3.1.1(二)实数指数幂及其运算教案学生版
高中数学人教B版必修一3.1.1《实数指数幂及其运算》word教案

由此类推:一般地,如果存在实数x,使得 ,那么 叫做 的 次方根,其中 >1,且 ∈ *.求a的n次方根,叫做把a开n次方,称作开方运算。
的 次方根用符号 表示.
式子 叫做根式,这里 叫做根指数(, 叫做被开方数.
正数a的偶次方根有两个,它们互为相反数,分别表示为 ,- ( >0,n为偶数)
巩固知识点
3分钟
8分钟
18分钟
14分钟
回忆整数指数幂的定义并板书
1.整数指数幂的定义
2.练习:计算下列各式
, , , , ,
问题1:
在初中我们学过平方根、立方根的概念,它是如何定义的?它有何性质?学生回忆
(1)如果一个数的平方等于a,即 ,那么数x叫做a的平方根,
(2)如果一个数的立方等于a,即 ,那么数x叫做a的立方根;
(3)正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4)正数和负数的立方根都只有一个,零的立方根是零。
问题2:以下式子: , , , .中 与9,2与8,-2与-8, 与16,3与243,-3与-243是什么关系?
叫9的平方根,2叫8的立方根,-2叫-8的立方根.
类比: 叫16的四次方根,3叫243五次方根,-3叫-243的五次方根。
作业训练
1.以下说法正确的是( )
A.正数的n次方根是正数 B.负数的n次方根是负数
C.0的n次方根是0 D.a的n次方根是
2.已知 下列各式总能成立的是( )
A. B.
C. D.
3. 化简为.
4.若 =- ,则.
5.若 ,则n的取值范围是.
6.化简下列各式:(1)
3.1.1实数指数幂及其运算学案

一、学习目标:(1) 复习整数指数幂概念及运算 (2)理解分数指数幂和根式的概念; (3)掌握分数指数幂和根式之间的互化; (4)掌握分数指数幂的运算性质; (5)培养学生观察分析、抽象等的能力.二、学习重点:(1)分数指数幂和根式概念的理解;(2)掌握并运用分数指数幂的运算性质; 学习难点;分数指数幂及根式概念的理解三、本节知识:知识呈现层次: 正整数指数幂----整数幂----分数指数幂---有理数指数幂 1.初中复习:(1)整数指数幂概念: n a a _____,a ____n ____.(n Z )∈叫做的叫做幂的,叫做幂的 (2)正整数指数幂规定:(1)=≠0a __(a 0), (2)-=≠∈n a ____(a 0,n N*) 整数指数幂的运算性质:⋅=∈m n a a ____(m,n Z ) 同底数幂相乘除,底数不变指数相加减 =∈m n (a )____(m,n Z )=∈n (ab )____(n Z )2. 根式和分数指数幂:(1)如果存在实数x,n *x a,(a R,n 1,n N ),=∈>∈使得则x 叫做a 的________ n ,称作开方运算.n ._____,叫做_____(2)对开方运算的认识:⎧⎪⎨⎪⎩n a n a n a n 为奇数, 的次方根有___个,为正数:为偶数, 的次方根有两个,为_____⎧⎪⎨⎪⎩n a n a n a n 为___数, 的次方根只有一个,为负数:为___数, 的次方根不存在.(3)根式的性质:①n ___,(n 1,n N*)=>∈且 ②a, n |a| n ⎧⎨⎩当为___数时,当为___数时 (4)正分数指数幂定义:名词解释:【既约分数:也就是不能再约分的分数。
】 ①a 0)> ②m *m___a 0,n,m N ,)n==>∈且为既约分数 (5)负分数指数幂定义:m-*nma _____,(a 0,m,n N ,)n=>∈且为既约分数+⋅=∈m n m na a a(m,n___)同底数幂相乘除,底数不变指数相加减=∈m n mn(a)a(m,n___)=⋅∈n n n(a b)a b(n__)四、练习与提高1,根式、分式指数幂的概念与性质的简单应用:___=(2)16的4次方根为____ (3)273____-的次方根为(4)27-的4次方根_____. _____=(6))=_____ (7)_____=(8))=______(9)_____=2.求值化简:(1(2)(3(4)(1)≤a(5)(6) +-+++-1111222211112222a b a b(7)a b a b-÷-+41332233a8a b(1)4b a(8)化简五、收获与体会一、学习目标:(1) 复习整数指数幂概念及运算 (2)理解分数指数幂和根式的概念; (3)掌握分数指数幂和根式之间的互化; (4)掌握分数指数幂的运算性质; (5)培养学生观察分析、抽象等的能力.二、学习重点:(1)分数指数幂和根式概念的理解;(2)掌握并运用分数指数幂的运算性质; 学习难点;分数指数幂及根式概念的理解三、本节知识:知识呈现层次: 正整数指数幂----整数幂----分数指数幂---有理数指数幂 1.初中复习:(1)整数指数幂概念: n a a n ,a n .(n Z )∈叫做的次幂叫做幂的底数,叫做幂的指数 (2)正整数指数幂规定:(1)=≠0a 1(a 0), (2)-=≠∈nn1a(a 0,n N*)a 整数指数幂的运算性质:+⋅=∈m n m na a a (m ,n Z ) 同底数幂相乘除,底数不变指数相加减 =∈m n mn (a )a (m,n Z )=⋅∈n n n(a b )a b (n Z )2. 根式和分数指数幂:(1)如果存在实数x,n *x a,(a R,n 1,n N ),=∈>∈使得则x 叫做a 的n 次方根. n n 次方,称作开方运算.n .叫做根指数(2)对开方运算的认识:⎧⎪⎨±⎪⎩n a n a n a n 为奇数, 的次方根有一个,为正数:为偶数, 的次方根有两个,为n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.(3)根式的性质:①n a,(n 1,n N*)=>∈且 ②a, n |a| n ⎧⎨⎩当为奇数时,当为偶数时 (4)正分数指数幂定义:名词解释:【既约分数:也就是不能再约分的分数。
