高一数学必修4期末试卷及答案
完整版高一数学必修四期末测试题及答案

高一数学必修 4 综合试题一、选择题1.sin 390 ( ) A .12B.12C.32D.322.以下区间中,使函数y sin x 为增函数的是( )A.[0, ] B.3[ , ]2 2C.[ , ]2 2D.[ , 2 ]的是( )3.以下函数中,最小正周期为2xA.y sin x B.y sin xcos x C.y tan D.y cos 4x2v v v v4.已知a ( x,3) , b (3,1) , 则x 等于( ) A .-1 B.-9 C.9 D.1, 且a b5.已知sin cos 13 ,则sin2( )A.12B.12C.89D.896.要获得2y sin(2 x )的图像,需要将函数y sin 2x 的图像()32 2个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位A.向左平移3 3 3 3r r r r r r r r,b 满足:| a | 3 ,|b| 2 ,| a b | 4 ,则|a b |7.已知a ( ) A . 3 B. 5 C.3 D.10u u u v u u u v8.已知P1(2, 1), P2(0,5) 且点P在P1P2 的延长线上, | PP | 2| PP |, 则点P 的坐标为( )1 2A.(2, 7) B.4( ,3)3C.2( ,3)3D.(2,11)9.已知tan( ) 25,1tan( )4 4, 则t an( )4的值为( )A.16B.2213C.322D.131810.函数y sin( x ) 的部分图象如右图,则、可以取的一组值是()A. ,2 4 B. ,3 6y5,4 4C. ,D.4 4第II 卷(非选择题, 共60 分)O 1 2 3x 二、填空题(本大题共 4 小题,把答案填在题中横线上)11.已知扇形的圆心角为120 ,半径为3,则扇形的面积是12.已知ABCD 为平行四边形,A(-1,2) ,B (0,0),C(1,7),则D点坐标为13.函数y sin x 的定义域是.14. 给出以下五个命题:①函数2sin(2 )y x 的一条对称轴是35x ;②函数y tan x的图象关于点(122,0)对称;③正弦函数在第一象限为增函数;④若sin(2 x1 ) sin(2 x2 ) ,则x1 x2 k ,此中k Z4 4以上四个命题中正确的有(填写正确命题前方的序号)1三、解答题(本大题共 6 小题,解答应写出文字说明,证明过程或演算步骤)15.(1)已知4cos a = - a sin a5(2)已知tan 3,计算4sin5 c os2cos3sin的值16)已知为第三象限角,3sin( )cos( ) tan( )2 2f .tan( )sin( )(1)化简 f 2)若3 1cos( )2 5,求f 的值v 17.已知向量av, bo的夹角为60v, 且| a | 2v, |b| 1v v v v, (1) 求 a gb ; (2) 求| a b |.r18 已知a(1,2)r r, b ( 3,2) ,当k 为什么值时,(1) kabr r与a 3br r垂直?(2) ka br r与a 3b 平行?平行时它们是同向还是反向?19 某港口的水深y (米)是时间t (0t 24,单位:小时)的函数,下边是每日时间与水深的关系表:t 0 3 6 9 12 15 18 21 24 y 10 13 7 10 13 7 10经过长久察看,y f (t)可近似的看作是函数y A sin t b (1)依据以上数据,求出y f (t) 的解析式(2)若船舶航行时,水深最少要米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?2r20 已知a ( 3 sin x, m cos x)r,b (cos x, m cos x)v v, 且f (x) a bg(1) 求函数f (x) 的解析式;x 时, f (x) 的最小值是-4 , 求此时函数 f (x) 的最大值, 并求出相应的x 的值.(2) 当,6 3数学必修 4 综合试题参照答案一、ACDAD DDDCC二、11.3 12.(0,9) 13. [2 k ,2k ] k Z 14. ①④三、15.解:(1)∵ 2 2cos sin 1,为第三象限角∴2 4 23 sin 1 cos 1 ( )5 5(2)明显cos 04sin 2cos∴4sin 2cos cos 4tan 2 4 3 2 55cos 3sin5cos 3sin 5 3tan 5 3 3 7cos16.