2013年高考真题理科数学试卷(新课标I卷)及答案(word版)

合集下载

2013年高考新课标1卷理科数学试题及答案(精编WORD版)

2013年高考新课标1卷理科数学试题及答案(精编WORD版)


(b1

a1)(
1 )n1 2
bn

a1
(b1

a1 )(
1 2
)n1
,
cn

2a1
bn

a1
(b1

a1 )(
1 )n1 2
Sn2

3a1 (3a1 22

a1
)

3a1 2

a1

(b1

a1
)(
1 2
)n
1


3a1 2

a1

(b1

a1
bn cn 2an 0bn cn 2an 2a1 bn cn 2a1
又由题意,bn1 cn1

cn
bn 2
bn1 (2a1 bn1)
2a1 bn 2
bn
a1 bn
bn1

a1

1 2
(a1
bn )bn

a1
b1 a1 2a1 c1 a1 a1 c1 0b1 a1 c1
又 b1

c1

a1
2a1

c1

c1

a1
2c1

a1
c1

a1 2
由题意,b n1
cn1

bn
cn 2
a1 bn1
cn1
2a1

1 2
(bn
cn
2a1)
A、5030πcm3
B、8636πcm3

2013年高考数学理科全国卷1及答案

2013年高考数学理科全国卷1及答案

盐津二中卓余网2013年普通高等学校招生全国统一考试(1卷)数 学(理科)参考公式:如果事件互斥,那么 球的表面积公式()()()P AB P A P B24SR如果事件相互独立,那么 其中R 表示球的半径()()()P A B P A P B球的体积公式如果事件A 在一次试验中发生的概率是p ,那么343VR 在n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,,)k k n k n n P k C p p kn …第一部分 (选择题 共60分)注意事项:1、选择题必须使用2B 铅笔将答案标号涂在机读卡上对应题目标号的位置上。

2、本部分共12小题,每小题5分,共60分。

盐津二中卓余网一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。

1、7(1)x +的展开式中2x 的系数是( )A 、42B 、35C 、28D 、212、复数2(1)2i i-=( )A 、1B 、1-C 、iD 、i - 3、函数29,3()3ln(2),3x x f x x x x ⎧-<⎪=-⎨⎪-≥⎩在3x =处的极限是( )A 、不存在B 、等于6C 、等于3D 、等于0 4、如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( ) ABCD5、函数1(0,1)x y a a a a=->≠的图象可能是( )盐津二中卓余网6、下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 7、设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A 、a b =-B 、//a bC 、2a b =D 、//a b 且||||a b = 8、已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点0(2,)M y 。

2013年全国高考数学理科试卷新课标全国卷Ⅰ(word版)

2013年全国高考数学理科试卷新课标全国卷Ⅰ(word版)

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N= ()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)错误!未找到引用源。

(B)- 错误!未找到引用源。

(C)错误!未找到引用源。

(D)- 错误!未找到引用源。

(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l ⊥m,l ⊥n,l⊄α,l⊄β,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l(D)α与β相交,且交线平行于l(5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a = ( )(A)-4 (B)-3(C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=( )(A)1+ 错误!未找到引用源。