教学设计2: 实数指数幂及其运算(二)

§3.1.1 实数指数幂及其运算(二)一.教学目标:1.知识与技能:(1)理解分数指数幂的概念;(2)掌握分数指数幂和根式之间的互化; (3)掌握分数指数幂的运算性质; (4)培养学生观察分析、抽象等的能力. 2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质. 3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯; (3)让学生体验数学的简洁美和统一美. 二.重点、难点1.教学重点:(1)分数指数幂概念的理解;(2)掌握并运用分数指数幂的运算性质; 2.教学难点:分数指数幂概念的理解 三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体四、教学过程: 提问:1.习初中时的整数指数幂,运算性质?00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义1(0)n na a a -=≠;()m n m n m n mn a a a a a +⋅== (),()n m mn n n n a a ab a b ==什么叫实数?有理数,无理数统称实数.2.观察以下式子,并总结出规律:a>0①1025a a===②842a a===③1234a a===1025a a===小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:23(0)a a==>12(0)b b==>54(0)c c==>*(0,,1)mna a n N n=>∈>为此,我们规定正数的分数指数幂的意义为:*0,,)mna a m n N=>∈正数的定负分数指数幂的意义与负整数幂的意义相同.即:*1(0,,)mnmna a m n Na-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)nm m m ma a a a a=⋅⋅⋅⋅>由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)r s r sa a a a r s Q+⋅=>∈(2)()(0,,)r S rsa a a r s Q=>∈(3)()(0,0,)r r ra b a b Q b r Q⋅=>>∈若a>0,P是一个无理数,则(0,)pa a p>是一个无理数该如何理解?为了解决这个问题,引导学生先阅读课本P62——P62.的不足近似值,的.所以,的方向逼近时,的过剩似值从大于时,(如课本图所示)所以,.一般来说,无理数指数幂(0,)pa a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:(0,,)r s r s a a a a r R s R +⋅=>∈∈ ()(0,,)r s rs a a a r R s R =>∈∈ ()(0,)r r r a b a b a r R ⋅=>∈例1求值:①832;②2521-③(21)-5;④(8116)43-.活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,21写成2-1,8116写成(32)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来. 解:①832=(23)32=2323⨯=22=4; ②2521-=(52)21-=5)21(2-⨯=5-1=51; ③(21)-5=(2-1)-5=2-1×(-5)=32;④(8116)43-=(32))43(4-⨯=(32)-3=827.点评:本例主要考查幂值运算,要按规定来解.在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如832=328=364=4. 例2用分数指数幂的形式表示下列各式. a 3·a ;a 2·32a ;3a a (a >0).活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结. 解:a 3·a =a 3·a 21=a 213+=a 27;a 2·32a =a 2·a 32=a232+=a 38;3a a =(a ·a 31)21=(a 34)21=a 32.点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算.对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.