实系数一元二次方程Ⅰ
实系数一元二次方程

实系数一元二次方程
实系数一元二次方程
一元二次方程(又称“二次多项式方程”)是指一个等式的次数较高,且只包含一个未知数的方程。
在一元二次方程中,自变量有且只有一个,称为一元二次函数,即 y=ax2+bx+c(a≠ 0)。
解一元二次方程的方法主要有三种:
1、因式分解法
因式分解法是一种常用方法,只要把方程改为一种可以分解的形式,便可以得到解。
步骤:
(1)首先,将一元二次方程化为相当于 0 的形式。
(2)把一元二次方程转换为包含两个未知数的多项式形式:
ax2+bx+c=d。
(3)用因数分解的方法把 d 分解成两个实数的乘积:d=e·f。
(4)将 ae 和 bf 分别作为新的因式,并同时入方程,即:
ax2+bx+c=ae+bf,再把此多项式撤分,可得 x 的解。
2、求根公式法
求根公式法是通过特定的公式来求解方程的一种方法,只有在一元二次方程系数为实数时才适用,其求根公式为:
x1= -b+√(b2-4ac) /2a
x2= -b-√(b2-4ac) /2a
3、图解法
图解法也是一个求一元二次方程解的方法,也是利用函数图像来分析一元二次方程解的方法,即将方程图像化,通过图像中的拐点、凹点及相关函数曲线的性质来分析、计算方程的解。
复数范围内实系数一元二次方程(19题)答案知识讲解

复数范围内实系数一元二次方程(19题)(答案)1、若实系数一元二次方程的一个根是13+,则这个方程可以是 228039x x -+= . 2、复数集内分解221x x ++=2(x x3、已知1x 与2x 是方程: 20(0)ax bx c a ++=≠在复数集中的两根,则下列等式成立的是( C )(A) 1x 与2x 共轭 (B) 240b ac ∆=-≥ (C)1212,b c x x x x a a+=-=, (D)12||x x -=212214)(x x x x -+ 4、判断下列命题的真假,并说明理由;(1)在复数范围内,方程20(,,ax bx c a b c ++=∈R ,且0)a ≠总有两个根.( √ )(2)若12i +是方程20x px q ++=的一个根,则这个方程的另一个根是12i -.( ⨯ )(3)若方程20x px q ++=有两个共轭虚根,则p 、q 均为实数.( √)5、已知复数z ,解方程3i 13i z z -⋅=+.解:设i()z x y x y =+∈R ,,则方程可化为(3)(3)i 13i x y y x -+-=+.由复数相等,有3133x y y x -=⎧⎨-=⎩,,解得543.4x y ⎧=-⎪⎪⎨⎪=-⎪⎩,. ∴53i 44z =--. 6、适合方程20z z i --=的复数z12i7、适合方程2560z z -+=的复数z ;若z R ∈,则25602,32,3z z z z z z -+=⇒==⇒=±=±若z 为虚数, 设(,,0)z a bi a b R b =+∈≠,则2()60a bi +-=222226026020a b a b abi ab ⎧⎪--=-+-=⇒⎨=⎪⎩2222606056010a b b b b b a ⎧⎪--=⇒⇒--=⇒+-=⇒=±⎨=⎪⎩所以,方程的解为2,2,3,3,,i i ---。
高二数学实系数一元二次方程1

上海市新中高级中学 陶志诚
一、复习 1、一元二次方程ax2 bx c 0(a、b、c R且a 0)
的求根公式 当 b2 4ac 0时,方程有两个实数根:x b b2 4ac
2a 2a
2、-1的平方根是: i
设问①:一元二次方程 x2 1 0在复数范围内有没有解?
x2 ax 4 0(a R)
例2、已知一元二次方程x2 mx n 0(m、n R),
试确定一组m、n 的值,使该方程分别有两个
不相等的实数根、两个相等的实数根、两个虚
数根,并解方程.
例3、在复数集中分解因式:
(1)x2 x 2; (2)2x2 4x 5
.
2、实系数一元二次方程中根与系数的关系:
设问②:在复数范围内如何解一元二次方程x2 x 1 0?
二、新课
1、实系数一元二次方程在复数集C中解的情况:
设一元二次方程 ax2 bx c 0(a、b、c R且a 0)
原方程可变形为
x2
b a
x
c a
即
(x
b )2 2a
b2 4ac 4a2
(1)当 b2 4acBiblioteka 0时,原方程有两个不相等的实数根
实系数一元二次方程ax2 bx c 0(a、b、c R且a 0)
根与系数的关系: x1 x2
b a
,x1 x2
c a
例4、已知3i 2是关于x的方程 2x2 px q 0 的一个根,求实数p、q的值.