+ 错误!未找到引用源。

+…+ 错误!未找到引用源。

(B)1+ 错误!未找到引用源。

2013年高考理科数学全国新课标卷1试题与标准答案解析版

2013年高考理科数学全国新课标卷1试题与标准答案解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,理1)已知集合A ={x |x 2-2x >0},B ={x |-5<x <5},则( ). A .A ∩B= B.A ∪B =R C .B ⊆A D.A ⊆B2.(2013课标全国Ⅰ,理2)若复数z 满足(3-4i)z =|4+3i |,则z 的虚部为( ). A .-4 B.45-C .4 D.45 3.(2013课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A .简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样4.(2013课标全国Ⅰ,理4)已知双曲线C:2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A.y =14x ±B .y=13x ±C .y =12x± D.y=±x5.(2013课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A.[-3,4]B.[-5,2]C.[-4,3]D .[-2,5]6.(2013课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 c m,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A.500π3cm3 B.866π3cm 3C .1372π3cm3 D.2048π3cm37.(2013课标全国Ⅰ,理7)设等差数列{a n }的前n项和为S n ,若S m -1=-2,S m =0,Sm+1=3,则m =( ).A.3 B .4 C .5 D.68.(2013课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).A.16+8πB .8+8πC .16+16πD.8+16π9.(2013课标全国Ⅰ,理9)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x+y )2m +1展开式的二项式系数的最大值为b.若13a =7b ,则m =( ).A.5 B.6 C.7 D.8 10.(2013课标全国Ⅰ,理10)已知椭圆E:2222=1x y a b+(a>b>0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ). A.22=14536x y + B.22=13627x y + C .22=12718x y + D.22=1189x y +11.(2013课标全国Ⅰ,理11)已知函数f(x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( ).A .(-∞,0]B .(-∞,1] C.[-2,1] D.[-2,0]12.(2013课标全国Ⅰ,理12)设△A n Bn C n的三边长分别为a n ,bn ,cn,△A n B nCn 的面积为Sn ,n =1,2,3,….若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,bn +1=2n n c a +,c n+1=2n n b a +,则( ). A .{Sn}为递减数列 B .{Sn}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c =ta +(1-t )b.若b·c =0,则t =__________.14.(2013课标全国Ⅰ,理14)若数列{an}的前n 项和2133n n S a =+,则{an}的通项公式是an =_______.15.(2013课标全国Ⅰ,理15)设当x=θ时,函数f (x)=sin x-2co s x取得最大值,则c os θ=__________.16.(2013课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax +b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC 中,∠AB C=90°,AB,BC =1,P 为△AB C内一点,∠BPC =90°.(1)若PB =12,求P A; (2)若∠APB =150°,求tan ∠PB A.。