例3计算下列各式(式中字母都是正数): (1)(2a 32b 21)(-6a 21b 31)÷(-3a 61b 65); (2)(m 41n83-)8. 活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤. 解:(1)原式=[2×(-6)÷(-3)]a612132-+b653121-+=4ab 0=4a ;(2)(m 41n83-)8=(m 41)8(n 83-)8=m 841⨯n883⨯-=m 2n -3=32nm.点评:分数指数幂不表示相同因式的积,而是根式的另一种写法.有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了. 本例主要是指数幂的运算法则的综合考查和应用. 变式训练 求值:(1)33·33·63;(2)6463)12527(nm . 解:(1)33·33·63=3·321·331·361=36131211+++=32=9;(2)6463)12527(n m =(6463)12527(n m =(646333)53(n m =646643643643)()5()()3(n m =42259n m =42259-n m . 例4求值或化简. (1)3224ab ba -(a >0,b >0);(2)(41)21-213321)()1.0()4(---b a ab (a >0,b >0);(3)246347625---+-.活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律. 解:(1)3224ab ba -=2224b a -(a 31b 32)21=a -2ba 61b 31=a611-b 34=61134ab .点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示.(2)(41)21-2133231)()1.0()4(---b a ab =223211044•a 23a 23-b 23-b 23=254a 0b 0=254.点评:化简这类式子一般有两种办法,一是首先用负指数幂的定义把负指数化成正指数,另一个方法是采用分式的基本性质把负指数化成正指数. (3)246347625---+-=222)22()32()23(---+- =3-2+2-3-2+2 =0.点评:考虑根号里面的数是一个完全平方数,千万注意方根的性质的运用. 例5化简下列各式: (1)323222323222--------+--++yxy x yxy x ;(2)(a 3+a -3)(a 3-a -3)÷[(a 4+a -4+1)(a -a -1)].活动:学生观察式子的特点,特别是指数的特点,教师引导学生考虑题目的思路,这两题要注意分解因式,特别是立方和和立方差公式的应用,对有困难的学生及时提示:对(1)考查x 2与x 32的关系可知x 2=(x32)3,立方关系就出来了,公式便可运用,对(2)先利用平方差,再利用幂的乘方转化为立方差,再分解因式,组织学生讨论交流. 解:(1)原式=323222323222--------+--++yxy x yxy x=])())(()[()()(23232322322323232232--------++-+-yyx x yy x x=343234343234)()(---------+-yxy xy xy x=xyxy xy 3322)(2-=--; (2)原式=[(a 3)2-(a -3)2]÷[(a 4+a -4+1)(a -a -1)]=))(1()()(1442222----++-a a a a a a =))(1()1)((1444422-----++++-a a a a a a a a =1212)(----a a a a =a +a -1.点评:注意立方和立方差公式在分数指数幂当中的应用,因为二项和、差公式,平方差公式一般在使用中一目了然,而对立方和立方差公式却一般不易观察到,a 23=(a 21)3还容易看出,对其中夹杂的数字m 可以化为m ·a 21a 21-=m ,需认真对待,要在做题中不断地提高灵活运用这些公式的能力. 知能训练课本P 59习题2.1A 组 3. 利用投影仪投射下列补充练习: 1.化简:(1+2321-)(1+2161-)(1+281-)(1+241-)(1+221-)的结果是( )A.21(1-2321-)-1 B.(1-2321-)-1 C.1-2321- D.21(1-2321-) 分析:根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形. 因为(1+2321-)(1-2321-)=1-2161-,所以原式的分子分母同乘以(1-2321-),依次类推,所以321212121)21)(21(----+-=32112121----=21(1-2321-)-1. 答案:A2.计算(297)0.5+0.1-2+(22710)32--3π0+9-0.5+490.5×2-4.解:原式=(925)21+100+(6427)32-3+4921×161=53+100+169-3+31+167=100.3.计算1212--+-+a a a a (a ≥1). 解:原式=|11|11)11()11(22--++-=--++-a a a a (a ≥1).