三、课堂练习 见课本P91练习13.6(1); P92练习13.6(2)T1.2.3.
四、课堂小结
五、课后作业 1.书面作业:练习册P55 习题13.6 A组 T1.2.3.4.5.
实系数一元二次方程

(1)实系数一元二次方程一、教学内容分析本节内容是在前面学习了复数的运算后,对初中已学过的一元二次方程的求根公式和韦达定理的推行和完善.为了实际应用和数学自身进展的需要,数的概念需要再一次扩充——由实数扩充到了复数,解决了负数开平方的问题。
那么实系数一元二次方程20b ac∆=-<时方ax bx c++=,当240程在复数集中解的情形一样需要进一步研究.因此,本节课主若是探讨实系数一元二次方程在复数集中解的情形和在复数范围内如何对二次三项式进行因式分解等问题.二、教学目标设计明白得实系数一元二次方程在复数集中解的情形;会在复数集中解实系数一元二次方程;会在复数范围内对二次三项式进行因式分解;明白得实系数一元二次方程有虚数根时根与系数的关系,并会进行简单应用.三、教学重点及难点在复数集中解实系数一元二次方程;在复数范围内对二次三项式进行因式分解.四、教学用具预备电脑、实物投影仪五、教学流程设计六、教学进程设计(一)温习引入20ax bx c ++=(a b c R ∈、、且0)a ≠的求根公式,咱们回忆一下:当240b ac ∆=-≥时,方程有两个实数根:22b x a a=-± “复数的平方根与立方根”,大伙儿明白-1的平方根是:i ±.设问①:一元二次方程210x +=在复数范围内有无解? 设问②:在复数范围内如何解一元二次方程210x x ++=?[说明] 设问①学生能够依照“复数的平方根”知,x 即为-1的平方根:i ±;设问②是为了引出本节课的课题:实系数一元二次方程.(二)教学新课一、实系数一元二次方程在复数集C 中解的情形:设一元二次方程20(0)ax bx c a b c R a ++=∈≠、、且.因为0a ≠,因此原方程可变形为2b c x x a a+=-, 配方得22()()22b b c x a a a+=-, 即2224()24b b ac x a a-+=. (1)当240b ac ∆=->时,原方程有两个不相等的实数根22b x a a=-±; (2)当240b ac ∆=-=时,原方程有两个相等的实数根2b x a=-;(3)当240b ac ∆=-<时,22404b ac a -<, 由上一堂课的教学内容知,2244b ac a-的平方根为2a±, 即i ab ac a b x 2422-±=+, 现在原方程有两个不相等的虚数根22b x a a=-±.(22b x a a=-±为一对共轭虚数根) [说明]实系数一元二次方程在复数范围内必有两个解:当0∆≥时,有两个实根;当0∆<时,有一对共轭虚根.设问③:若43i -是一个实系数一元二次方程的一个根,你能直接写出该方程的另一个根吗?什么缘故?回到引入部份设问②:在复数范围内解一元二次方程210x x ++=.(122x i =-±,即为上节课学习过的ω) 例1(1)在复数集中解方程:2320x x ++=;(2)在复数集中解关于x 的方程:240()x ax a R ++=∈.解:(1)因为△=1432230-⨯⨯=-<,因此方程2320x x ++=的解为1166x =-+,2166x =--. (2)因为△=16-a 2,因此当△>0,即44a a <->或时,原方程的解为12a x -+=,22a x --=. 当△=0,即4a =±时,假设4a =,那么原方程的解为122x x ==-;假设4a =-,那么原方程的解为122x x ==.当△<0,即44a -<<时,原方程的解为122a x =-+,222a x =--. 提示学生注意:在复数集中解方程时,应先考虑△的正负.[说明]例1(2)需分类讨论,要求较高,建议选用,也能够换成讲义上的例题1(P91)例 2 已知一元二次方程20()x mx n m n R ++=∈、,试确信一组m n 、的值,使该方程别离有两个不相等的实数根、两个相等的实数根、两个虚数根,并解方程.[说明]例2属于开放性问题,比较容易入手,能够让基础不睬想的同窗尝试回答,增强互动.既然实系数一元二次方程在复数范围内必有两个解,那么二次三项式2(0)ax bx c a b c R a ++∈≠、、且在复数范围内总能够分解成两个一次因式的乘积.