2013年高考理科数学试卷及答案---全国卷(新课标版)word版

2013年高考理科数学试卷及答案---全国卷(新课标版)word版

2013年全国卷新课标数学(理)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合}5,4,3,2,1{=A ,},,|),{(A y x A y A x y x B ∈-∈∈=,则B 中所含元素的个数为A. 3B. 6C. 8D. 102. 将2名教师,4名学生分成两个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由一名教师和2名学生组成,不同的安排方案共有 A. 12种 B. 10种 C. 9种 D. 8种3. 下面是关于复数iz +-=12的四个命题: :1P 2||=z:2P i z 22= :3P z 的共轭复数为i +1:4P z 的虚部为1-其中的真命题为A. 2P ,3PB. 1P ,2PC. 2P ,4PD. 3P ,4P4. 设21,F F 是椭圆:E 12222=+by a x )0(>>b a 的左右焦点,P 为直线23a x =上的一点,12PF F △是底角为︒30的等腰三角形,则E 的离心率为A.21B.32 C.43 D.54 5. 已知}{n a 为等比数列,274=+a a ,865-=a a ,则=+101a aA.7B. 5C.5-D. 7-6. 如果执行右边的程序框图,输入正整数N )2(≥N 和 实数N a a a ,,,21 ,输出A ,B ,则A. B A +为N a a a ,,,21 的和B.2BA +为N a a a ,,,21 的算术平均数 C. A 和B 分别是N a a a ,,,21 中最大的数和最小的数D. A 和B 分别是N a a a ,,,21 中最小的数和最大的数7. 如图,网格纸上小正方形的边长为1,粗线画出的 是某几何体的三视图,则此几何体的体积为 A. 6 B. 9 C. 12 D. 188. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B ,两点,34||=AB ,则的实轴长为A.2B. 22C. 4D. 89. 已知0>ω,函数)4sin()(πω+=x x f 在),2(ππ单调递减,则ω的取值范围是A. ]45,21[B. ]43,21[C. ]21,0(D. ]2,0(10. 已知函数xx x f -+=)1ln(1)(,则)(x f y =的图像大致为11. 已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为A.62 B.63 C.32 D.22 12. 设点P 在曲线xe y 21=上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为A. 2ln 1-B.)2ln 1(2- C. 2ln 1+D.)2ln 1(2+二、填空题.本大题共4小题,每小题5分.13.已知向量a ,b 夹角为︒45,且1=||a ,102=-||b a ,则=||b .14. 设y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+-≥-0031y x y x y x 则y x Z 2-=的取值范围为 .15. 某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)服从正态分布)50,1000(2N ,且各元件能否正常工作互相独立,那么该部件的使用寿命超过1000小时的概率为 .16. 数列}{n a 满足12)1(1-=-++n a a n n n ,则}{n a项和为 . 三、解答题:解答题应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分) 已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,0sin 3cos =--+c b C a C a . (Ⅰ) 求A ;(Ⅱ) 若2=a ,ABC △的面积为3,求b ,c .18. (本小题满分12分) 某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ) 若花店某天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,N n ∈)的函数解析式;(Ⅱ) 花店记录了100以100天记录的各需求量的频率作为各需求量发生的概率. (ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差; (ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19. (本小题满分12分)如图,直三棱柱111C B AABC -中,121AA BC AC ==,D 是棱1AA 的中点,BD DC ⊥1 (Ⅰ) 证明:BC DC ⊥1(Ⅱ) 求二面角11C BD A --的大小.20. (本小题满分12分)设抛物线:C py x 22=)0(>p 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B 、D 两点(Ⅰ) 若90BFD ∠=︒,ABD △面积为24,求p 的值及圆F 的方程;(Ⅱ)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 的距离的比值.21. (本小题满分12分) 已知函数121()(1)(0)2x f x f ef x x -'=-+. (Ⅰ) 求)(x f 的解析式及单调区间;(Ⅱ) 若b ax x x f ++≥221)(,求b a )1(+的最大值请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分,作答时请写清题号. 22. (本小题满分10分)选修4—1:几何证明选讲 如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的 外接圆于F ,G 两点.若AB CF //,证明: (Ⅰ) BC CD =;(Ⅱ) GBD BCD ∽△△.23. (本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos 3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)点A ,B ,C ,D 的直角坐标;(Ⅱ) 设P 为1C 上任意一点,求2222||||||||PD PC PB PA +++的取值范围.24. (本小题满分10分)选修4—5:不等式选讲 已知函数|2|||)(-++=x a x x f .(Ⅰ) 当3a =-时,求不等式3)(≥x f 的解集;(Ⅱ) |4|)(-≤x x f 的解集包含]2,1[,求a 的取值范围.参考答案1-12:DACCD CBCAB AB 13、 14、[]3,3-. 15、3816、1830. 