本题可以继续向下做,去掉绝对值,作为思考留作课下练习.4.设a >0,x =21(a n 1-a n 1-),则(x +2x 1+)n 的值为_______.分析:从整体上看,应先化简,然后再求值,这时应看到解:1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.这样先算出1+x 2,再算出2x 1+,将x =21(a n 1-a n 1-)代入1+x 2,得1+x 2=1+41(a n 1-a n 1-)2=41(a n 1+a n 1-)2.所以(x +2x 1+)n=[21(a n 1-a n1-)+41(a n 1+a n 1-)2]n=[21(a n 1-a n1-)+21(a n 1+a n 1-)]n=a .答案:a 课堂小结(1)无理指数幂的意义.一般地,无理数指数幂a α(a >0,α是无理数)是一个确定的实数. (2)实数指数幂的运算性质:对任意的实数r ,s ,均有下面的运算性质: ①a r ·a s =a r +s (a >0,r ,s ∈R ). ②(a r )s =a rs (a >0,r ,s ∈R ). ③(a ·b )r =a r b r (a >0,b >0,r ∈R ). (3)逼近的思想,体会无限接近的含义. 作业课本P 60习题2.1 B 组 2.。
实数指数幂及其运算教案

3.1.1 实数指数幂及其运算1.整数指数(1)一个数a 的n 次幂等于n 个a 的连乘积,即n n n a a a a a =⋅⋅⋅⋅个叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数.并规定a 1=a .(2)正整指数幂在a n 中,n 是正整数时,a n 叫做正整指数幂. 正整指数幂具有以下运算法则:①a m ·a n =a m +n ;②(a m )n =a mn ;③am a n =a m -n (a ≠0,m >n );④(ab )m=a m b m .其中m ,n ∈N +.(3)整数指数幂在上述法则③中,限制了m >n ,如果取消这种限制,那么正整指数幂就推广到了整数指数幂.规定:①a 0=1(a ≠0);②a -n =1a n (a ≠0,n ∈N +).这样,上面的四条法则可以归纳为三条:①a m ·a n =a m +n ;②(ab )n =a n b n ;③(a m )n =a mn .其中m ,n ∈Z .同时,将指数的范围由正整数扩大为整数.0的零次幂没有意义,0的负整数次幂也没有意义,因此对于整数指数幂,要求“底数不等于0”.【例1】化简:(a 2b 3)-2·(a 5b -2)0÷(a 4b 3)2.解:原式=223246423286()()1=()()a b a b a b a b----⋅⋅⋅ =(a -4·a -8)·(b -6·b -6) =a -12b -12.2.根式如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根.求a 的n 次方根,叫做把a 开n 次方,称作开方运算. 当na 有意义时,式子na 叫做根式,n 叫做根指数,a 叫做被开方数.正数a 的正n 次方根叫做a 的n 次算术根.n 次方根具有以下性质:(1)在实数范围内,正数的奇次方根是一个正数;(2)在实数范围内,正数的偶次方根是两个绝对值相等、符号相反的数,负数的偶次方根不存在;(3)零的任何次方根都是零.根式有两个重要性质:(1)(na )n =a (n >1,n ∈N +),当n 为奇数时,a ∈R ,当n 为偶数时,a ≥0(a <0时无意义);(2)n a n =⎩⎪⎨⎪⎧a ,n 为奇数,|a |,n 为偶数. 析规律 关于根式的知识总结正数开方要分清,根指奇偶大不同, 根指为奇根一个,根指为偶双胞生. 负数只有奇次根,算术方根零或正, 正数若求偶次根,符号相反值相同. 负数开方要慎重,根指为奇才可行, 根指为负无意义,零取方根仍为零.【例2-1】已知=-a -1,则实数a 的取值范围是__________.解析:|a +1|,∴|a +1|=-a -1=-(a +1).∴a +1≤0,即a ≤-1. 答案:(-∞,-1]【例2-2】化简下列各式:;.解:(1)原式=(-2)+2|+2)=-2+(2+2)=-2.(2)=(1+1)=辨误区 根式运算应注意的问题利用na n 的性质求值运算时,要注意n 的奇偶性.特别地,当n 为偶数时,要注意a 的正负.3.分数指数幂(1)分数指数幂的意义 正分数指数幂可定义为:①1na=na (a >0);②m na =(na )m=na m⎝ ⎛⎭⎪⎫a >0,n ,m ∈N +,且m n 为既约分数.负分数指数幂的意义与负整数指数幂的意义相同,可定义为:1=m nm na a-⎝ ⎛⎭⎪⎫a >0,n ,m ∈N +,且m n 为既约分数. 提示:所谓既约分数,就是约分后化成最简形式的分数. 感悟:1.规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理指数;2.m na 与na m 表示相同的意义,所以分数指数幂与根式可以相互转化;3.通常规定分数指数幂的底数a >0,但要注意在像14()a -=4-a中的a ,则需要a ≤0.