假设方程20ax bx c ++=的两个解别离为1x x 2、,那么212()()ax bx c a x x x x ++=--.例3 在复数集中分解因式:(1)22x x -+; (2)2245x x -+.解:(1)22x x -+=11()()22x x ---. (2)(见讲义P91)提示学生注意:分解二次三项式2ax bx c ++时,应提取二次项的系数a .二、实系数一元二次方程中根与系数的关系关于实系数一元二次方程20ax bx c ++=,当其有实数根时,咱们在初中已经学习过了根与系数的关系:12b x x a+=-,12c x x a⋅=(即韦达定理). 设问④:实系数一元二次方程有虚数根时,是不是也知足根与系数关系?利用求根公式122a x =-+,222a x =--容易验证12b x x a +=-,12c x x a⋅=. 例4 已知32i -是关于x 的方程220x px q ++=的一个根,求实数p 、q 的值.解:(见讲义P91例2)(三)巩固练习见讲义P91练习(1);P92练习(2)说明]以上练习能够依照时刻选择一部份在课堂上完成,其余可作为课后练习.(四)课堂小结本节课要紧讨论了实系数一元二次方程解的情形,明白了在复数集中解实系数一元二次方程和在复数范围内对二次三项式进行因式分解,表现了分类讨论的数学思想.(五)课后作业1.书面作业:练习册P55 习题13.6 A 组 试探题:(补充题及备选题)(1)在复数集中分解因式:416x -.(2)方程25||60z z -+=在复数集中解的个数为( )(A )2 (B )4 (C )6 (D )8(3)在复数范围内解方程ii i z z z +-=++23)(2(i 为虚数单位). 参考答案:(1)(2)(2)(2)(2)x x x i x i +-+-(2)C(3)原方程化简为i i z z z -=++1)(2,设z=x+yi(x 、y∈R),代入上述方程得 x 2+y 2+2xi=1-i, ∴x 2+y 2=1且2x=-1,解得x=-21且y=±23, ∴原方程的解是z=-21±23i. [说明]补充的试探题,可作为学有余力的同窗的能力训练题,也可作为教师的备选题.七、教学设计说明本节课由温习引入,带着问题,利用负数的开平方,开展本节课的探讨.例题设计主若是为了表现以下三个问题:(1)在复数集中解实系数一元二次方程;(2)在复数范围内对二次三项式进行因式分解;(3)实系数一元二次方程有虚数根时,根与系数关系的初步应用.。
上海高二数学下册--02—复数的方根与实系数一元二次方程

高二数学春季班(教师版)一、复数的平方根与立方根 1.复数的平方根的定义若复数1z ,2z 满足212z z =,则称1z 是2z 的平方根.2.复数的平方根的求法2()(,,,)a bi c di a b c c +=+∈R即利用复数相等,把复数平方根问题转化为实数方程组来求. 3.复数的平方根的性质复数(0)z z ≠总有两个平方根1z ,2z ,且120z z +=(见图1). 4.复数的立方根的定义类似的,若复数1z ,2z 满足312z z =,则称1z 是2z 的立方根.5.1的立方根设复数12ω=-+,则21,,ωω都是1的立方根. 6.ω的性质 ①210ωω++=, ②31ω=,③212ωω==-. 可运用这些性质化简相关问题(见图2). 7.其他有用结论2(1)2i i -=-,2(1)2i i +=二、实系数一元二次方程实系数一元二次方程20(,,,0)ax bx c a b c a ++=∈≠R 中的24b ac ∆=-为根的判别式,那么(1)0∆>⇔方程有两个不相等的实根2b a-±;复数的方根与实系数一元二次方程知识梳理(2)0∆=⇔方程有两个相等的实根2b a-; (3)0∆<⇔,在(3)的情况下,方程的根与系数关系(韦达定理)仍然成立. 求解复数集上的方程的方法:(1)设(,)z x yi x y =+∈R 化归为实数方程来解决(化归思想).(2)把z 看成一个未知数(而不是实部和虚部两个未知数),用复数的性质来变形(整体思想). (3)对二次方程,直接用一元二次方程的求根公式(公式法).三、常见几何图形的复数表达式复数1z ,2z 为定值,且12z z ≠.