17、解:(Ⅰ)由cos sin 0a C C b c --=及正弦定理可得sin cos sin sin sin 0A C A C B C --=,()sin cos sin sin sin 0A C A C A C C +-+-=,sin cos sin sin 0A C A C C --=,sin 0C >,cos 10A A --=,2sin 106A π⎛⎫∴--= ⎪⎝⎭,1sin 62A π⎛⎫-= ⎪⎝⎭,0A π<< ,5666A πππ∴-<-<,66A ππ∴-=3A π∴=(Ⅱ)ABC S = △1sin 2bc A ∴==4bc ∴=, 2,3a A π==,222222cos 4a b c bc A b c bc ∴=+-=+-=, 228b c ∴+=. 解得2b c ==.18、解:(Ⅰ) ()()1080,1580,16 n n y n -≤⎧⎪=⎨≥⎪⎩(n N ∈); (Ⅱ) (ⅰ)若花店一天购进16枝玫瑰花,X 的分布列为X 的数学期望()E X =60×0.1+70×0.2+80×0.7=76,X 的方差()D X =(60-762)×0.1+(70-762)×0.2+(80-762)×0.7=44.(ⅱ)若花店计划一天购进17枝玫瑰花,XX 的数学期望()E X =55×0.1+65×0.2+75×0.16+85×0.54=76.4,因为76.4>76,所以应购进17枝玫瑰花. 19、(Ⅰ) 证明:设112AC BC AA a ===, 直三棱柱111C B A ABC -, 1DC DC ∴==, 12CC a =,22211DC DC CC ∴+=,1DC DC ∴⊥. 又1DC BD ⊥ ,1DC DC D =,1DC ∴⊥平面BDC .BC⊂ 平面BDC ,1DC BC ∴⊥.(Ⅱ)由 (Ⅰ)知,1DC =,1BC =,又已知BD DC ⊥1,BD ∴=. 在Rt ABD △中,,,90BD AD a DAB =∠= , AB ∴=.222AC BC AB ∴+=,AC BC ∴⊥.取11A B 的中点E ,则易证1C E ⊥平面1BDA ,连结DE ,则1C E ⊥BD , 已知BD DC ⊥1,BD ∴⊥平面1DC E ,BD ∴⊥DE ,1C DE ∴∠是二面角11C BD A --平面角.在1Rt C DE △中,1111sin 2C EC DE C D∠===,130C DE ∴∠= .即二面角11C BD A --的大小为30.20、解: (Ⅰ)由对称性可知,BFD △为等腰直角三角形,斜边上的高为p ,斜边长2BD p =.点A 到准线l的距离d FB FD ===.由ABD S =△,11222BD d p ⨯⨯=⨯=2p ∴=.圆F 的方程为()2218x y +-=.(Ⅱ)由对称性,不妨设点(),A A A x y 在第一象限,由已知得线段AB 是圆F 的在直径,90o ADB ∠=,2BD p ∴=,32A y p ∴=,代入抛物线:C py x 22=得A x . 直线m的斜率为3AF k ==.直线m的方程为0x =. 由py x 22= 得22x y p=,x y p '=.由3x y p '==, 3x p =.故直线n 与抛物线C的切点坐标为6p ⎫⎪⎪⎝⎭, 直线n的方程为06x -=. 所以坐标原点到m ,n3=. 21、解: (Ⅰ) 1()(1)(0)x f x f ef x -''=-+,令1x =得,(0)1f =, 再由121()(1)(0)2x f x f e f x x -'=-+,令0x =得()1f e '=. 所以)(x f 的解析式为21()2x f x e x x =-+. ()1x f x e x '=-+,易知()1x f x e x '=-+是R 上的增函数,且(0)0f '=.所以()00,()00,f x x f x x ''>⇔><⇔<所以函数)(x f 的增区间为()0,+∞,减区间为(),0-∞.(Ⅱ) 若b ax x x f ++≥221)(恒成立,即()()21()102x h x f x x ax b e a x b =---=-+-≥恒成立, ()()1x h x e a '=-+ ,(1)当10a +<时,()0h x '>恒成立, ()h x 为R 上的增函数,且当x →-∞时, ()h x →-∞,不合题意;(2)当10a +=时,()0h x >恒成立, 则0b ≤,(1)0a b +=;(3)当10a +>时, ()()1xh x e a '=-+为增函数,由()0h x '=得()ln 1x a =+, 故()()()0ln 1,()0ln 1,f x x a f x x a ''>⇔>+<⇔<+当()ln 1x a =+时, ()h x 取最小值()()()()ln 111ln 1h a a a a b +=+-++-.依题意有()()()()ln 111ln 10h a a a a b +=+-++-≥,即()()11ln 1b a a a ≤+-++, 10a +> ,()()()()22111ln 1a b a a a ∴+≤+-++,令()()22ln 0 u x x x x x =->,则()()22ln 12ln u x x x x x x x '=--=-, ()00()0u x x u x x ''>⇔<<⇔,所以当x =, ()u x取最大值2e u =.故当12a b+==时, ()1a b+取最大值2e.综上, 若baxxxf++≥221)(,则ba)1(+的最大值为2e.22、证明:(Ⅰ) ∵D,E分别为ABC△边AB,AC的中点,∴//DE BC.//CF AB,//DF BC,CF BD∴ 且=CF BD,又∵D为AB的中点,CF AD∴ 且=CF AD,CD AF∴=.//CF AB,BC AF∴=.CD BC∴=.(Ⅱ)由(Ⅰ)知,BC GF,GB CF BD∴==,BGD BDG DBC BDC∠=∠=∠=∠BCD GBD∴△∽△.23、解:(Ⅰ)依题意,点A,B,C,D的极坐标分别为.所以点A,B,C,D的直角坐标分别为、(、(1,-、1)-;(Ⅱ) 设()2cos,3sinPϕϕ,则2222||||||||PDPCPBPA+++())2212cos3sinϕϕ=-+()()222cos13sinϕϕ++-()()2212cos3sinϕϕ+--+)()222cos13sinϕϕ++--2216cos36sin16ϕϕ=++[]23220sin32,52ϕ=+∈.所以2222||||||||PD PC PB PA +++的取值范围为[]32,52.24、解:(Ⅰ) 当3a =-时,不等式3)(≥x f ⇔ |3||2|3x x -+-≥⇔ ()()2323x x x ≤⎧⎪⎨----≥⎪⎩或()()23323x x x <<⎧⎪⎨-++-≥⎪⎩或()()3323x x x ≥⎧⎪⎨-+-≥⎪⎩⇔或4x ≥.所以当3a =-时,不等式3)(≥x f 的解集为{1x x ≤或}4x ≥. (Ⅱ) ()|4|f x x ≤-的解集包含]2,1[,即|||2||4|x a x x ++-≤-对[]1,2x ∈恒成立,即||2x a +≤对[]1,2x ∈恒成立,即22a x a --≤≤-对[]1,2x ∈恒成立, 所以2122a a --≤⎧⎨-≥⎩,即30a -≤≤.所以a 的取值范围为[]3,0-.。

