初中七年级数学学业水平测试
七年级学业水平测试卷数学

一、选择题(每题3分,共30分)1. 下列数中,不是有理数的是()A. 3.14B. -5C. √2D. 02. 下列运算正确的是()A. 3 + (-2) = 5B. 5 - 3 = 2C. (-2) × (-3) = 6D. 3 ÷ (-2) = -1.53. 如果一个数的倒数是它本身,那么这个数是()A. 0B. 1C. -1D. 24. 下列方程中,解为整数的是()A. 2x + 3 = 7B. 3x - 2 = 5C. 4x + 1 = 0D. 5x - 3 = 75. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 长方形D. 平行四边形6. 在一次函数y = kx + b中,若k > 0,则函数图像()A. 与x轴平行B. 与y轴平行C. 经过一、二、三象限D. 经过一、二、四象限7. 一个长方形的长是12cm,宽是8cm,那么它的面积是()A. 96cm²B. 144cm²C. 180cm²D. 192cm²8. 下列命题中,正确的是()A. 所有平行四边形都是矩形B. 所有矩形都是平行四边形C. 所有菱形都是矩形D. 所有矩形都是菱形9. 若∠A = 45°,∠B = 90°,那么∠C = ()A. 45°B. 90°C. 135°D. 180°10. 下列数中,是质数的是()A. 15B. 17C. 18D. 20二、填空题(每题3分,共30分)11. 有理数-3的倒数是______。
12. 在数轴上,点A表示的数是-2,点B表示的数是5,那么点A和点B之间的距离是______。
13. 下列方程中,x的值是2的是______。
14. 一个等腰三角形的底边长是10cm,腰长是8cm,那么这个三角形的面积是______cm²。
2023学年度第二学期学业水平测试七年级数学答案

2023学年度第二学期学业水平测试七年级数学答案一、选择题1.A2.B3.C4.A5.D6.B7.C8.D9.A10.C二、填空题1.42.73.34.125.2三、解答题1. 计算题题目:请计算 2/5 加上 1/10 的结果。
解答:首先将 2/5 和 1/10 的分母取最小公倍数,最小公倍数为 10。
将分子进行相对应的乘法操作,得到 4/10 和1/10。
然后将两个分数的分子相加,结果为 5/10。
最后,如果可能的话,将结果化简。
在这种情况下,可以将分子和分母都同时除以 5,得到 1/2。
因此,2/5 加上 1/10 的结果为 1/2。
2. 图形题题目:请画一个边长为 5 厘米的正方形。
解答:正方形四、解析题1. 判断题解析题目:垂直线段的斜率为无穷大。
解析:不正确。
垂直线段的斜率不存在,而不是无穷大。
当两个点的横坐标相等时,无法用斜率来表示这个线段的倾斜程度,因此我们将斜率定义为不存在。
2. 计算题解析题目:请计算直角三角形的斜边长度,已知直角边长分别为 3 厘米和 4 厘米。
解析:根据勾股定理可以计算直角三角形的斜边长度。
勾股定理的公式为:c² = a² + b²,其中 c 为斜边长度,a 和 b 为直角边的长度。
代入已知数据,得到 c² = 3² + 4²,即 c² = 9 + 16,进一步计算得到 c² = 25。
最后,开方得到 c = 5。
所以,直角三角形的斜边长度为 5 厘米。
五、总结本次七年级数学学业水平测试主要涵盖了选择题、填空题、解答题和解析题。
选择题和填空题主要考察对知识点的掌握程度,解答题则要求学生能正确运用所学知识解决问题。
解析题则通过对常见错误进行解析,帮助学生了解正确答案的原因。
希望同学们能认真学习和练习,提高数学水平!。
2024届河北省石家庄市裕华区数学七年级第一学期期末学业水平测试试题含解析