(1)线段12Z Z 的中垂线方程:12||||z z z z -=-; (2)以1Z 为圆心,半径为r 的圆方程:1||z z r -=; (3)以1Z 、2Z 为焦点,长轴长为2(0)a a >的椭圆方程:12||||2z z z z a -+-=(其中12||2z z a -<); (4)以1Z 、2Z 为焦点,实轴长为2(0)a a >的双曲线方程:12||||||2z z z z a ---=(其中12||2z z a ->).1、复数的平方根与立方根 【例1】求4-及86i -的平方根.【难度】★【答案】4-的平方根为2i 或2i -;86i -的平方根为3i -或3i -+ 【例2】计算:(112112(1)22i i i ⎛⎫-+ ⎪⎝⎭;(2)50820028)i +-++⎝⎭. 【难度】★★【答案】(1)513;(2)247+【例3】记12ω=-,求1ωω+,221ωω+. 【难度】★★ 【答案】11ωω+=-,2211ωω+=-【例4】已知等比数列123,,,,n z z z z ,其中11z =,2z x yi =+,3z y xi =+(,,0x y x ∈>R ).(1)求,x y 的值; (2)试求使1230n z z z z ++++=的最小正整数n ;(3)对(2)中的正整数n ,求123n z z z z 的值.【难度】★★【答案】(1)12x y ⎧=⎪⎪⎨⎪=⎪⎩;(2)12n =;(3)1-.【巩固训练】1.复数34i +的平方根是 .例题解析【难度】★ 【答案】(2)i ±+2.计算:(11996= . (2)151512(1)(1)(1)i -+=-+ .【难度】★ 【答案】(1)12-;(2)03.已知ω满足等式210ωω++=.(1)计算4(1)ωω++;304050ωωω++;224(1)(1)ωωωω-+-+;(2)求证:对任意复数u ,有恒等式33233(1)()()3(1)u u u u ωω+++++=+; (3)计算:21n n ωω++,*n ∈N . 【难度】★★【答案】(1)1-;0;4;(2)略;(3)*2**33()1031()032()n n n k k n k k n k k ωω⎧=∈⎪++==-∈⎨⎪=-∈⎩N N N2、复数中的代数式和方程【例5】在复数范围内分解因式:2223x x ++ 【难度】★【答案】22232x x x x ⎛++=-⎝⎭⎝⎭11222x x ⎛⎫⎛⎫-+=+- ⎪⎪ ⎪⎪⎝⎭⎝⎭【例6】复数z 满足方程210z z ++=,求()41z z ++的值 【难度】★★【答案】由210z z ++=得,21102z w z w w w ==-+=∴++=或 所以原式()()4428211w w ww w w w w =++=-+=+=+=-【巩固训练】1.若虚数z 满足327z =,则32315z z z +++的值为 . 【难度】★★ 【答案】332.,,求的值.【难度】★★【答案】12ω=-时,原式=15-;12ω=-时,原式;3、实系数一元二次方程【例7】已知方程2350()x x m m -+=∈R ,求方程的解. 【难度】★【答案】920m ∆=- 当0∆>时,即920m <时,32x ±=;当0∆=时,即920m =时,32x =; 当0∆<时,即920m >时,32i x =.【例8】已知βα,是实系数一元二次方程02=++c bx ax 的两个虚根,且2αβ∈R ,求βα的值.【难度】★★【答案】∵2αβ∈R ,∴2222ααβαββαβ=⇒=,即330αβ-=∴12αβ=-± 1≠ω13=ω32302ωωω+++【例9】已知12,x x 是实系数方程20x x p ++=的两个根,且满足12||3x x -=,求实数p 的值. 【难度】★★ 【答案】14p ∆=-, (1)当0∆≥时,即14p ≤时,12,x x 是实根,∴12||3x x -==,即32p =⇒=-; (2)当0∆<时,即14p >时,12,x x 是共轭虚根,设1(,)x a bi a b =+∈R ,则2x a bi =-, ∴123|||2|2||32x x bi b b -===⇒=±,由1221x x a +==-,得12a =-.从而21215||2p x x x ===.综上,2p =-或52.