五年级奥数余数问题
小学五年级奥数—数论之同余问题

小学五年级奥数—数论之同余问题数论之同余问题余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。
许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a是整数,b是整数(b≠0),若有a÷b q……r,也就是a=b×q+r,0≤r<b;我们称上面的除法算式为一个带余除法算式。
这里:1 当时:我们称a可以被b整除,q称为a除以b的商或完全商2 当时:我们称a不可以被b整除,q称为a除以b的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c 就是商,最后还剩余d本,这个d就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16 39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19 42除以5的余数等于3+4 7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1 3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
五年级高斯奥数之余数含答案

第16讲余数内容概述掌握余数酌概念与基本性质,掌握除以某些特殊数的余数的计算方法.学会利用余数的可加性、可减性和可乘性计算余数;学会运用同期性处理各类余数计算问题;学会求解“物不知数’问题.典型问题兴趣篇1.72除以一个数,余数是7.商可能是多少?2.100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?3.20080808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?4.4个运动员进行乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运动员打了多少盘?5.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?6.(1)220除以7的余数是多少?(2)1414除以11的余数是多少?(3)28121除以13的余数是多少?7.8+8⨯8+ +8⨯8⨯ ⨯810个8除以5的余数是多少?8.一个三位数除以21余17,除以20也余17.这个数最小是多少?2.(1) 421421 421除以 4 和 125 的余数分别是多少? (2) 808808 808 除以 9 和 11 的余数分别是多少?4.自然数 2 ⨯ ⨯ 2 -1 的个位数字是多少?9.有一个数,除以 3 的余数是 2,除以 4 的余数是 1.请问:这个数除以 12 余数是几?10.100 多名小朋友站成一列,从第一人开始依次按 1,2,3,…,11 的顺序循环报数,最 后一名同学报的数是 9;如果按 1,2,3,…,13 的顺序循环报数,那么最后一名同学报的 数是 11.请问:一共有多少名小朋友?拓展篇1.1111 除以一个两位数,余数是 66. 求这个两位数.21个421 21个8083.一年有 365 天,轮船制造厂每天都可以生产零件 1234 个,年终将这些零件按 19 个一包的规格打包,最后一包不够 19 个.请问:最后一包有多少个零件?2 ⨯ 2 ⨯ 67个2 5.算式12007 + 22007 + 32007 + + 2006 2007 计算结果的个位数是多少?6.一个自然数除以 49 余 23,除以 48 也余 23.这个自然数被 14 除的余数是多少?7.一个自然数除以 19 余 9,除以 23 余 7.这个自然数最小是多少?9.123123 123 除以 99 的余数是多少?7 ⨯ 7 ⨯ ⨯ 78.刘叔叔养了 400 多只兔子,如果每 3 只兔子关在一个笼子里,那么最后一个笼子里有 2只;如果每 5 只兔子关在一个笼子里,那么最后一个笼子里有 4 只;如果每 7 只兔子关在一 个笼子里,那么最后一个笼子里有 5 只.请问:刘叔叔一共养了多少只兔子?123个12310.把 63 个苹果,90 个橘子,130 个梨平均分给一些同学,最后一共剩下 25 个水果没有分出去.请问:剩下个数最多的水果剩下多少个?11.有一个大于 l 的整数,用它除 300、262、205 得到相同的余数,求这个数.12.用 61 和 90 分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数 是后一次的 2 倍,如果这个数大于 1,那么这个数是多少?超越篇1.从 l 依次写到 99,可以组成一个多位数 12345…979899.这个多位数除以 11 的余数是多少?2.算式 7 + 7 ⨯ 7 + +计算结果的末两位数字是多少? 2008个73.算式1⨯ 3 ⨯ 5 ⨯ 7 ⨯ ⨯ 2007 计算结果的末两位数字是多少?4.有 5000 多根牙签,按以下 6 种规格分成小包:如果 10 根一包,最后还剩 9 根;如果 9 根一包,最后还剩 8 根;如果依次以 8、7、6、5 根为一包,最后分别剩 7、6、5、4 根.原 来一共有牙签多少根?5.有三个连续的自然数,它们从小到大依次是5、7、9的倍数,这三个连续自然数最小是多少?6.请找出所有的三位数,使它除以7、11、13的余数之和尽可能大.7.已知21!AB0909421717094CD000.那么四位数ABCD是多少?8.有一些自然数n,满足:2n-n是3的倍数,3n-n是5的倍数,5n-n是2的倍数,请问:这样的,n中最小的是多少?第12讲余数内容概述掌握余数的概念与基本性质,掌握除以某些特殊数的余数的计算方法.学会利用余数的可加性、可减性和可乘性计算余数;学会运用同期性处理各类余数计算问题;学会求解“物不知数’问题.