(2)有理指数幂的运算法则:①a αa β=a α+β;②(a α)β=a αβ;(3)(ab )α=a αb α(其中a >0,b >0,α,β∈Q ).析规律 有理指数幂的运算1.有理指数幂的运算性质是由整数指数幂的运算性质推广而来,可以用文字语言叙述为:(1)同底数幂相乘,底数不变,指数相加;(2)幂的幂,底数不变,指数相乘;(3)积的幂等于幂的积.2.乘法公式仍适用于有理指数幂的运算,例如:11112222()()a b a b +⋅-=a -b (a >0,b >0);111122222()2a b a b a b ±=+±(a >0,b >0).【例3-1】求值:(1)438-;(2)3481;(3)323-⎛⎫ ⎪⎝⎭;(4)2327125-⎛⎫⎪⎝⎭. 解:(1)44433433318=(2)=2=2=16⎛⎫⨯---⎪-⎝⎭. (2)333443444=(3)=3=3=27⨯.(3)332327==328-⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭. (4)2223323332733325====1255559⎛⎫--⨯-- ⎪⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.点技巧 有理指数幂运算时把根式转化为幂进行有理指数幂的运算要首先考虑利用幂的运算性质,而不要将幂转化为根式的运算,像238【例3-2】求下列各式的值:(1)1123331222x x x --⎛⎫- ⎪⎝⎭;(2)2. 解:(1)原式=11121333314222=14=12x x x x x x ----⋅-⋅--.(2)原式=125222362132==a aa a a --⋅4.无理指数幂 (1)一般地,无理指数幂a α(a >0,α是无理数)是一个确定的实数; (2)有理指数幂的运算性质同样适用于无理指数幂,即: ①a α·a β=a α+β(a >0,α,β是无理数); ②(a α)β=a αβ(a >0,α,β是无理数);③(ab )α=a αb α(a >0,b >0,α是无理数). 【例4】求值:(1)213328--⋅⋅;(2)12+⋅解:(1)原式=221333(22(2)--⋅⋅=2322323222=2=2=8--+-⋅. (2)原式=12+52+21=27.5.指数幂(根式)的化简与计算化简、计算指数幂(根式)时,应注意以下几点:(1)运算顺序:先进行幂的运算,再进行乘除运算,最后进行加减运算,有括号的先算括号内的.(2)如果指数是小数,那么通常化为分数指数,这样可以随时检验运算的正确性,是常用的化简技巧.比如,(-3)2.1=2110(3)-=10(-3)21,由于(-3)21是一个负数,所以(-3)2.1无意义.(3)将其中的根式化为分数指数幂,利用指数幂的运算性质进行计算.比如,化简a a ,如果不将根式a 化为指数幂,就很难完成化简:1131222==a a a a +⋅.(4)计算或化简的结果尽量最简,如果没有特殊要求,用正分数指数幂或根式来表示均可.析规律 多重根号化为有理指数幂此类问题应熟练应用na m=m na ⎝ ⎛⎭⎪⎫a >0,m ,n ∈N +,且m n 为既约分数.当各式中含有多重根号时,要搞清被开方数,由里向外用分数指数幂写出,然后再利用指数运算法则化简.【例5-1】求下列各式的值:(1)121203170.027279--⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭; (2)1012234122254--⎛⎫⎛⎫+⨯- ⎪⎪⎝⎭⎝⎭;(3)分析:结合指数幂的运算性质,应首先将小数化为分数,根式转化为指数幂的形式,负指数幂转化为正指数幂,再根据指数幂的运算性质求解.解:(1)原式=11232227125105(1)1=491=4510007933---⎛⎫⎛⎫⎛⎫--+--+--⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. (2)原式=112314111161=1=49100061015⎛⎫⎛⎫+⨯-+- ⎪ ⎪⎝⎭⎝⎭. (3)原式=11111111111113312636333236223123(32)=23332=2322-+++⎛⎫⎛⎫⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭=2×3=6.【例5-2】化简下列各式:(1)1373412a a a ;(2)131234()x y -;解:(1)1137537334123412==a a a a a ++.(2)1133121212493344()==x y xyx y ⨯--⨯-.1125152331123336363442125364()===xyx y x y x y x yx y------⋅⋅⋅⋅⋅.辨误区化简时注意运算顺序化简时要弄清开方、乘方等的运算顺序,同时注意运算性质及乘法公式的应用.6.知值求值问题已知代数式的值求其他代数式的值,通常又简称为“知值求值”,解决此类题目要从整体上把握已知的代数式和所求的代数式的特点,然后采取“整体代换....”或“求值后代换”两种方法求值.要注意正确地变形,像平方、立方等以及一些公式的应用问题,还要注意开方时的取值符号问题.