解:(1) f3sin( )cos( ) tan( )2 2tan( )sin( )( cos )(sin )( tan ) ( tan )sincos(2)∵3 1cos( )2 5∴sin15从而sin15又为第三象限角∴cos 1 sin 22 65 ,即f ( ) 的值为2 65317.解:(1) v v v v1oa g b|a||b |cos60 2 1 12v v v v2 2(2)|a b | (a b)v v v v2 2a 2a gb b4 2 1 13v v所以| a b | 3r r18.解:ka b k (1,2) ( 3, 2) (k3,2k 2) r ra 3b (1, 2) 3( 3, 2) (10, 4)r r (1)(ka b)r r(a 3b )r r r r,得(ka b)g(a 3b) 10( k3) 4(2 k 2) 2k 38 0,k 19r rr r(2)(ka b)//(a 3b),得4(k 3)10(2 k2), k此时r rka b10 4 1( , ) (10, 4)3 3 3,所以方向相反。
(完整版)高中数学必修四期末测试题( 含答案 ),推荐文档

8
4
第5页共6页
由于 <<,可得 = 3 .
2
4
综上,所求解析式为 y=10sin π x+ 3π +20,x∈[6,14].
2
6.C 解析:在平行四边形 ABCD 中,根据向量加法的平行四边形法则知 AD +
AB = AC .
7.B 解析:由 T= 2π =,得 =2.
8.D
解析:因为 a∥b,所以-2x=4×5=20,解得 x=-10.
9.D
解析:tan(-)=
tan+ tan
=
3+
4 3
=1
.
1+ tan tan 1+ 4 3
3.C 解析:在直角坐标系中作出- 4 由其终边即知.
3
4.D 解析:由 cos >0 知,为第一、四象限或 x 轴正方向上的角;由 sin <0 知,为第三、四象限或 y 轴负方向上的角,所以 的终边在第四象限. 5.B 解析:sin 20°cos 40°+cos 20°sin 40°=sin 60°= 3 .
A.-1
B.1
C.-3
D.3
12.下列函数中,在区间[0, ]上为减函数的是(
).
2
A.y=cos x
B.y=sin x C.y=tan x
D.y=sin(x- )
3
13.已知 0<A< ,且 cos A= 3 ,那么 sin 2A 等于(
).
2
5
A. 4
25
B. 7
25
C. 12
25
D. 24
5
16. 3 .
4
解析:在[0,)上,满足 tan =-1 的角 只有 3 ,故 = 3 .
4
人教版高一数学必修1必修4期末测试卷附答案

人教版高一数学必修1必修4期末测试卷附答案人教版高一数学必修1必修4期末测试卷姓名:__________ 班级:___________ 学号:____________ 分数:______________一、选择题(每题5分,共40分)1.集合A={x∈N*|-1<x<3}的子集的个数是(。
)。
A。
4.B。
8.C。
16.D。
322.函数f(x)=1/(1-x)+lg(1+x)的定义域是(。
)。
A。
(-∞,-1)。
B。
(1,+∞)。
C。
(-1,1)U(1,+∞)。
D。
(-∞,+∞)3.设a=log2,c=5-1/3,b=ln22,则(。
)。
A。
a<b<c。
B。
b<c<a。
C。
c<a<b。
D。
c<b<a4.函数y=-x^2+4x+5的单调增区间是(。
)。
A。
(-∞,2]。
B。
[-1,2]。
C。
[2,+∞)。
D。
[2,5]5.已知函数f(x)=x^2-2ax+3在区间(-2,2)上为增函数,则a的取值范围是(。
)。
A。
a≤2.B。
-2≤a≤2.C。
a≤-2.D。
a≥26.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是(。
)。
A。
y=x-2.B。
y=x-1.C。
y=x^2.D。
y=x^37.若函数f(x)=x/(2x+1)(x-a)为奇函数,则a=(。
)。
A。
1/2.B。
2/3.C。
3/4.D。
1/88.已知α是第四象限角,XXX(π-α)=5/12,则sinα=(。
)。
A。
1/5.B。
-1/5.C。
5.D。
-59.若tanα=3,则sinαcosα=(。
)。
A。
3.B。
3/2.C。
3/4.D。
9/410.sin600°的值为(。
)。
A。
3/2.B。
-3/2.C。
-1/2.D。
1/211.已知cosα=3/5,π/4<α<π,则XXX(α+π/4)=(。
)。
A。
1.B。
-1.C。
5/8.D。