典型问题兴趣篇1.72除以一个数,余数是7.商可能是多少?【答案】1或5【解析】72-7=65,再分解质因数65=5×13,还有1×65=65,所以商可能是1或52.100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?【答案】8或16【解析】100和84同余,做差后是这个数的倍数,100-84=16,所以这个除数可能是8或16 3.20080808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?【答案】8;0,8;0【解析】一个数除以9的方法:各位数字之和除以9,2+8+8+8=26,26÷9=2…8;除以8的方法:末三位除以8,808÷8=101…0;除以25的方法:末两位除以25,8÷25=0…8;除以11的方法:奇数位数字之和与偶数位数字之和的差除以11,2+0+0+0=2,0+8+8+8=24,24-2=22,22÷11=2 04.4个运动员进行乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运动员打了多少盘?【答案】5【解析】1+0+1=2,2÷3=…2,1+2+6=9,9÷3=…0,1+7+3=11,11÷3=…2,1+9+3=13…1,最多打了5盘5.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?【答案】168 ⨯ 8 ⨯ ⨯ 8 【解析】余数问题,求 128×23×300÷17 的余数128÷17=7...9 23÷17=1...6 300÷17=17 (11)9×6×11=594 594÷17=34 (16)6.(1) 220 除以 7 的余数是多少?(2) 1414 除以 11 的余数是多少?(3) 28121 除以 13 的余数是 多少?【答案】(1)4;(2)4;(3)2【解析】因为 23 除以 7 的余数是 1,20=3×6+2,所以 220 除以 7 的余数就是 22 除以 7 的余 数 即为 4;同理,1414 除以 11 的余数是 4;28121 除以 13 的余数是 27. 8 + 8 ⨯ 8 + +除以 5 的余数是多少? 10个8【答案】2【解析】根据余数的和等于和的余数的方法,除以 5 的余数是 28.一个三位数除以 21 余 17,除以 20 也余 17.这个数最小是多少?【答案】437【解析】最小公倍数问题,【21,20】=420,再加上 17,这个数最小是 4379.有一个数,除以 3 的余数是 2,除以 4 的余数是 1.请问:这个数除以 12 余数是几?【答案】5【解析】除以 3 的余数是 2 的数是 5,而 5 恰好除以 4 余 1,5 除以 12 余数是 510.100 多名小朋友站成一列,从第一人开始依次按 1,2,3,…,11 的顺序循环报数,最 后一名同学报的数是 9;如果按 1,2,3,…,13 的顺序循环报数,那么最后一名同学报的 数是 11.请问:一共有多少名小朋友?【答案】141【解析】根据题意,可转化为一个 100 多的数除以 11 余 9,除以 3 余 11,所以先求 11 和 13 的最小公倍数,再减去 2 就是所求,一共有 141 名小朋友拓展篇1.1111 除以一个两位数,余数是 66. 求这个两位数.【答案】95【解析】先从 1111 里减去余数 66,再分解质因数,所求的两位数要大于余数 66,所以是2.(1) 421421 421除以 4 和 125 的余数分别是多少? (2) 808808 808 除以 9 和 11 的余数分别是多少?4.自然数 2 ⨯ ⨯ 2 -1 的个位数字是多少? 9521个42121个808 【答案】(1)1,46;(2)3,5【解析】(1)21÷4=5…1;421÷125=3…46;(2)(8+8)×21÷9=37…3;808808÷11 余 0,最后还剩一个 808,8+8=16,16÷11 余 53.一年有 365 天,轮船制造厂每天都可以生产零件 1234 个,年终将这些零件按 19 个一包 的规格打包,最后一包不够 19 个.请问:最后一包有多少个零件?【答案】15【解析】先求出一年的总数,再除以 19 余数为 152 ⨯ 2 ⨯ 67个2【答案】7【解析】找出 2 的 n 次方的个位数字的周期,2,4,8,6…,再看 67 除以 4 的余数是 3, 所以个位数字是 8-1=75.算式12007 + 22007 + 32007 + + 2006 2007 计算结果的个位数是多少?【答案】1【解析】每个数乘方的个位数字的周期是 4,2007 除以 4 余 3,所以原式就与 1 到 2006 的 3 次方的个位数字是一样的,以 10 个数为一个周期列出为 1,8,7,4,5,6,3,2,9,0…, 2006 除以 10 余数为 6,所以前 6 个的和即是所求 1+8+7+4+5+6=31,所以个位数字是 16.一个自然数除以 49 余 23,除以 48 也余 23.这个自然数被 14 除的余数是多少?【答案】9【解析】【49,48】+23=2375,被 14 除余 97.一个自然数除以 19 余 9,除以 23 余 7.这个自然数最小是多少?9.123123 123 除以 99 的余数是多少?【答案】237【解析】7+23k -9 能被 19 整除,最小为 2378.刘叔叔养了 400 多只兔子,如果每 3 只兔子关在一个笼子里,那么最后一个笼子里有 2 只;如果每 5 只兔子关在一个笼子里,那么最后一个笼子里有 4 只;如果每 7 只兔子关在一 个笼子里,那么最后一个笼子里有 5 只.请问:刘叔叔一共养了多少只兔子?