例如,已知1122=3a a-+,求下列各式的值:(1)a+a-1;(2)a2+a-2;(3)33221122a aa a----.显然,从已知条件中解出a的值,然后再代入求值,这种方法是不可取的,而应设法从整体寻求结果与条件1122=3a a-+的联系,进而整体代入求值.将1122=3a a-+两边平方,得a+a-1+2=9,即a+a-1=7.再将上式平方,有a2+a-2+2=49,即a2+a-2=47.由于3311332222=()()a a a a----,所以有331111122222211112222()()=a a a a a a a aa a a a--------++⋅--=a+a-1+1=8.【例6-1】已知2x+2-x=5,求下列各式的值:(1)4x+4-x;(2)8x+8-x.解:(1)4x+4-x=(22)x+(22)-x=(2x)2+(2-x)2=(2x)2+2·2x·2-x+(2-x)2-2=(2x+2-x)2-2=52-2=23.(2)8x+8-x=(23)x+(23)-x=(2x)3+(2-x)3=(2x+2-x)·[(2x)2-2x·2-x+(2-x)2]=(2x+2-x)(4x+4-x-1)=5×(23-1)=110.析规律 平方在知值求值中的应用遇到式子中含有指数互为相反数的数,通常用平方进行解决,平方后观察条件和结论的关系,变形求解即可.本题中用到了两个公式(a +b )2=a 2+2ab +b 2,a 3+b 3=(a +b )(a 2-ab +b 2).【例6-2】已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0,的值. 分析:观察所求式子,将所求式子平方后出现了ab 和a +b 的形式.又a ,b 为方程的两根,所以可利用根与系数的关系求解.解:由根与系数的关系可得=6,=4.a b ab +⎧⎨⎩∵a >b >0,>又∵221=105⎛.。
实数指数幂及运算法则教案

实数指数幂及运算法则教案一、教学目标1. 理解实数指数幂的概念,掌握有理数指数幂的性质。
2. 掌握实数指数幂的运算法则,能够熟练进行相关计算。
3. 能够运用实数指数幂及运算法则解决实际问题。
二、教学重点与难点1. 教学重点:实数指数幂的概念,有理数指数幂的性质,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法1. 采用讲授法,讲解实数指数幂的概念、性质和运算法则。
2. 利用例题解析,让学生掌握实数指数幂的运算方法。
3. 开展小组讨论,引导学生探索实数指数幂的运算法则的应用。
四、教学内容1. 实数指数幂的概念2. 有理数指数幂的性质3. 实数指数幂的运算法则4. 实数指数幂的运算法则在实际问题中的应用五、教学安排1. 第一课时:实数指数幂的概念、有理数指数幂的性质2. 第二课时:实数指数幂的运算法则、例题解析3. 第三课时:实数指数幂的运算法则的应用、小组讨论4. 第四课时:课堂小结、作业布置5. 第五课时:作业批改与讲解、课后辅导六、教学过程1. 导入新课:回顾上一节课的内容,引出实数指数幂的运算法则。
2. 讲解实数指数幂的运算法则:引导学生通过观察、分析、归纳实数指数幂的运算法则。
3. 例题解析:讲解典型例题,让学生掌握实数指数幂的运算方法。
4. 小组讨论:让学生探讨实数指数幂的运算法则的应用,分享解题心得。
5. 课堂小结:对本节课的内容进行总结,强调实数指数幂的运算法则的重要性。
七、课后作业1. 复习实数指数幂的运算法则。
2. 完成课后练习题,巩固所学知识。
3. 思考实际问题,运用实数指数幂的运算法则解决问题。
八、作业批改与讲解1. 及时批改学生作业,了解学生掌握情况。
2. 针对学生作业中出现的问题,进行讲解和辅导。
3. 鼓励学生提问,解答学生心中的疑惑。
九、课后辅导1. 针对学习有困难的学生,进行个别辅导。
2. 组织课后讨论小组,帮助学生巩固实数指数幂的运算法则。
实数指数幂及运算法则教案

实数指数幂及运算法则教案一、教学目标1. 理解实数指数幂的概念,掌握有理数指数幂的运算性质。
2. 掌握实数指数幂的运算法则,能够运用运算法则解决实际问题。
3. 培养学生的数学思维能力,提高学生的数学素养。
二、教学重点与难点1. 教学重点:实数指数幂的概念,有理数指数幂的运算性质,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法采用问题驱动法、案例分析法、分组讨论法等多种教学方法,引导学生主动探究、合作学习,提高学生解决问题的能力。
四、教学准备1. 教师准备:实数指数幂的相关知识,运算法则的案例,教学PPT等。
2. 学生准备:预习实数指数幂的相关知识,准备好笔记本。
五、教学过程1. 导入新课教师通过复习实数的基本概念,引导学生进入实数指数幂的学习。
2. 知识讲解(1)实数指数幂的概念教师讲解实数指数幂的定义,引导学生理解指数幂的意义。
(2)有理数指数幂的运算性质教师讲解有理数指数幂的运算性质,引导学生掌握运算规律。
(3)实数指数幂的运算法则教师讲解实数指数幂的运算法则,引导学生掌握运算法则。
3. 案例分析教师展示实数指数幂的运算案例,引导学生运用运算法则解决问题。
4. 课堂练习教师布置课堂练习题,学生独立完成,教师进行讲解和辅导。
5. 总结与拓展教师对本节课的知识进行总结,引导学生思考实数指数幂在实际问题中的应用。
