520
3 (14
4 000,300 000] 20 16920 4 (300 000,420 000] 2
5 31920 5 (420 000,660 000] 30 52910
6 (660 000,960 000]
35 85920 7
(960 000,+∞)
45
181920
(1) 设全年应纳税所得额为t,应缴纳个税税额为y ,求 y=f(t),并画出图象。
(2)小王全年综合所得收入额为189600元,假定缴纳的基本养老保险、基本医疗保险、失业保险等社会保险费和住房公积金占综合所得收入额的比例分别是8%,2%,1%,9%,专项附加扣除是52800元,依法确定其他扣除是4560元,那么他全年应缴纳多少综合所得个税? 解析:(1) 根据上表,可得函数y=f(t)的解析式为
根据上表,可得函数y=f(t)的图象为
⎪
⎪⎪
⎪⎩⎪
⎪⎪
⎪⎨⎧
>-≤<-≤<-≤<-≤<-≤<-≤≤=960000
,
18192045.0960000
660000,8592035.0660000420000,529203.0420000300000,
3192025.0300000144000,169202.014400036000,25201.0360000,03.0t t t t t t t t t t t t t t y
解析:根据公式②,小王全年应缴纳所得额为
t=189600-60000-189600(8%+2%+1%+9%)-52800-4560
=0.8×189600-117360
=34320
将t的值代入③,得
y=0.03×34320=1029.6
所以,小王应缴纳的综合所得个税税额为1029.6元。
设计意图:学生特别害怕长文字的问题情境,所以在此处,教师应该先给出时间让学生阅读题干,找出关键信息。
教师只需要在学生的困难的点进行引导即可。
五、小结提升、形成结构
学习了本节课,你有什么收获?。