【例10】已知,αβ是实系数一元二次方程230x mx -+=的两个根,求||||αβ+的值. 【难度】★★【答案】212m ∆=-,(1)当0∆≥时,即m ≥m ≤-30αβ=>,∴||||||||m αβαβ+=+=; (2)当0∆<时,即m -<<||||2||αβα+===.【例11】已知复数12,z z 满足1||2z =,2||1z =,12||2z z -=,求12z z . 【难度】★★【答案】212121211121222||()()4z z z z z z z z z z z z z z -=--=⋅-⋅-⋅+⋅=, ∴12121z z z z ⋅+⋅=, ∴122211211z zz z z z z z ⋅⋅+⋅⋅=, ∴122141z zz z +=. 令12z t z =,则141t t+=,∴240t t -+=,∴122t =±,即12122z i z =±.【例12】(1)方程20()x px k p -+=∈R 有一个根为12i +,求实数k 的值; (2)方程240x x k -+=有一个根为12i +,求k 的值. 【难度】★【答案】(1)由题意:另一个根为12i -,∴(12)(12)5k i i =+-=; (2)由题意2(12)4(12)074i i k k i +-++=⇒=+.【例12】关于x 的方程2(2i)i 0x a b x a b --+-=有实根,且一个根的模是2,求实数a 、b 的值. 【难度】★★【答案】设()t t ∈R 是方程的一实根,则2(2)()i 0t at a bt b -++-=.则220,0t at a bt b ⎧-+=⎨-=⎩.(1)当0b =时,此方程为220x ax a -+=. ①有实根,0∆≥即1a ≥或0a ≤.当根为2时,440a a -+=.得43a =. 当根为2-时,440a a ++=.得45a =-.②有一对共轭虚根即01a <<.模为2,即有4a =(舍).(2)当0b ≠时,则1t =,此时1a =.又因为模为2,所以b =所以4,30a b ⎧=⎪⎨⎪=⎩或4,50a b ⎧=-⎪⎨⎪=⎩或1,a b =⎧⎪⎨=⎪⎩1,a b =⎧⎪⎨=⎪⎩【巩固训练】1.下列命题在复数集中是否正确?为什么?(1)若,,a b c ∈R ,0a ≠,且240b ac -≥,则方程20ax bx c ++=有两个实数根;(2)若,,a b c ∈R ,0a ≠,且12,x x 是方程20ax bx c ++=的两个根,则12b x x a +=-,12cx x a=; (3)若,,a b c ∈R ,0a ≠,且12,x x 是方程20ax bx c ++=的两个根,则221212||()x x x x -=-;(4)若,,a b c ∈R ,0a ≠,且α是方程20ax bx c ++=的根,则α也是方程的根. 【难度】★★ 【答案】(1)、(2)、(4)正确,(3)不正确2.若12,x x 为方程270x x -+=的两个根,则212||x x -= .【难度】★★ 【答案】273.已知,0x y ≠且,求20092009()(x y x y x y+++的值. 【难度】★★【答案】14.关于x 的方程222(31)10x m x m --++=的两根为αβ、,且||||3αβ+=,求实数m 的值. 【难度】★★【答案】53m =-或2m =5.设αβ、为方程220x x t ++=,(t ∈R )的两个根,()||||f t αβ=+, (1)求()f t 的解析式;(2)证明关于t 的方程()f t m =,当2m >时恰有两个不等的根,且两根之和为定值. 【难度】★★【答案】(1)0()2,010t f t t t ⎧<⎪=<≤⎨⎪<⎩...(2)证明:函数()y f t =的图像关于直线12t =对称(证略) 当(1,)t ∈+∞时,()f t 为增函数,且()(2,)f t ∈+∞;022=++y xy x当(,0)t ∈-∞时,()f t 为减函数,且()(2,)f t ∈+∞.所以当2m >,方程()f t m =在区间(1,)+∞上有唯一解1t ,在区间(,0)-∞上也有唯一解2t , 则121212t t +=⨯=.4、复数方程综合问题【例13】关于x 的二次方程2120x z x z m +++=中,1z ,2z ,m 都是复数,且21241620z z i -=+,设这个方程的两个根α、β满足||αβ-=||m 的最大值和最小值. 