【答案】404【解析】根据题意是一个 400 多的数除以 3 余 2,除以 5 余 4,除以 7 余 5,最后所求的数 是 404123个123【答案】90【解析】6 个 123 能被 99 整除,123 里有 20 个 6 余 3,所以 123123123 除以 99 余数是 9010.把 63 个苹果,90 个橘子,130 个梨平均分给一些同学,最后一共剩下 25 个水果没有分 出去.请问:剩下个数最多的水果剩下多少个?【答案】20【解析】三个数分别的余数不知道,但是余数的和是 25,可以把这三个数相加,根据余数 的和等于余数的和来计算,63+90+130-25=258,再分解质因数,最后剩下个数最多的水 果剩下 20 个11.有一个大于 l 的整数,用它除 300、262、205 得到相同的余数,求这个数.【答案】19【解析】根据同余的两个数的差能被这个数整除,300-262=38,262-205=57,再求(38,57)=1912.用 61 和 90 分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数 是后一次的 2 倍,如果这个数大于 1,那么这个数是多少?【答案】17【解析】先把余数变相同,再作差求解即可。
五年级奥数-数论之余数问题

数论之余数问题余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。
知识点拨:一、带余除法的定义及性质:一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b=q ……r ,也就是a =b ×q +r,0≤r <b ;我们称上面的除法算式为一个带余除法算式。
这里:(1)当时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图,这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数的角色,经过打包后共打包了c 捆,那么这个c 就是商,最后还剩余d 本,这个d 就是余数。
这个图能够让学生清晰的明白带余除法算式中4个量的关系。
并且可以看出余数一定要比除数小。
二、三大余数定理:1.余数的加法定理0r =0r ≠a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。
例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。
例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。
例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。
当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。
例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2.3.同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m 同余,用式子表示为:a≡b ( mod m ),左边的式子叫做同余式。
五年级高斯奥数之余数含答案

第16讲余数内容概述掌握余数酌概念与基本性质,掌握除以某些特殊数的余数的计算方法.学会利用余数的可加性、可减性和可乘性计算余数;学会运用同期性处理各类余数计算问题;学会求解“物不知数’问题.典型问题兴趣篇1. 72除以一个数,余数是7.商可能是多少?2. 100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?3. 20080808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?4. 4个运动员进行乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运动员打了多少盘?5.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?6.(1) 220除以7的余数是多少?(2) 1414除以11的余数是多少?(3) 28121除以13的余数是多少?7.810888888个⨯⨯⨯++⨯+除以5的余数是多少?8.一个三位数除以21余17,除以20也余17.这个数最小是多少?9.有一个数,除以3的余数是2,除以4的余数是1.请问:这个数除以12余数是几?10.100多名小朋友站成一列,从第一人开始依次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;如果按1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?拓展篇1.1111除以一个两位数,余数是66. 求这个两位数.2.(1) 42121421421421个除以4和125的余数分别是多少?(2) 80821808808808个除以9和11的余数分别是多少?3.一年有365天,轮船制造厂每天都可以生产零件1234个,年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件?4.自然数12222267-⨯⨯⨯⨯个的个位数字是多少?5.算式20072007200720072006321++++ 计算结果的个位数是多少?6.一个自然数除以49余23,除以48也余23.这个自然数被14除的余数是多少?7.一个自然数除以19余9,除以23余7.这个自然数最小是多少?8.刘叔叔养了400多只兔子,如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里有4只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只.请问:刘叔叔一共养了多少只兔子?9. 