6. 课后作业教师布置课后作业,巩固所学知识。
六、教学反思教师在课后对教学情况进行反思,针对学生的掌握情况,调整教学策略,以提高教学效果。
七、教学评价通过课堂表现、课后作业和课堂练习,评价学生对实数指数幂及运算法则的掌握程度。
八、教学时间本节课计划用2课时完成。
九、教学资源1. 教学PPT2. 实数指数幂的案例分析资料3. 课堂练习题十、教学拓展引导学生学习实数指数幂在实际问题中的应用,如科学计算、经济学等领域。
六、教学活动设计1. 导入新课:通过复习实数的乘方概念,引导学生自然过渡到实数指数幂的学习。
2011高一数学学案:3.1.1《实数指数幂及其运算》(第二课时)(新人教B版必修一)

3.1.1实数指数幂及其运算(2)【学习目标要求】要求学生理解分数指数幂的概念和性质,根式和分数指数幂的互化,实数指数幂的概念和性质,并会进行相关运算。
【知识再现】1 ① 当n =;② 当n a ⎧==⎨⎩(要注意分清n 是偶数还是奇数)2 整数数指数幂的性质(1) ,(2) ,(3) 。
(4) 。
3 如果存在实数x ,使得(,1,)n x a a R n n N +=∈>∈,则x 叫作 。
求a 的n 次方根,叫作把a 开n 次方,称作 。
4规定正分数指数幂的定义是:(1) (2) 。
规定负分数指数幂的定义是: 。
规定0的正分数指数幂为0,0的负分数指数幂和0次幂 。
规定了分数指数幂以后,指数的概念也就从整数指数扩展到了 指数。
5 有理指数幂的运算性质有:(1) (2)(3) 。
【概念探究】阅读教材86页88页例题1以前,思考并完成以下问题1分数指数幂是根式的另一种表示,根式的运算可利用 之间的关系转化为分数指数幂的运算.对于问题计算化简的结果,不强求统一用何种形式来表示.但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.2 为什么有理指数幂可以扩展到无理指数幂?例题例1 化简:332b a a b ba练习:(1例2:已知:22121=+-a a 求下列各式的值(1)22-+a a ;(2)33-+a a ;(3)44-+a a .练习:已知12,9x y xy +==,且x y <,求11221122x yx y -+的值。
【课堂检测】1 下列运算正确的是( )A 2332()()a a -=-B 235()a a -=-C 235()a a -=D 236()a a -=- 2 下列说法正确的是( )A -2是16的四次方根B 正数的n 次方根有两个C a 的nD a =3 下列各式成立的是( ) A 7177n n m m ⎛⎫= ⎪⎝⎭ B= C34()x y =+ D=4. (1)4325)12525(÷-(22a>0)5. 化简2115113366221()(3)()3a b a b a b-÷,(0)b≠6. 0=,求x y。
教学设计3: 实数指数幂及其运算

3.1.1实数指数幂及其运算(一)学习目标1.知识与技能目标理解整数指数幂的概念和性质,并能用于相关计算中;理解根式的概念和性质,并能用于相关计算中。
2.过程与方法目标通过复习回顾初中所学二次根式的相关性质,用类比的思想来完成根式的学习。
3.情感态度与价值观目标通过复习回顾旧知识,来完成新知识的学习,在这一过程中培养观察分析、抽象概括能力、归纳总结能力、化归转化能力。
(二)重点难点教学重点:根式的概念、性质教学难点:根式的概念(三)教学内容安排1复习回顾:在初中,我们已经学习了整数指数幂的概念及其性质。
现在,我们一起来看屏幕。
规定:a 0=1(a≠0)n n aa 1=-(a≠0,n +N ∈) 这儿我们为什么都要求a≠0?(引导学生分析清楚)另外,我们在初中还学习了平方根、立方根这两个概念。
我们来看,若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。
这样,我们可以给出n 次方根的定义。
2讲授新课:1.n 次方根的定义:若x n =a(n>1且n ∈N*),则x 叫做a 的n 次方根。
n 次方根的定义给出了,我们考虑这样一个问题,x 如何用a 表示呢?正数的平方根有两个且互为相反数,负数没有平方根;正数的立方根是正数,负数的立方根是负数。
跟平方根一样,偶次方根有下列性质:在实数范围内,正数的偶次方根有两个且互为相反数,负数没有偶次方根;跟立方根一样,奇次方根有下列性质:在实数范围内,正数的奇次方根是正数,负数的奇次方根是负数。
这样,再由n 次方根的定义我们便可得到n 次方根的性质。
2.根式运算性质:①a a n n =)((n>1,且n +N ∈),||,a n a n ⎧=⎨⎩当为奇数时;当为偶数时关于性质的推导,我们一起来看:性质②有一定变化,大家应重点掌握,接下来,我们来看例题。
3.例题讲解: 解:)(||)()4(3|3|)3()3(10|10|)10()2(881244233b a b a b a b a >-=-=--=-=-=-=--=πππ)(-)(根指数n 为奇数的题目较易处理,而例题侧重于根指数n 为偶数的运算,说明此类题目容易出错,应引起大家的注意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.1 实数指数幂及其运算(二)
【学习要求】
1.理解规定分数指数幂的意义.