-5/812.在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(。
高一数学必修四期末考试题含答案

2011—2012学期深州备修院 高一数学第一学期期末考试试题(必修4)注:本试卷共21题,满分150分.考试时间为2小时30分。
一、选择题:(每小题5分,共12题,合计60分) 1. 下列命题中正确的是( )A .第一象限角必是锐角B .终边相同的角相等C .相等的角终边必相同D .不相等的角其终边必不相同 2。
sin 330︒等于( )A .B .12- C .12D 3。
若 ,3) 1( )1, 1(B A -- ,5) (x C 共线,且 BC AB λ= 则λ等于( )A 、1B 、2C 、3D 、44。
若α是ABC ∆的一个内角,且12sin α=则α等于( )A 、︒30B 、︒30或︒150C 、︒60D 、︒60或︒1505.设02παβ<<<,3sin 5α=,12cos()13αβ-=,则sin β的值为A .6556 B .6516 C .6533 D .6563 6. 若点P 在34π的终边上,且|OP|=2,则点P 的坐标( ) A .)3,1( B .)1,3(- C .)3,1(-- D .)3,1(- 7.设四边形ABCD 中,有DC =21AB ,且|AD |=|BC |,则这个四边形是 A 。
平行四边形 B . 矩形 C 。
等腰梯形 D ..菱形 8. 把函数y =c os x 的图象上的所有点的横坐标缩小到原来的一半(纵坐标不变),然后把图象向左平移4π个单位,则所得图形对应的函数解析式为( )A 。
)821cos(π+=x y B 。
)42cos(π+=x y C 。
)421cos(π+=x y D.)22cos(π+=x y9. 函数sin(),2y x x R π=+∈是在( )A .[,]22ππ-上是增函数 B .[0,]π上是减函数C .[,0]π-上是减函数D .[,]ππ-上是减函数10。
已知角α的终边过点()m m P 34,-,()0≠m ,则ααcos sin 2+的值是( ) A .1或-1 B .52或 52- C .1或52- D .-1或52 11. 下列命题正确的是( )A 若→a ·→b =→a ·→c ,则→b =→c B 若||||b a b a -=+,则→a ·→b =0 C 若→a //→b ,→b //→c ,则→a //→c D 若→a 与→b 是单位向量,则→a ·→b =1 12. 函数f(x )=sin2x ·cos2x 是 ( )A 周期为π的偶函数B 周期为π的奇函数C 周期为2π的偶函数 D 周期为2π的奇函数。
新人教A版高中数学必修四第二学期期末考试测试题(含答案)

山东省聊城四中第二学期高一期末考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,本试卷120分,考试时间100分钟。
2.答题前请将自己的学校、班级、姓名、考场号等填写在答题卷密封线内的相应栏目。
3.请将答案按题序号填写在答题卷上,考后仅收答题卷。
第Ⅰ卷(选择题 共48分)一、选择题:(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,选择一个符合题目要求的选项.)1.5sin()6π-的值是A .B .12C .D .12- 2.已知(1,2),(5,4),(.3),(3,)A B C x D y -,且AB CD =,则,x y 的值分别为A 、-7,-5B 、-7,5C 、7,-5D 、7,5 3.下列给出的赋值语句中正确的是 ( )A . 4M =B .M M =-C 3B A ==D 0x y +=4.某经济研究小组对全国50个中小城市进行职工人均工资x 与居民人均消费水平y 进行了统计调查,发现y 与x 具有相关关系,其回归方程为ˆ0.3 1.65y x =+(单位:千元).某城市居民人均消费水平为6.60,估计该城市职工人均消费水平额占居民人均工资收入的百分比为 A .66%B .55.3%C .45.3%D .40%5.右图是某学校举行的运动会上,七位评委为某体操项目打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数及方差分别为( )A .84,4.84B .84,1.6C .85,1.6D .85,4 6.如图,已知正方形的面积为10,向正方形内随机地撒200颗黄豆,数得落在阴影外 的黄豆数为114颗,以此实验数据为依据, 可以估计出阴影部分的面积约为( ) A .5.3 B .4.3C .4.7D .5.77.