新课标卷I(数学理)word版-2013年普通高等学校招生全国统一考试

新课标卷I(数学理)word版-2013年普通高等学校招生全国统一考试

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N= ()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1++ +…+(B )1++ +…+ (C )1++ +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c (9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a= (A) (B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形 (C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减x ≥1, x+y ≤3,y ≥a(x-3). {(D)若xn是f(x)的极值点,则f1(xα)=0(11)设抛物线y2=3px(p≥0)的焦点为F,点M在C上,|MF|=5若以MF为直径的园过点(0,3),则C 的方程为(A)y2=4x或y2=8x (B)y2=2x或y2=8x(C)y2=4x或y2=16x (D)y2=2x或y2=16x(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

2013年高考全国新课标1卷数学试卷(理科)word版

2013年高考全国新课标1卷数学试卷(理科)word版

2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N= ()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)- (C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l ⊥m,l ⊥n,l⊄α,l⊄β,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l(D)α与β相交,且交线平行于l(5)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a = ( )(A)-4 (B)-3(C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=( )(A)1+ + +…+ (B)1+ + +…+(C)1+++…+ (D)1+++…+(7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()(A) (B) (C) (D)(8)设a=log36, b=log510, c=log714,则(A)c>b>a (B)b>c>a (C)a>c>b (D)a>b>c(9)已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a=( )(A)(B) (C)1 (D)2(10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ) (A)∃xα∈R,f(xα)=0(B)函数y=f(x)的图像是中心对称图形(C)若xα是f(x)的极小值点,则f(x)在区间(-∞,xα)单调递减(D)若xα是f(x)的极值点,则f1(xα)=0(11)设抛物线y2=3px(p≥0)的焦点为F,点M在C上,|MF|=5. 若以MF为直径的圆过点(0,3),则C的方程为( )(A)y2=4x或y2=8x (B)y2=2x或y2=8x(C)y2=4x或y2=16x (D)y2=2x或y2=16x(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1)(B)(22-1,21)(C)(22-1,31)(D)[31,21)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