【难度】★★【答案】根据韦达定理有12z z mαβαβ+=-⎧⎨=+⎩∵22212()()444z z m αβαβαβ-=+-=-- ∴2212|()||4(4)|28m z z αβ-=--=.∴2121|(4)|74m z z --=,即|(45)|7m i -+=, 这表明复数m 在以(4,5)C 为圆心,7为半径的圆周上,∴max ||7m =min ||7m =当5001,150log 22m t m t >⎧⎪<<⎨<-⎪⎩即2log 215050m t -<<.【例14】已知22016220160122016(1)x x a a x a x a x ++=++++,试求0362016a a a a ++++的值。
初中数学教学课例《一元二次方程(1)》课程思政核心素养教学设计及总结反思

3.播放“未铺地毯区域有多宽”的课件,说明题 目的条件和要求,课件要求制作得精美并且可以清楚得 显示出各个量之间的关系。
4.给学生时间思考:如何明确并用数学式子表示
出题目中的各个量? 5.让学生回答他们的答案是什么,给予点评,让
学生核对答案,可以以学生举手示意的方式掌握全班的 情况。
没有深入的理解。通过本节课的学习,应该让学生进一
步体会一元二次方程也是刻画现实世界的一个有效数
学模型。
1、会根据具体问题列出一元二次方程,体会方程
的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程
的一般形式;会把一个一元二次方程化为一般形式;会
判断一元二次方程的二次项系数、一次项系数和常数 教学目标
10.设置悬念:有的同学猜测是 1 米,到底是多少, 我们后面来看一看。为后续学习做好铺垫。
11.让学生说出他们的答案,点评,其他学生核对 自己的答案;可以以学生举手示意的方式掌握全班的情 况。
12.肯定学生的表现:大家自己的探索已经很好地 打开了第二章“一元二次方程”的大门,相信同学们这 一章会学得很好。
①在这个问题中,梯子顶端下滑 1 米时,梯子底端 滑动的距离大于 1 米,那么梯子顶端下滑几米时,梯子 底端滑动的距离和它相等呢?②如果梯子长度是 13 米,梯子顶端下滑的距离与梯子底端滑动的距离可能相 等吗?如果相等,那么这个距离是多少?
3、观察下面等式:102+112+122=132 +142 你还能找到其他的五个连续整数,使前三个数 的平方和等于后两个数的平方和吗?
10.总结本节内容,记下作业。(分析学生在本课 中所需学习方法的掌握情况、学生的课堂学习行为与习 惯、合作学习氛围、学生认知障碍等)
高中数学-学生-实系数一元二次方程

教学内容
知识精要
1.复数的平方根与立方根:
和实数一样,复数 和 ,若满足 ,则称 是 的平方根。因为 ,所以 的平方根是 两个数。
(1)求法:利用复数相等求复数的平方根
(2)1的立方根:
的常用结论: ; ;
思考:当 时, 取何值?
2.实系数一元二次方程 在复数集中恒有解.当判别式 时,方程有两个实数解 ;当判别式 时,方程有两个虚根,且互为共轭 .
(1)在复数集中,实系数一元二次方程的根的性质:实系数一元二次方程在复数集中一定有两个根,它们是两个实根或者是一对共轭虚根。此性质可推广到实系数一元n次方程在复数集中的情况也成立。
(2)实系数一元二次方程 在复数范是一元二次方程 的根,则
2.在复数范围内分解因式 ________
7.设等比数列 其中 :
(1)求 的值;
(2)试求使 的最小自然数
(3)对于(2)中的 ,求 的值。
例4.求与自身的平方共轭的复数
例5.已知复数 是 的平方根,求 的值。
例6.设方程 的两根为 ,且 ,求实数m的值。
例7.已知 为实系数一元二次方程 的两个根, 为虚数,且 ,求 的值。
例8.若关于 的方程 至少有一个模为1的根,求实数 的值。
例9. 是方程 的两个根,其中 求 的值。
备选例题
1.对任意非零复数 ,定义集合 ,设 是方程
3.已知复数 满足 且 ,则 ________
4.方程 的解集是________
5.方程 的两根为__________
6.已知 是实系数方程 的根,则 ______
7.复数 的平方根是()
8.下列命题在复数集中是否正确?为什么?