123123123123123个除以99的余数是多少?10.把63个苹果,90个橘子,130个梨平均分给一些同学,最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?11.有一个大于l 的整数,用它除300、262、205得到相同的余数,求这个数.12.用61和90分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数是后一次的2倍,如果这个数大于1,那么这个数是多少?超越篇1.从l 依次写到99,可以组成一个多位数12345…979899.这个多位数除以11的余数是多少?2.算式72008777777个⨯⨯⨯++⨯+计算结果的末两位数字是多少?3.算式20077531⨯⨯⨯⨯⨯ 计算结果的末两位数字是多少?4.有5000多根牙签,按以下6种规格分成小包:如果10根一包,最后还剩9根;如果9根一包,最后还剩8根;如果依次以8、7、6、5根为一包,最后分别剩7、6、5、4根.原来一共有牙签多少根?5.有三个连续的自然数,它们从小到大依次是5、7、9的倍数,这三个连续自然数最小是多少?6.请找出所有的三位数,使它除以7、11、13的余数之和尽可能大.7.已知.0000940909421717!21CD AB 那么四位数ABCD 是多少?8.有一些自然数n ,满足:2n - n 是3的倍数,3n - n 是5的倍数,5n - n 是2的倍数,请问:这样的,n 中最小的是多少?第12讲余数内容概述掌握余数的概念与基本性质,掌握除以某些特殊数的余数的计算方法.学会利用余数的可加性、可减性和可乘性计算余数;学会运用同期性处理各类余数计算问题;学会求解“物不知数’问题.典型问题兴趣篇1. 72除以一个数,余数是7.商可能是多少?【答案】1或5【解析】72-7=65,再分解质因数65=5×13,还有1×65=65,所以商可能是1或52. 100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?【答案】8或16【解析】100和84同余,做差后是这个数的倍数,100-84=16,所以这个除数可能是8或163. 20080808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?【答案】8;0,8;0【解析】一个数除以9的方法:各位数字之和除以9,2+8+8+8=26,26÷9=2…8;除以8的方法:末三位除以8, 808÷8=101…0;除以25的方法:末两位除以25,8÷25=0…8;除以11的方法:奇数位数字之和与偶数位数字之和的差除以11, 2+0+0+0=2,0+8+8+8=24,24-2=22,22÷11=2 04. 4个运动员进行乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运动员打了多少盘?【答案】5【解析】1+0+1=2,2÷3=…2,1+2+6=9,9÷3=…0,1+7+3=11,11÷3=…2,1+9+3=13…1,最多打了5盘5.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?【答案】16【解析】余数问题,求128×23×300÷17的余数128÷17=7...9 23÷17=1...6 300÷17=17 (11)9×6×11=594 594÷17=34 (16)6.(1) 220除以7的余数是多少?(2) 1414除以11的余数是多少?(3) 28121除以13的余数是多少?【答案】(1)4;(2)4;(3)2【解析】因为23除以7的余数是1,20=3×6+2,所以220除以7的余数就是22除以7的余数 即为4;同理,1414除以11的余数是4;28121除以13的余数是27.810888888个⨯⨯⨯++⨯+除以5的余数是多少? 【答案】2【解析】根据余数的和等于和的余数的方法,除以5的余数是28.一个三位数除以21余17,除以20也余17.这个数最小是多少?【答案】437【解析】最小公倍数问题,【21,20】=420,再加上17,这个数最小是4379.有一个数,除以3的余数是2,除以4的余数是1.请问:这个数除以12余数是几?【答案】5【解析】除以3的余数是2的数是5,而5恰好除以4余1,5除以12余数是510.100多名小朋友站成一列,从第一人开始依次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;如果按1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?【答案】141【解析】根据题意,可转化为一个100多的数除以11余9,除以3余11,所以先求11和13的最小公倍数,再减去2就是所求,一共有141名小朋友拓展篇1.1111除以一个两位数,余数是66. 求这个两位数.【答案】95【解析】先从1111里减去余数66,再分解质因数,所求的两位数要大于余数66,所以是952.(1) 42121421421421个除以4和125的余数分别是多少?(2) 80821808808808个除以9和11的余数分别是多少?【答案】(1)1,46;(2)3,5【解析】(1)21÷4=5…1;421÷125=3…46;(2)(8+8)×21÷9=37…3;808808÷11余0,最后还剩一个808,8+8=16, 16÷11 余53.一年有365天,轮船制造厂每天都可以生产零件1234个,年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件?【答案】15【解析】先求出一年的总数,再除以19余数为154.自然数12222267-⨯⨯⨯⨯个的个位数字是多少? 【答案】7【解析】找出2的n 次方的个位数字的周期,2,4,8,6…,再看67除以4的余数是3,所以个位数字是8-1=75.