已知)1,1(-A ,)5,2(B ,点P 在线段AB 上,且||3||=,则点P 的坐标为 ( )A .)4,1(-B .)313,23(C .)4,45(D .)213,411(8.函数x x y cos -=的部分图象是( )10.从分别写有A 、B 、C 、D 、E 的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为( )A .51B .52C .103 D .107 11.要得到函数x y cos 2=的图象,只需将函数)42sin(2π+=x y 的图象上所有的点的( )A .横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度; B .横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度;C .横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度;D .横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度。
高一下期人教A版必修3+必修4数学期末测试试卷及答案

高一数学下期期末测试试卷(考试时间:120分钟 满分:150分)一、选择题(每小题5分,共60分)在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项的代号填在题后的括号中.)1.给出下列关系式:sin1>sin2,cos(-21)>cos 31,tan125°>tan70°, sin1213π>cos 1213π,其中正确的个数是 ( ) A 、1 B 、2 C 、3 D 、4 2.如果f(x+π)=f(-x),且f(x)= f(-x),则f(x)可能是( )A 、sin2x Bcosx C 、sin|x| D 、|sinx|3.关于函数图象的变化,正确的结论是 ( )A 、将图象y=sin(2x-4π)向右平移4π,得图象y=sin2x B 、将图象y=sin(2x-4π)上的每一点的纵坐标不变,横坐标变为原来的21,得 图象y=sin(x-4π) C 、将图象y=f(x)按向量=(h,k)平移得图象y=f(x-h)-kD 、将图象y=f(x)先按向量平移,再按向量平移,且+=(-1,2),则得到的图象为y=f(x+1)+24.在△ABC 中,A 、B 、C 的对边分别是a 、b 、c ,则acosB+bcosA 等于 ( )A 、2cosCB 、2sinC C 、2b a + D 、c 5.不重合的四点A 、B 、C 、D 满足:2AB =3AC ,AB =-2BD ,则点D 分BC 之比为 ( )A 、3B 、-3C 、31D 、-31 6.设,,是任意的非零平面向量,且两两不共线,下列命题其中正确的有 ( )A 、①② B、②③ C、③④ D、②④7.已知OA =(-3,4),AB =(13,-4),则AB 在OA 上的投影为 ( )A 、11B 、-11C 、18555D 、-185558.已知AB =(3,-2), AC =(k,3),且△ABC 为直角三角形,则实数k 的值为 ( )A 、2B 、319C 、不存在D 、2或319 9.在△ABC 中,已知b 2-bc-2c 2=0,且a=6,cosA=87,则△ABC 的面积为 ( ) A 、215 B 、15 C 、2 D 、3 10.在△ABC 中,tanA+tanB+tanC>0,则△ABC 是( )A 、 锐角三角形B 、 钝角三角形C 、直角三角形D 、任意三角形11.已知m 、n 是夹角为60°的两个单位向量,则a =2m +n 和b =-3m +2n 的夹角为( )A 、30° B、60° C、120° D、150°12.在△ABC 中,sinA:sinB:sinC=2:6:(3+1),则三角形的最小内角是( )A 、60° B、45° C、30° D、以上答案都不对二、填空题(每小题4分,共16分)请将你认为正确的答案直接填在题后的横线 上.13.已知cos(4+x)=53,1217π<x<47π,则tanx=____________. 14.计算cos15°cos75°+cos 215°=_____________.15.已知△ABC 中,a=1,b=3,A=30°,则B=____________.16.在正六边形ABCDEF 中,若AB =a ,CD =b ,则CB =______________.三、解答题(本题共6个小题,共74分)解答应写出文字说明、证明过程或演算 步骤).17.(12 分) 已知△A BC 三顶点的坐标分别为A(2,1),B(0,3),C(-1,5),AD 为边BC 上的高。