河南省2013年高考真题——数学理(新课标I卷)word版

河南省2013年高考真题——数学理(新课标I卷)word版

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅰ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合M={x|(x+1)2 < 4,x∈R},N={-1,0,1,2,3},则M∩N=()(A){0,1,2}(B){-1,0,1,2}(C){-1,0,2,3} (D){0,1,2,3}(2)设复数z满足(1-i)z=2 i,则z= ()(A)-1+i (B)-1-i (C)1+i (D)1-i(3)等比数列{a n}的前n项和为S n,已知S3 = a2 +10a1 ,a5 = 9,则a1= ()(A)(B)-(C)(D)-(4)已知m,n为异面直线,m⊥平面α,n⊥平面β。

直线l满足l ⊥m,l ⊥n,lβ,则()(A)α∥β且l ∥α(B)α⊥β且l⊥β(C)α与β相交,且交线垂直于l (D)α与β相交,且交线平行于l(5)已知(1+ɑx)(1+x)5的展开式中x2的系数为5,则ɑ=(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的N=10,那么输出的s=(A )1++ +…+(B )1++ +…+ (C )1++ +…+(D )1++ +…+(7)一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1),(1,1,0),(1,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为搞影面,则得到正视图可以为(A) (B) (C) (D)(8)设ɑ=log 36,b=log 510,c=log 714,则(A )c >b >a (B )b >c >a(C )a >c >b (D)a >b >c(9)已知a >0,x ,y 满足约束条件 ,若z=2x+y 的最小值为1,则a= (A) (B) (C)1 (D)2(10)已知函数f(x)=x2+αx2+bx+,下列结论中错误的是(A )∑x α∈R f(x α)=0(B )函数y=f(x)的图像是中心对称图形(C )若x α是f(x)的极小值点,则f(x)在区间(-∞,x α)单调递减(D )若xn 是f (x )的极值点,则f 1(x α)=0(11)设抛物线y2=3px(p ≥0)的焦点为F ,点M 在C 上,|MF|=5若以MF 为直径的园过点(0,3),则C 的方程为(A )y2=4x 或y2=8x (B )y2=2x 或y2=8x(C )y2=4x 或y2=16x (D )y2=2x 或y2=16xx ≥1,x+y ≤3, y ≥a(x-3). {(12)已知点A(-1,0);B(1,0);C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(A)(0,1)(B)(1-,1/2)( C)(1-,1/3)(D)[ 1/3, 1/2)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年高考理科数学试题(课标Ⅰ)第Ⅰ卷一、 选择题共12小题。

每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的一项1.已知集合{}{2|20,|A x x x B x x =->=<<,则 ( ) A.A∩B=∅ B.A ∪B=R C.B ⊆A D.A ⊆B2.若复数z 满足(34)|43|i z i -=+,则z 的虚部为( ) A.4- B.45- C.4 D.453. 为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学.初中.高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( )A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样4.已知双曲线C :22221x y a b -=(0,0a b >>C 的渐近线方程为A.14y x =±B.13y x =±C.12y x =± D.y x =± 5.运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A.[3,4]- B .[5,2]- C.[4,3]- D.[2,5]-6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( ) A.35003cm π B. 38663cm π C. 313723cm π D. 320483cm π 7.设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m=( )A.3B.4C.5D.68.某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+9.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A.5B.6C.7D.810.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点。