算式20072007200720072006321++++ 计算结果的个位数是多少?【答案】1【解析】每个数乘方的个位数字的周期是4,2007除以4余3,所以原式就与1到2006的3次方的个位数字是一样的,以10个数为一个周期列出为1,8,7,4,5,6,3,2,9,0…,2006除以10余数为6,所以前6个的和即是所求1+8+7+4+5+6=31,所以个位数字是16.一个自然数除以49余23,除以48也余23.这个自然数被14除的余数是多少?【答案】9【解析】【49,48】+23=2375,被14除余97.一个自然数除以19余9,除以23余7.这个自然数最小是多少?【答案】237【解析】7+23k-9能被19整除,最小为2378.刘叔叔养了400多只兔子,如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里有4只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只.请问:刘叔叔一共养了多少只兔子?【答案】404【解析】根据题意是一个400多的数除以3余2,除以5余4,除以7余5,最后所求的数是4049. 123123123123123个除以99的余数是多少?【答案】90【解析】6个123能被99整除,123里有20个6余3,所以123123123除以99余数是9010.把63个苹果,90个橘子,130个梨平均分给一些同学,最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?【答案】20【解析】三个数分别的余数不知道,但是余数的和是25,可以把这三个数相加,根据余数的和等于余数的和来计算,63+90+130-25=258,再分解质因数,最后剩下个数最多的水果剩下20个11.有一个大于l 的整数,用它除300、262、205得到相同的余数,求这个数.【答案】19【解析】根据同余的两个数的差能被这个数整除,300-262=38,262-205=57,再求(38,57)=1912.用61和90分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数是后一次的2倍,如果这个数大于1,那么这个数是多少?【答案】17【解析】先把余数变相同,再作差求解即可。
五年级的奥数余数问题解答

五年级的奥数余数问题解答1、(四中小升初选拔试题)被除数,除数,商与余数之和是2143,已知商是33,余数是52,求被除数和除数.分析: 方法1:通过对题意的理解我们可以得到:被除数=除数×商+余数=除数×33+52;又有被除数=2143-除数-商-余数=2143-除数-33-52=2058-除数;所以除数×33+52=2058-除数;则除数=(2058-52)÷34=59,被除数=2058-59=1999.方法2:此题也可以按这个思路来解:从被除数中减掉余数52后,被除数就是除数的33倍了,所以可以得到:2143-33-52-52= (33+1)×除数,求得除数=59 ,被除数=33×59+52=1999 .转化成整数倍问题后,可以帮助理解相关的性质.2、(美国长岛小学数学竞赛)写出所有的除109后余数为4的两位数.分析:还是把带有余数的问题转化成整除性的问题,也就是要找出能整除(109-4)的所有的两位数.进一步,要找出能整除105的两位数,很简单的方法就是把105分解质因数,从所得到的质因子中去凑两位数.109-4=105=3×5×7.因此这样的两位数是:15;35;21.3、有一个大于1的整数,除45,59,101所得的余数相同,求这个数.分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.4、数11…1(2007个1),被13除余多少分析:根据整除性质知:13能整除111111,而2007÷6后余3,所以答案为7.5、求下列各式的余数:(1)2461×135×6047÷11 (2)2123÷6分析:(1)5;(2)6443÷19=339……2,212=4096 ,4096÷19余11 ,所以余数是11 .6、1013除以一个两位数,余数是12.求出符合条件的所有的两位数.分析:1013-12=1001,1001=7×11×13,那么符合条件的所有的两位数有13,77,91 有的同学可能会粗心的认为11也是.11小于12,所以不行.大家做题时要仔细认真.7、学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班分析:所求班级数是除以118,67,33余数相同的数.那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17.8、(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313— 7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240—2=238(个) ,313—7=306(个) ,(238,306)=34(人) .9、(第十三届迎春杯决赛) 已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是 .分析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×17,因此所求的两位数51或68或84.10、已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a 和b的值.分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.11.19941994…1994(1994个1994)除以15的余数是______.