高一下学期期末必修4测试(数学)

高一必修4水平测试数学试卷注意:本试卷满分100分,附加题20分,考试时间100分钟.答案必须写在答题卷上,在试题卷上作答无效.6.函数是A .最小正周期为π的奇函数 B. 最小正周期为π的偶函数 C. 最小正周期为2π的奇函数 D. 最小正周期为2π的偶函数7.设四边形ABCD 中,有DC =21AB ,且|AD |=|BC |,则这个四边形是A .平行四边形 B.矩形 C.等腰梯形 D.菱形8.有下列四种变换方式: ①向左平移4π,再将横坐标变为原来的21(纵坐标不变);②横坐标变为原来的21(纵坐标不变),再向左平移8π; ③横坐标变为原来的21(纵坐标不变),再向左平移4π;④向左平移8π,再将横坐标变为原来的21(纵坐标不变);其中能将正弦曲线x y sin =的图像变为)42sin(π+=x y 的图像的是A. ①和③B. ①和②C.②和③D.②和④ 9.函数3sin (2)26y x π=-+的单调递减区间是A. Z k k k ∈⎥⎦⎤⎢⎣⎡++-,23,26ππππ B. 52,2,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ C. Z k k k ∈⎥⎦⎤⎢⎣⎡++-,3,6ππππ D. 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ 10.如果函数()cos 2y x φ=3+的图像关于点43π⎛⎫⎪⎝⎭,0中心对称,那么||ϕ的最小值为 A.6π B.4π C.-3π D.2π二、填空题(本大题共5小题,每小题4分,共20分) 11.将0120化为弧度为__________.12.已知向量(3,1)a = ,(1,3)b = ,(,7)c k = ,若()a c -∥b ,则k = .13.已知tan a =4,tan β=3,,则tan(a+β)=_________. 14.函数22cos sin 2y x x =+的最小值是__________.15. 已知在平面直角坐标系中,A(-2,0),B(1,3),O 为原点,且OB OA OM βα+=,(其中α+β=1, α,β均为实数),若N(1,0) 的最小值是______________.三 、解答题(本大题共4小题,共40分,解答应写出必要的文字说明、证明过程或演算步骤)16. (10分)求值:(1))623tan(π-; (2)︒75sin17.(10分)已知tan 34πα⎛⎫+=⎪⎝⎭, 计算:(1) tan α (2) 2sin co s 3co s 25co s 23sin 2ααααα+-18.(10分)已知向量a , b 的夹角为60, 且||2a = , ||1b = , 若4c a b =- , 2d a b =+ ,求(1) a ·b;(2) ||c d + .19.(10分)已知函数()2sin()cos f x x x π=-.(1)求()f x 的最小正周期;(2)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值以及取得最大值、最小值时x 的值.附加题:(本大题共2小题,每小题10分,共20分. 省级示范性高中要把该题成绩记入总分,普通高中学生选做)1. (10分)已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫⎪⎝⎭,.(1)求()f x 的解析式; (2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.2. (10分)已知x k d x c b x a )(,1(),1,3(sin ),2,2(),1,sin 2(=-=-=+=→→→→∈R ,k ∈R), (1) 若[,]22x ππ∈-,且//()a b c +,求x 的值;(2) 若]32,6(ππ-∈x ,是否存在实数k ,使)(→→+d a ⊥)(→→+c b ? 若存在,求出k 的取值范围;若不存在,请说明理由。
人教A版数学必修四第一学期期末考试样卷高一数学参考答案.docx