若AB 的中点坐标为(1,1)-,则E 的方程为 ( )A.2214536x y += B.2213627x y += C.2212718x y += D.221189x y += 11.已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-12.设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n = ,若11111,2b c b c a >+=,111,,22n n nn n n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列 二.填空题:本大题共四小题,每小题5分13.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t=_____.14.若数列{n a }的前n 项和为S n =2133n a +,则数列{n a }的通项公式是n a =______. 15.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=______16.若函数()f x =22(1)()x x ax b -++的图像关于直线2x =-对称,则()f x 的最大值是______.三.解答题:解答应写出文字说明,证明过程或演算步骤17.(本小题满分12分)如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90°(Ⅰ)若PB=12,求PA ; (Ⅱ)若∠APB =150°,求tan ∠PBA 。

18.(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°.(Ⅰ)证明AB ⊥A 1C ;(Ⅱ)若平面ABC ⊥平面AA 1B 1B ,AB=CB=2,求直线A 1C 与平面BB 1C 1C 所成角的正弦值。

19.(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n 。

如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。

假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独 立,(Ⅰ)求这批产品通过检验的概率;(Ⅱ)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需 的费用记为X (单位:元),求X 的分布列及数学期望。

20.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.21.(本小题满分共12分)已知函数()f x =2x ax b ++,()g x =()xe cx d +,若曲线()yf x =和曲线()yg x =都过点P(0,2),且在点P 处有相同的切线42y x =+(Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,()f x ≤()kg x ,求k 的取值范围。

22.(本小题满分10分)选修4—1:几何证明选讲 如图,直线AB 为圆的切线,切点为B ,点C 在圆上,∠ABC 的角平分线BE 交圆于点E ,DB 垂直BE 交圆于D 。

(Ⅰ)证明:DB=DC ;(Ⅱ)设圆的半径为1,BC= ,延长CE 交AB 于点F ,求△BCF 外接圆的半径。

23.(本小题10分)选修4—4:坐标系与参数方程 已知曲线C 1的参数方程为45cos 55sin x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=。