分析:法1:从简单情况入手找规律,发现1994÷15余14,19941994÷15余4,199419941994÷15余9,1994199419941994÷15余14,......,发现余数3个一循环,1994÷3=664...2,19941994…1994(1994个1994)除以15的余数是4;法2:我们利用最后一个例题的结论可以发现199419941994能被3整除,那么19941994199400…0能被15整除,1994÷3=664...2,19941994…1994(1994个1994)除以15的余数是4.12.a>b>c 是自然数,分别除以11的余数是2,7,9.那么(a+b+c)×(a-b)×(b-c)除以11的余数是多少分析:(a+b+c)÷11的余数是7;(a—b)÷11的余数是1l+2—7=6;(b—c)÷11的余数是11+7—9=9.所求余数与7 6×9÷11的余数相同,是4.13.一盒乒乓球,每次8个8个地数,10个10个地数,12个12个地数,最后总是剩下3个.这盒乒乓球至少有多少个?分析与解答:如果这盒乒乓球少3个的话,8个8个地数,10个10个地数,12个12个的数都正好无剩余,也就是这盒乒乓球减少3个后是8,10,12的公倍数,又要求至少有多少个乒乓球,可以先求出8,10,12的最小公倍数,然后再加上3.2 8 10 122 4 5 62 5 3故8,10,12的最小公倍数是22253=120.所以这盒乒乓球有123个.14、自然数,用它分别去除63,90,130都有余数,三个余数的和是25.这三个余数中最小的一个是_____.分析与解答:设这个自然数为,且去除63,90,130所得的余数分别为a,b,c,则63-a,90-b,130-c都是的倍数.于是(63-a)+ (90-b)+(130-c)=283-(a+b+c)=283-25=258也是的倍数.又因为258=2343.则可能是2或3或6或43(显然,86,129,258),但是a+b+c=25,故a,b,c中至少有一个要大于8(否则,a,b,c都不大于8,就推出a+b+c不大于24,这与a+b+c=25矛盾).根据除数必须大于余数,可以确定=43.从而a=20,b=4,c=1.显然,1是三个余数中最小的.15、求123456789101112……199200除以9的余数是________;解答:一位数个位数字之和是1+2+3+…..9=45二位数数字之和是1×10+1+2+3+…….9 (10-19)2×10+1+2+3+…….9 (20-29)……9×10+1+2+3+…….9 (90-99) 余90,9余0,11余2故二位数总和为(1+2…..+9)×10+1+2…..+9=495100—199与1—99的区别在于百位多了100个1,共100所以原数数字值和为45+495+495+100+2=1137,除以9余3.16、(23+105k)2)一个数除以7余3,除以11余7,除以13余4,符合此条件的数最小是________;如果它是一个四位数,那么最大可能是________;、满足除以7余3,除以11余7的最小数为73,设此数为73+77a=13b+4, 69-a=13b.a最小等于4.满足条件的最小数是381.设最大的四位数为381+1001x,最大的四位数为9390.(1732)17、今天周一,天之后是星期________;这个数的个位数字是________;天之后是星期________;解答:只要求出÷7的余数就可以知道天后是星期几.≡52007(mod7),56≡1(mod7)2007≡3(mod6), ≡52007≡53≡6(mod7) s所以天之后是星期日2007的个位数字是720072的个位数字是920073的个位数字是320074的个位数字是120075的个位数字是118、一个三位数,被17除余5,被18除余12,那么它可能是________________;一个四位数,被131除余112,被132除余98,那么它可能是________;解答:设此三位数为17a+5=18b+12. 可得到17a=17b+b+7,所以b+7一定能被17整除,b=10,27,44.这个三位数为192,498,804.设此四位数为131x+112=132y+98,可得到131x=131y+y-14,所以y-14一定能被131整除,y=14,145(太大)这个四位数是194619、甲,乙,丙三个数分别为603,939,393.某数A除甲数所得余数是A除乙数所得余数的2倍,A除乙数所得余数是A除丙数所得余数的2 倍.A是________;解答:如果A除丙所得的余数是1份的话,那么A除乙所得余数就是2份,A除甲所得的余数就是4份.把2乙-甲,则没有余数,即2乙-甲使A 的倍数;同理乙-2丙也同样没有余数,是A的倍数.939×2-603=1275,939-393×2=153A是1275和153的公约数,而1275与153的最大公约数是51,所以A可能是1,3,17,51 再实验得到A为17,余数分别为8,4,2.。
五年级奥数余数问题

五年级奥数余数问题一、题目。
1. 一个数除以3余2,除以5余3,除以7余2,求这个数最小是多少?解析:我们先列出除以3余2的数:2、5、8、11、14、17、20、23、26…再列出除以5余3的数:3、8、13、18、23、28…然后列出除以7余2的数:2、9、16、23、30…可以发现23同时满足这三个条件,所以这个数最小是23。
2. 有一个数,除以4余1,除以5余2,除以6余3,这个数最小是多少?解析:这个数加上3就能被4、5、6整除。
4、5、6的最小公倍数是4 = 2×2,5 = 5,6=2×3,最小公倍数LCM = 2×2×3×5 = 60。
所以这个数最小是60 3=57。
3. 一个数除以5余4,除以8余3,求这个数最小是多少?解析:设这个数为x。
根据除以5余4,可设x = 5a+4(a为整数)。