浙江省湖州市2011学年上学期高一数学期终样卷考试参考答案与评分标准一、选择题(每小题5分,共50分)二、填空题(每小题4分,共28分)11.64 12.-5 13.5614. 5 15. 2 16.0.3 17. ① ⑤ (多选、错选不给分,少选一个给2分)三、解答题(共72分)18.解:(1) 6,9,9,18,15,3.……3分 (对两个得1分)本次考试的优良率约是30%.…………5分 (2)分数在[)70,80内的频率是0.3;……8分 频率分布直方图如右图.…………10分 (3)这60名学生的平均分数约是7105.09525.0853.07515.06515.0551.045=⨯+⨯+⨯+⨯+⨯+⨯分.………14分19.解: {}32≤<-=x x A ,{}92+<<=m x m x B ,…………………………2分 (1)0=m 时,{}90<<=x x B 则{}30≤<=x x B A I ,……………5分题号 1 2 3 4 5 6 7 8 9 10 答案ADBCADBCDB第18题图{}92<<-=x x B A Y .………………………… 8分(2)因为B B A =I ,所以A B ⊆,……………10分 当92+≥m m ,即9≥m 时,φ=B ,满足A B ⊆,……12分当92+<m m ,即9<m 时⎩⎨⎧≤+-≥3922m m 即⎩⎨⎧-≤-≥61m m 所以φ∈m综上:满足条件的m 的集合是}9|{≥m m …………………………………14 分20.解:一次事件记为(,)a b ,则共有6636⨯=种不同结果,因此共有36个基本事件(1,1)(1,2)(1,6)(2,1)(2,2)(2,6)(6,1)(6,2)(6,6)⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ …………………………………3分(没有列举不扣分)(1)a b +能被3整除的事件有(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),(4,5),(5,1),(5,4),(6,3),(6,6)共12种…… 6分(没有列举不扣分)则a b +能被3整除的概率为121363=.………………………… 8分 (2)方程20x ax b -+=有实数解,则240a b -≥,……………… 9分符合条件的(,)a b 有:(2,1),(3,1),(4,1),(5,1),(6,1)(3,2),(4,2),(5,2),(6,2)(4,3),(5,3),(6,3)(4,4),(5,4),(6,4)(5,5),(6,5)(5,6),(6,6)共19个 …………………………12分(没有列举不扣分) 则方程20x ax b -+=有实数解的概率为1936.………………………… 14分 21.解:(1)0)0()(=∴f R x f 上的奇函数,是Θ.………………… 2分 02111=-+∴a , ∴1=a ………………………… 4分 (2)上单调递增在R x f )(,………………………………… 6分由(1)知:1212121122)(+-=-+=x x x x f ,⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+-=-<1212112121)()(,21212121x x x f x f x x x x 则是任意的两个实数,且设 )12)(12(222121++-=x x x x …………………………… 9分 ,0)12)(12,022,212121>++<-∴<x x x x x x 又(Θ0)()(21<-∴x f x f ,即)()(21x f x f <……………………… 10分故上单调递增在R x f )(.(3)由(2)知:恒成立,时,0))(lg(21,0<-⎥⎦⎤⎢⎣⎡∈x b f x等价于:恒成立,时,0)lg(21,0<-⎥⎦⎤⎢⎣⎡∈x b x ……… 12分 等价于:恒成立,时,1021,0<-<⎥⎦⎤⎢⎣⎡∈x b x 即 ⎪⎩⎪⎨⎧<>-1021b b ……………………………… 14分 121<<∴b ……………… ………………………… 15分 22. 解:(1)解:2210()(,1)(1,)x x f x ++>⇒-∞--+∞U 的定义域.………… 5分 (写成R 的给3分) (2)令1)(2++=tx x x g ,当0)(,1)0()(0,02min min =∴==≥≤-x f g x g t t时,即………………… 7分 当)41lg()(,041)2()(02,1202min 2min t x f t t g x g t t -=∴>-=-=<<-<-<时,即…… 9分 综上:⎪⎩⎪⎨⎧≥<<--=0,002),41lg()(2mint t t x f …………………………………………… 10分 (3)解法一:假设存在,则由已知得22110,2a ta a b tb b a b a b ⎧++=⎪++=⎪⎨<<⎪⎪≠⎩等价于21(0,2)x tx x ++=在区间上有两个不同的实根………… 12分 22()(1)1(0,2)10(0)03(2)032102(1)400210222h x x t x h t h t t b t a =+-+>⎧>⎧⎪⎪⎪>->⎪⎪⎪∴⇒⇒-<<-∆>⎨⎨-->⎪⎪⎪⎪<-<-⎪<-<⎪⎩⎩令在上有两个不同的零点 ………………………… 15分解法2:假设存在,则由已知得22110,2a ta ab tb ba b a b ⎧++=⎪++=⎪⎨<<⎪⎪≠⎩等价于21(0,2)x tx x ++=在区间上有两个不同的实根… 12分 等价于1()1,(0,2)t x x x=-++∈, 做出函数图像,可得312t -<<-.