(Ⅰ)把C 1的参数方程化为极坐标方程;(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π)。

24.(本小题满分10分)选修4—5:不等式选讲已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.参考答案一、选择题1.B. 2.D. 3.C. 4.C 5.A 6.A 7.C 8.A 9.B 10.D 11.D 12.B二、填空题13.t =2. 14.n a =1(2)n --. 15.. 16.16. 三解答题17.(Ⅰ)由已知得,∠PBC=o 60,∴∠PBA=30o,在△PBA 中,由余弦定理得2PA =o 1132cos3042+-=74,∴;(Ⅱ)设∠PBA=α,由已知得,PB=sin α,在△PBA o sin sin(30)αα=-,4sin αα=,∴tan α,∴tan PBA ∠18.(Ⅰ)取AB 中点E ,连结CE ,1A B ,1A E ,∵AB=1AA ,1BAA ∠=060,∴1BAA ∆是正三角形,∴1A E ⊥AB , ∵CA=CB , ∴CE ⊥AB , ∵1CE A E ⋂=E ,∴AB ⊥面1CEA ,∴AB ⊥1AC ; ……6分(Ⅱ)由(Ⅰ)知EC ⊥AB ,1EA ⊥AB ,又∵面ABC ⊥面11ABB A ,面ABC ∩面11ABB A =AB ,∴EC ⊥面11ABB A ,∴EC ⊥1EA , ∴EA ,EC ,1EA 两两相互垂直,以E 为坐标原点,EA 的方向为x 轴正方向,|EA |为单位长度,建立如图所示空间直角坐标系O xyz -,有题设知A(1,0,0),1A (0,,0),C(0,0,),B(-1,0,0),则BC =(1,0,),1BB =1AA =(-1A C =(0,……9分设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧∙=⎪⎨∙=⎪⎩ n n,即00x x ⎧+=⎪⎨+=⎪⎩,可取n =,1,-1), ∴1cos ,A C n =11|A C A C ∙ n |n|| ∴直线A 1C 与平面BB 1C 1C……12分 19.设第一次取出的4件产品中恰有3件优质品为事件A ,第一次取出的4件产品中全为优质品为事件B,第二次取出的4件产品都是优质品为事件C ,第二次取出的1件产品是优质品为事件D ,这批产品通过检验为事件E ,根据题意有E=(AB)∪(CD),且AB 与CD 互斥,∴P(E)=P(AB)+P(CD)=P(A)P(B|A)+P(C)P(D|C)=3244111()()222C ⨯⨯+411()22⨯=364.…6分 (Ⅱ)X 的可能取值为400,500,800,并且 P(X=400)=1-3344111()()222C ⨯-=1116,P(X=500)=116,P(X=800)=33411()22C ⨯=14, ∴X……10分EX=400×1116+500×116+800×14=506.25 ……12分 20.由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4,由椭圆的定义可知,曲线C 是以M ,N 为左右焦点,场半轴长为2的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R ≤2,当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=,当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=.当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q ,则||||QP QM =1R r ,可求得Q (-4,0),∴设l :(4)y k x =+,由l 于圆M1=,解得k =当k 时,将y x =+代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x ,∴12||x x -=187.当k =时,由图形的对称性可知|AB|=187,综上,|AB|=187或|AB|=21.(Ⅰ)由已知得(0)2,(0)2,(0)4,(0)4f g f g ''====,而()f x '=2x b +,()g x '=()x e cx d c ++,∴a =4,b =2,c =2,d =2;……4分(Ⅱ)由(Ⅰ)知,2()42f x x x =++,()2(1)x g x e x =+,设函数()F x =()()kg x f x -=22(1)42x ke x x x +---(2x ≥-), ()F x '=2(2)24x ke x x +--=2(2)(1)x x ke +-,有题设可得(0)F ≥0,即1k ≥,令()F x '=0得,1x =ln k -,2x =-2,(1)若21k e ≤<,则-2<1x ≤0,∴当1(2,)x x ∈-时,()F x <0,当1(,)x x ∈+∞时,()F x >0,即()F x 在1(2,)x -单调递减,在1(,)x +∞单调递增,故()F x 在x =1x 取最小值1()F x ,而1()F x =21112242x x x +---=11(2)x x -+≥0,∴当x ≥-2时,()F x ≥0,即()f x ≤()kg x 恒成立,(2)若2k e =,则()F x '=222(2)()x e x e e +-,∴当x ≥-2时,()F x '≥0,∴()F x 在(-2,+∞)单调递增,而(2)F -=0, ∴当x ≥-2时,()F x ≥0,即()f x ≤()kg x 恒成立,(3)若2k e >,则(2)F -=222ke --+=222()e k e ---<0,∴当x ≥-2时,()f x ≤()kg x 不可能恒成立,综上所述,k 的取值范围为[1,2e ].22.(Ⅰ)连结DE ,交BC 与点G.由弦切角定理得,∠ABF=∠BCE ,∵∠ABE=∠CBE ,∴∠CBE=∠BCE ,BE=CE , 又∵DB ⊥BE ,∴DE 是直径,∠DCE=090,由勾股定理可得DB=DC. (Ⅱ)由(Ⅰ)知,∠CDE=∠BDE ,BD=DC ,故DG 是BC 的中垂线,∴. 设DE 中点为O ,连结BO ,则∠BOG=o 60,∠ABE=∠BCE=∠CBE=o 30,∴CF ⊥BF , ∴Rt △BCF. 23. 将45cos 55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=, 即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得, 28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=;(Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C4π),(2,)2π. 24.当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,[来源:]设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩, 其图像如图所示从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<. (Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x +≤+, ∴2x a ≥-对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43, ∴a 的取值范围为(-1,43].。

相关文档
最新文档