又因为除以8余3,所以5a + 4=8b+3(b为整数),即5a=8b 1。
通过试值法,当b = 2时,a = 3。
此时x=5×3 + 4=19,19除以8余3,所以这个数最小是19。
4. 一个数除以9余7,除以11余9,这个数最小是多少?解析:这个数加上2就能被9和11整除。
9和11互质,它们的最小公倍数是9×11 = 99。
所以这个数最小是99 2 = 97。
5. 某数除以7余1,除以8余2,除以9余3,求这个数最小是多少?解析:这个数加上6就能被7、8、9整除。
7、8、9的最小公倍数为7×8×9=504。
所以这个数最小是504 6 = 498。
6. 一个数除以3余1,除以5余2,除以7余3,这个数最小是多少?解析:中国剩余定理:先求5×7 = 35,35除以3余2,2×2 = 7,7除以3余1。
再求3×7=21,21除以5余1,1×2 = 2,2除以5余2。
然后求3×5 = 15,15除以7余1,1×3=3,3除以7余3。
五年级奥数:第14讲 余数问题

五年级奥数:第14讲余数问题在整数的除法中,只有能整除与不能整除两种情况。
当不能整除时,就产生余数,所以余数问题在小学数学中非常重要。
余数有如下一些重要性质(a,b,c均为自然数):(1)余数小于除数。
(2)被除数=除数×商+余数;除数=(被除数-余数)÷商;商=(被除数-余数)÷除数。
(3)如果a,b除以c的余数相同,那么a与b的差能被c整除。
例如,17与11除以3的余数都是2,所以17-11能被3整除。
(4)a与b的和除以c的余数,等于a,b分别除以c的余数之和(或这个和除以c的余数)。
例如,23,16除以5的余数分别是3和1,所以(23+16)除以5的余数等于3+1=4。
注意:当余数之和大于除数时,所求余数等于余数之和再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23+19)除以5的余数等于(3+4)除以5的余数。
(5)a与b的乘积除以c的余数,等于a,b分别除以c的余数之积(或这个积除以c 的余数)。
例如,23,16除以5的余数分别是3和1,所以(23×16)除以5的余数等于3×1=3。
注意:当余数之积大于除数时,所求余数等于余数之积再除以c的余数。
例如,23,19除以5的余数分别是3和4,所以(23×19)除以5的余数等于(3×4)除以5的余数。
性质(4)(5)都可以推广到多个自然数的情形。
例1 5122除以一个两位数得到的余数是66,求这个两位数。
分析与解:由性质(2)知,除数×商=被除数-余数。
5122-66=5056,5056应是除数的整数倍。
将5056分解质因数,得到5056=26×79。
由性质(1)知,除数应大于66,再由除数是两位数,得到除数在67~99之间,符合题意的5056的约数只有79,所以这个两位数是79。
例2 被除数、除数、商与余数之和是2143,已知商是33,余数是52,求被除数和除数。
五年级奥数测试卷 余数问题 答案

精品文档A所得的商与余数相同?1.哪些自然数除以6,这个两位数是多少?.310被一个数两位数除,余数是37256789的积除以9的余数。
3.求12345678×都有余数,三个余数的和为、90、1304.有一个自然数,用它分别去除63 25,这三个余数中最小的一个是几?。
205,得到相同的余数(且余数都不为0)5.有一个整数,除300,262,这个整数是多少?。
这五十个数中,取出若干个数使其中任意49、50.从1、2、3、……、6 两个数的和都不能被7整除,则最多能取出多少个数?除以13的余数是几?.已知A=199119911991………1991,问A71991个19918.将自然数从1到2005连续写成一个多位数1234……20042005,这个多位数除以3的余数是多少?9.有5个不同的自然数(0除外),它们当中任意3个数的和是3的倍数,任意4个数的和是4的倍数,为了使这5个数的和尽可能小,这5个数分别是多少?10.一个十几岁的男孩,把自己的岁数写有父亲的岁数之后,组成一个四位数,从这个四位数中减去他们两个人岁数之差和4289。
男孩几岁?B1.71427和19的积被7除,余数是几?2.某数用3除余1,用5除余3,用7除余5,此数最小为多少?3.一个四位数被2除余1,被3除余2,被4除余3,被5除余4……被10除余9,求出这样的四位数。
12.有一个整数,用它去除63、91、129,所得的3个余数的和是25,这个整数是多少?2005的末两位数是多少?4.35.888888……88÷26的余数是多少?2001个86.某数除1186余1,除2609余2,除4263少3,这个数最大是多少?7.一个数除以11所得的余数是3,如果把这个数增加11后,除以13所得的商不变,且余数为0,这个数是多少?8.n=191919……1919,n被9除所得的商的个位数是多少?1919个19199.能被5除尽,被715除余10,被247除余140,被391除余245,被187精品文档.精品文档的最小整数是多少?除余109的后面得35写在任意一个自然数的右面(例如:将2写在10.将自然数N1996称为魔术数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、确定循环类结果的数字或余数
4、采用试除法解决余数问题
1、当需要求解有规律的一组数字的尾数(个位数字时),找到循环周期是关键,最后用要求解的数除以周期,根据余数得到个位数字的顺序,最终得到答案。
2、两个数分别除以同一个数,得到2个不同的余数,则这两个数和、差、积的余数就是这2个余数的和、差、积与这个除数作商的余数。
考点一:分解被除数写出符合条件的除数
例1、写出除213后余3的全部两位数。
例2、写出除1290后余3的全部三位数。
考点二:确定一个乘积结果的尾数
例1、125×125×125×……×125[100个25]积的尾数是几?