………………………… 15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一年级数学《必修4》试题一、选择题(每小题4分,共40分)1.与463-︒终边相同的角可以表示为(k Z)∈ ( )A .k 360463⋅︒+︒B .k 360103⋅︒+︒C .k 360257⋅︒+︒D .k 360257⋅︒-︒ 2 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是 ( )A .AB OC = B .AB ∥DE C .AD BE =D . AD FC =3.α是第四象限角,12cos 13α=,sin α=( ) A513B 513-C 512D 512-4. 2255log sinlog cos 1212π+π的值是( )A 4B 1C 4-D 1-5. 设()sin()cos()f x a x b x =π+α+π+β+4,其中a b 、、、αβ均为非零的常数,若(1988)3f =,则(2008)f 的值为( )A .1B .3C .5D .不确定6. 若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为( )A .1B .2C .3D .27. 为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位8. 函数),2,0)(sin(R x x A y ∈π<ϕ>ωϕ+ω=的部分图象如图所示,则函数表达式为( )A .)48sin(4π-π-=x yB .)48sin(4π-π=x yC .)48sin(4π+π=x yD .)48sin(4π+π-=x y9. 设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x =( )A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数10.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC ( )A .互相垂直B .同向平行C .反向平行D .既不平行也不垂直二、填空题(每小题4分,共16分)11.23sin 702cos 10-=-12.已知函数()2sin 5f x x π⎛⎫=ω- ⎪⎝⎭的图象与直线1y =-的交点中最近的两个交点的距离为3π,则函数()f x 的最小正周期为 。
13.已知函数()sin()cos()f x x x =+θ++θ是偶函数,且[0,]2πθ∈,则θ的值 为 .E DBAO14.下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =,2k k Z π∈}. ③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点.④把函数3sin(2)3y x π=+的图像向右平移6π得到3sin 2y x =的图像.⑤函数sin()2y x π=-在[0]π,上是单调递减的.其中真命题的序号是 .高一年级数学《必修4》试题答题纸一、选择题(每小题4分,共40分)题号123456789 1答案二、填空题(每小题4分,共16分)11. 12. 13.14.三、解答题(共四个小题,共44分)15.(本题满分10分,每小题5分) (1)化简:sin()cos(3)tan()tan(2)tan(4)sin(5)a παπααπαππαπ------+(2)若α、β为锐角,且12cos()13α+β=,3cos(2)5α+β=,求cos α的值. 16.(本小题满分10分)如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角βα,,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B的横坐标分别为25310510. (1)求tan()αβ-的值; (2)求αβ+的值. 17.