第16讲 复数的几何意义和实系数一元二次方程(讲义)解析版

第16讲 复数的几何意义和实系数一元二次方程知识梳理一、理解复数的几何意义(1)复平面的有关概念:实轴是x 轴,虚轴是y 轴;与复数(,)z a b i a b R =+∈ 一一对应的点是(,)a b ; 非零复数22(,,0)z a bi a b R a b =+∈+≠与复平面上自原点出发以点(,)Z a b 为终点的向量OZ 一一对应;复数模的几何意义是:复数对应复平面上的点到原点的距离.二、实系数一元二次方程实系数一元二次方程20(,,,0)ax bx c a b c a ++=∈≠R 中的24b ac ∆=-为根的判别式,那么(1)0∆>⇔方程有两个不相等的实根2b a-;(2)0∆=⇔方程有两个相等的实根2b a-; (3)0∆<⇔方程有两个共轭虚根2b a-±,在(3)的情况下,方程的根与系数关系(韦达定理)仍然成立. 求解复数集上的方程的方法:(1)设(,)z x yi x y =+∈R 化归为实数方程来解决(化归思想).(2)把z 看成一个未知数(而不是实部和虚部两个未知数),用复数的性质来变形(整体思想).(3)对二次方程,直接用一元二次方程的求根公式(公式法).例题解析一、复数的几何意义例1.(2021·上海杨浦区·复旦附中高二期末)若复数1z ,2z 满足123z z ==,12z z +=122z z -的值是______.【答案】【分析】设复数所对应的向量分别为a ,b ,根据123z z ==,12z z +=面向量的模的运算,由2222a b ba ab +++=⋅,得到0a b ⋅=,再由222424a a b a b b --+=⋅求解.【详解】设复数所对应的向量分别为a ,b因为复数1z ,2z 满足123z z ==,12z z += 所以3a =,3b =,32a b +=, 所以222218a a b b a b+⋅+=+=,即0a b ⋅=, 所以a b ⊥, 所以22244524b ba a ab -=⋅-+=,解得352a b -=所以122z z -的值是故答案为:例2.(2021·上海市松江二中高二期末)已知复数z 满足242z i +-=,则1z -的取值范围是__________. 【答案】[]3,7【分析】设(,)z x y =,(,)x y R ∈,由复数z 满足|24|2z i +-=,可得在复平面内点z 表示的是以(2,4)-为圆心,2r为半径的圆.|1|z -表示的是点z 与(1,0)之间的距离,求出圆心与点(1,0)之间的距离d .可得|1|z -的范围是[d r -,]d r +. 【详解】解:设(,)z x y =,(,)x y R ∈, 复数z 满足|24|2z i +-=,∴2,即22(2)(4)4x y ++-=. ∴在复平面内点z 表示的是以(2,4)-为圆心,2r为半径的圆.|1|z -表示的是点z 与(1,0)之间的距离,圆心与点(1,0)之间的距离5d =. 则|1|z -的范围是[d r -,]d r +,即[]3,7. 故答案为:[]3,7.例3.(2021·上海市西南位育中学高二期末)设O 是复平面的原点,满足|||1|z i z -+-=的复数在复平面上所对应的点构成集合M ,在M 中任取不同的两点A 和B ,则AOB ∠的最大值是_____________.【答案】2π【分析】根据|||1|z i z -+-=z 在复平面所表示的轨迹,从而确定集合M ,这样可以确定AOB ∠的最大值.【详解】由|||1|z i z -+-=z 表示在复平面内到(0,1),(1,0)P Q 两点的距,而PQ =z 表示的线段PQ ,因此集合M 是表示线段PQ上的点,如下图所示:显然当2AOB POQ π∠=∠=时,AOB ∠有最大值,最大值为2π. 故答案为:2π 【点睛】本题考查了复数模的几何意义,考查了数形结合,属于基础题.例4.(2021·徐汇区·上海中学高二期末)已知关于x 的方程2430x zx i +++=有实数根,求复数z 的模的最小值.【答案】【分析】根据题意,设x ∈R ,且0x ≠,得到43z x i x x⎛⎫=-+- ⎪⎝⎭,根据复数模的计算公式,得到z =.【详解】由题意,可设x ∈R ,且0x ≠,则24343x i z x i x x x ++⎛⎫=-=-+- ⎪⎝⎭,832z ==当且仅当2225x x=,即x =故min z =【点睛】本题主要考查求复数模的最值问题,熟记复数模的计算公式,以及基本不等式即可,属于常考题型.例5.已知复数z x yi =+满足22z z i =--,则33x y+的最小值是( )A 、18B 、6C、D、3【难度】★★ 【答案】 B例6.设复数(为虚数单位),若对任意实数,,则实数的取值范围为 . 【难度】★★【答案】[ 【巩固训练】1.若复数z 满足211=-++z z ,则1-+i z 的最小值是 . 【难度】★★ 【答案】12.设O 为坐标原点,已知向量1OZ 、2OZ 分别对应复数1z 、2z ,i a a z )10(5321-++=, 212),()52(12z z R a i a az +∈-+-=若其中是实数,求2z 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。