例2、4×4×4×…×4[50个4]积的个位数是几?
考点三:确定循环类结果的数字或余数
6、一列数1,2,4,7,11,16,22,29,……。这列数的规律是第二个数比第一个数多1;第三个数比第二个数多2,第四个数比第三个数多3。依次类推,这列数左起第1992个数被5除余数是几?
7、已知,甲数除以9余7,乙数除以9余5,甲数比乙数大。
(1)甲、乙两数的和除以9余数是几?
(2)甲、乙两数的差除以9余数是几?
例1、把 化成小数,那么小数点后面第100位上的数字是多少?
例2、有一串数:5、8、13、21、34、55、89பைடு நூலகம்…,其中,从第三个数起,每个数恰好是前两个数的和。在这串数中,第1000个数被3除后所得的余数是多少?
考点四:采用试除法解决余数问题
例1、555…55[2001个5]÷13,当商是整数时,余数是几?
课后反击
1、写出除109后余4的全部两位数
2、1.5×1.5×1.5×……×1.5[200个1.5]积的尾数是几?
3、(12×63)×(12×63)×(12×63)×……×(12×63)[1000个(12×63)]积的尾数是几?
4、把 化成小数,求小数点后面第2001位上的数字。
5、888…8÷7[200个8]当商是整数时,余数是几?
(3)甲、乙两数的积除以9余数是几?
8、1×2×……×100+1×2×……×99+……+1×2×3+1×2+1的个位数字是几?
1、【2015•希望杯初赛】9个13相乘,积的个位数字是
2、【2015•希望杯初赛】如果自然数ɑ、b、c除以14都余5,则ɑ+ b+c除以14,得到的余数是
3、【2016鹏程杯】设ɑ=1+21+22+23+24+……+2999+21000,则ɑ被3除的余数是
本节课我学到
我需要努力的地方是
解决这类问题通常需要先观察数据规律发现特征后再选择合适的方法进行解答:
1.根据题目中各数的特点,找出规律,确定周期,根据周期再求问题;
2.循环小数的问题,要通过计算得出商,发现循环节是由哪几个数字组成的,有几位,周期就是几;
3.求一串数除以某数得到的余数,可通过试除,还余多少,就把余下的数除以某数,就直接求出余数了。
一、基本概念
1.自然数末位的数字称为自然数的尾数。
377896的尾数是6,573450的尾数是0.
2.除法中,被除数减去商与除数积的差叫做余数。
35÷6=5……5,余数是5;18881÷3=6293……2,余数是2.
尾数和余数在运算时是有规律可寻的,利用这种规律能解决一些看起来无从下手的问题。
二、方法技巧
学科教师辅导讲义
学员编号:
年级:五年级
课时数:3
学员姓名:
辅导科目:奥数
学科教师:
授课主题
第08讲——尾数与余数
授课类型
T同步课堂
P实战演练
S归纳总结
教学目标
1了解尾数、余数概念;
2掌握一般规律类、周期类、循环类不同情况下尾数或余数的求解方法;
3培养学生观察发现、总结归纳的学习能力。
授课日期及时段
T(Textbook-Based)——同步课堂
4、【2016•华罗庚金杯小学高年级组决赛题C】n为正整数,形式为2n-1的质数称为梅森数,例如:22-1=3,
23-1=7是梅森数。最近,美国学者刷新了最大的梅森数,n=74207281,这个梅森数也是目前已知的最大的质数,它的个位数字是
S(Summary-Embedded)——归纳总结
1、分解被除数写出符合条件的除数
4、 写成循环小数后,小数点后第50个数字是几?
5、666…6÷4[100个6]当商是整数时,余数是几?
6、94×94×94×…×94[102个94]-49×49×…×49[101个49],差的个位是多少?
7、有一串数排成一行,其中第一个数是3,第二个数是10,从第三个数起,每个数恰好是前两个数的和。在这一串数中,第1991个数被3除,所得的余数是几?
例2、444…4÷6[100个4],当商是整数时,余数是几?
P(Practice-Oriented)——实战演练
课堂狙击
1、178除以一个两位数后余数是3,适合条件的两位数有哪些?
2、(21×26)×(21×26)×……×(21×26)[100个(21×26)]积的尾数是几?
3、9×9×9×…×9[51个9]积的个位数是几?