(本小题满分12分)213()cos cos 1,2f x x x x x R =++∈. 已知函数(1)求函数()f x 的最小正周期;(2)求函数()f x 在[,]124ππ上的最大值和最小值,并求函数取得最大值和最小值时的自变量x 的值.18.(本小题满分12分)已知函数2π()cos 12f x x ⎛⎫=+ ⎪⎝⎭,1()1sin 22g x x =+.(1)设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值; (2)求函数()()()h x f x g x =+的单调递增区间.参考答案一、选择题(每小题4分,共40分)题号123456789 10答案CDBCBBADAC二、填空题(每小题4分,共16分)11.212.π13.4π 14. ①④三、解答题(共四个小题,15、16题各10,17、18题各12分,共44分)15.(本小题满分10分) (1)化简:sin()cos(3)tan()tan(2)tan(4)sin(5)a παπααπαππαπ------+.(2)若α、β为锐角,且12cos()13α+β=,3cos(2)5α+β=,求cos α的值. 解:(1)原式= sin α(2)因为α、β为锐角,且12cos()13α+β=,3cos(2)5α+β= [0,]2παβ+∈,2[0,]2παβ+∈所以5sin()13α+β=,4sin(2)5α+β=∴ 16cos cos((2)())65a ααββ=+-+=.16.(本小题满分10分)如图,在平面直角坐标系xOy 中,以Ox 轴为始边做两个锐角βα,,它们的终边分别与单位圆相交于A 、B 两点,已知A 、B的横坐标分别为(1)求tan()αβ-的值; (2)求αβ+的值.解:由条件得cos αβ==αβ、为锐角,sin αβ∴==11tan ,tan 23αβ∴==(1)11tan tan 123tan()111tan tan 7132αβαβαβ---===+⋅+⨯ (2) 11tan tan 23tan()1111tan tan 123αβαβαβ+++===-⋅-⨯又αβ、为锐角,0αβπ∴<+< 4παβ∴+=17.(本小题满分12分)已知函数21()cos cos 1,22f x x x x x R =++∈. (1)求函数()f x 的最小正周期;(2)求函数()f x 在[,]124ππ上的最大值和最小值,并求函数取得最大值和最小值时的自变量x 的值.解:21()cos cos 12f x x x x =++15cos 2244x x =++ 15sin(2)264x π=++(1)()f x 的最小正周期22T ππ== (2)[,]124x ππ∈ 22[,]633x πππ∴+∈∴当262x ππ+=,即6x π=时,max 157()244f x =+= 当263x ππ+=或2263x ππ+=时,即12x π=或4x π=时, min 153()244f x =-+=18.(本小题满分12分)已知函数2π()cos 12f x x ⎛⎫=+ ⎪⎝⎭,1()1sin 22g x x =+.(1)设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值; (2)求函数()()()h x f x g x =+的单调递增区间.解:(I )由题设知1π()[1cos(2)]26f x x =++.因为0x x =是函数()y f x =图象的一条对称轴,所以0π26x +πk =, 即0 π2π6x k =-(k ∈Z ). 所以0011π()1sin 21sin(π)226g x x k =+=+-.当k 为偶数时,01π13()1sin 12644g x ⎛⎫=+-=-= ⎪⎝⎭,当k 为奇数时,01π15()1sin 12644g x =+=+=.(II )1π1()()()1cos 21sin 2262h x f x g x x x ⎡⎤⎛⎫=+=++++ ⎪⎢⎥⎝⎭⎣⎦ 1π31313cos 2sin 2sin 2262222x x x x ⎫⎡⎤⎛⎫=+++=++⎪ ⎪⎢⎥⎪⎝⎭⎣⎦⎝⎭ 1π3sin 2232x ⎛⎫=++ ⎪⎝⎭. 当πππ2π22π232k x k -++≤≤,即5ππππ1212k x k -+≤≤(k ∈Z )时,函数1π3()sin 2232h x x ⎛⎫=++ ⎪⎝⎭是增函数,故函数()h x 的单调递增区间是5ππππ1212k k ⎡⎤-+⎢⎥⎣⎦,(k ∈Z ).。