2.学会根式与分数指数幂之间的相互转化.
3.理解有理指数幂的含义及其运算性质.
4.了解无理指数幂的意义. 【学法指导】
通过类比、归纳,理解分数指数幂的有关运算性质,加深根式与分数指数幂关系的理解,提高归纳、概括的能力,了解由特殊到一般的解决问题的方法,渗透分类讨论的思想. 填一填:知识要点、记下疑难点
1.正数的正分数指数幂:a m
n = (n a)m =∈N +,且m n 为既约分数).
2.正数的负分数指数幂的意义与负整数指数幂的意义相同.即
a -m
n
= (a>0,m,n ∈N +,且m
n 为既约分数).
3.a r ·a s =a r +s (a>0,r,s ∈Q).
4.(a r )s = a rs _ (a>0,r,s ∈Q).
5.(ab)t = a t b t (a>0,b>0,t ∈Q). 研一研:问题探究、课堂更高效
[问题情境] 我们知道12,(12)2,(12)3,…,它们的值分别为12,14,1
8
….那么,2 ,2 ,2 ,2 ……的意义是什么呢?
这正是我们将要学习的知识.下面,我们一起将指数的取值范围从整数推广到实数. 探究点一 分数指数幂
问题1 什么叫实数?
问题2 根据n 次方根的定义和数的运算,得出以下式子,你能从中总结出怎样的规律? ①
5
a 10
=5
(a 2)5=a 2=a 105(a>0); ②a 8=(a 4)2=a 4=a (a>0); ③4
a 12=4(a 3)4=a 3=a(a>0).
问题3 当根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式? 小结:正分数指数幂的定义为:a 1
n =
n
a (a>0);a m
n =(n a)m =n a m (a>0,n,m∈N +,且m
n 为既约分数).负分数指
数幂的意义与负整数指数幂的意义相同,即:a -
m
n =
(a>0,m,n∈N +).定义了分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法.
问题4 定义了分数指数幂的意义后,指数幂的概念就从整数指数幂推广到有理指数幂,那么整数指数幂的运算性质对于有理指数幂是否还适用?
例1 求下列各式的值: 823
; 25-1
2 ; ⎝ ⎛⎭⎪⎫12-5 ; ⎝ ⎛⎭
⎪⎫1681 -3
4.
小结:在进行求解时,首先要把比较大的整数化成比较小的数的指数幂的形式,还要熟练掌握分数指数幂的运算性质,
化负指数为正指数,同时还要注意运算的顺序问题.
1
m
n
a
1
m n
a
跟踪训练1用分数指数幂的形式表示下列各式(a>0):
a 3·a ; a 2·3
a 2 ;
a 3
a.
例2 计算下列各式(式中字母都是正数).
(1)(2a
23
b 12)(-6a 12b 1
3 )÷(-3a 1
6 b 56 ); (2)(m 1
4 n
-
3
8
) 8. 小结:一般地,进行指数幂运算时,可按系数、同类字母归在一起,分别计算;化负指数为正指数,化小数为分数进行
运算,便于进行乘除、乘方、开方运算,可以达到化繁为简的目的.
跟踪训练2 计算下列各式: (1)(3
25-125)÷4
25; (2)
a 2a ·3a
2(a >0).
探究点二 无理指数幂
问题1 阅读教材88页的上半页,你能说出3
2
的意义吗?
问题2 无理指数幂a p
(a>0,p 是一个无理数)有何意义? 问题3 无理指数幂a p
(a>0,p 是一个无理数)有怎样的运算性质?
小结: 一般地,当a>0,为任意实数值时,实数指数幂a α
都是有意义的.可以证明,对任意实数值α,β,上述有理指数幂的运算法则仍然成立. 例3 化简下列各式:
小结:化简的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既含有分母,又含有负指数.
跟踪训练3 计算下列各式:
(1)⎝ ⎛⎭⎪⎫2350+2-2·
⎝ ⎛⎭
⎪⎫214-
12-(0.01)0.5; (2)(0.000 1)
-
1
4+272
3 -⎝ ⎛⎭⎪⎫4964-12
+(19)-1.5
. 解:略。