2024届河北省石家庄市裕华区数学七年级第一学期期末学业水平测试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.下列四个选项的代数式表示中,其中错误的是( )A .m 与n 的2倍的和是2m n +B .m 与n 的和的2倍是()2m n +C .a 与b 的2倍的和是()2a b +D .若a 的平方比甲数小2,则甲数是22+a2.一个多项式与2x 2+2x -1的和是x +2,则这个多项式为( )A .x 2-5x +3B .-x 2+x -1C .-2x 2-x +3D .x 2-5x -133.如图,将一副三角板如图放置,∠COD=28°,则∠AOB 的度数为( )A .152°B .148°C .136°D .144°4.如图,在正方形ABCD 中,E 为DC 边上一点,沿线段BE 对折后,若∠ABF 比 ∠EBF 大15°,则∠EBC 的度数是()A .15度B .20度C .25度D .30度5.已知3x =是关于x 的方程()5132x a --=-的解,则a 的值是A .-4B .4C .6D .-66.观察如图所示的几何体,从左面看到的图形是( )A .B .C .D .7.下列各对数中,数值相等的是 ( )A .23和32B .(﹣2)2和﹣22C .2和|﹣2|D .和8.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,-2的差倒数是111(2)3=--.如果14a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…以此类推,则123461a a a a a ++++⋯+的值是( )A .-55B .55C .-65D .659.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5,经过下面5步运算可得1,即:如图所示.如果自然数m 恰好经过7步运算可得到1,则所有符合条件的m 的值有( )A .6个B .5个C .4个D .3个 10.如图,∠AOC =∠BOD =80°,如果∠AOD =138°,那么∠BOC 等于( )A .22°B .32°C .42°D .52°二、填空题(本大题共有6小题,每小题3分,共18分)11.已知关于x 的一元一次方程mx =5x ﹣2的解为x =2,则m 值为_____.12.实数16 800 000用科学计数法表示为______________________.13.计算:70°39′=______°;比较大小:52°52′_____52.52°.(选填“>”、“<”或“=”)14.若单项式253x y 与1312m n x y ---是同类项,则n m =________.15.在时刻8:30时,时钟上时针和分针的夹角为 度. 16.计算:22°16′÷4=___________.(结果用度、分、秒表示)三、解下列各题(本大题共8小题,共72分)17.(8分)星期日早晨8:00学校组织共青团员乘坐旅游大巴去距离学校100km 的雷锋纪念馆参观,大巴车以60/km h 的速度行驶,小颖因故迟到10分钟,于是她乘坐出租车以80/km h 前往追赶,并且在途中追上了大巴车. ()1小颖追上大巴车用了多长时间?()2小颖追上大巴车时,距离雷锋纪念馆还有多远?18.(8分)解方程: 641152x x +--= 19.(8分)计算:(﹣1)2018÷2×(﹣12)3×16﹣|﹣2| 20.(8分)某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%,问这种商品的进价为多少元?21.(8分)(1)已知22231A x xy y B x xy =++-=-,,若()2230x y ++-=,求2A B -的值; (2)已知多项式2212x my +-与 多项式236nx y -+的差中不含有2,x y ,求m n mn ++的值. 22.(10分)已知212()02x y ++-=,先化简再求32322212x 2x x 3x y 5xy 7-5xy 33y -++++的值. 23.(10分)解关于x 的分式方程:223242kx x x x +=--+ 24.(12分)综合题如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角板(30D ∠=︒)的直角顶点放在点O 处,一边OE 在射线OA 上,另一边OD 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒5︒的速度沿顺时针方向旋转一周,如图2,经过t 秒后,OD 恰好平分BOC ∠.①此时t 的值为______;(直接填空)②此时OE 是否平分AOC ∠?请说明理由.(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒8︒的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分DOE ∠?请说明理由;(3)在(2)问的基础上,经过多长时间OC 平分DOB ∠?参考答案一、选择题(每小题3分,共30分)1、C【分析】逐一对选项进行分析即可.【题目详解】A . m 与n 的2倍的和是2m n +,故该选项正确;B . m 与n 的和的2倍是()2m n +,故该选项正确;C . a 与b 的2倍的和是2+a b ,故该选项正确;D . 若a 的平方比甲数小2,则甲数是22+a ,故该选项正确;故选:C .【题目点拨】本题主要考查列代数式,掌握列代数式的方法及代数式的书写形式是解题的关键.【分析】直接利用整式的加减运算法则计算,设这个多项式是A ,则A+(2x 2+2x-1)= x +2,求出A 的表达式即可得出答案.【题目详解】解:设这个多项式是A ,∵这个多项式与2x 2+2x -1的和是x +2,∴A+(2x 2+2x-1)= x +2,即A=(x+2)-(2x 2+2x-1)=﹣2x 2-x+3,故选:C .【题目点拨】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.3、A【分析】根据三角板的性质得90AOD BOC ∠=∠=︒,再根据同角的余角相等可得62AOC BOD ==︒∠∠,即可求出∠AOB 的度数.【题目详解】∵这是一副三角板∴90AOD BOC ∠=∠=︒∵28COD =︒∠∴62AOC BOD ==︒∠∠∴62+28+62=152AOB AOC COD BOD =++=︒︒︒︒∠∠∠∠故答案为:A .【题目点拨】本题考查了三角板的度数问题,掌握三角板的性质、同角的余角相等是解题的关键.4、C【分析】根据折叠角相等和正方形各内角为直角的性质即可求得∠EBF 的度数.【题目详解】解:∵∠FBE 是∠CBE 折叠形成,∴∠FBE=∠CBE ,∵∠ABF-∠EBF=15°,∠ABF+∠EBF+∠CBE=90°,∴∠EBF=∠EBC= 25°,故选C .【题目点拨】本题考查了折叠的性质,考查了正方形各内角为直角的性质,本题中求得∠FBE=∠CBE 是解题的关键.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【题目详解】把x=3代入方程5(x-1)-3a=-2得:10-3a=-2,解得:a=4,故选B .【题目点拨】本题考查了一元一次方程的解,解一元一次方程等知识点,解题的关键是能得出关于a 的一元一次方程. 6、C【分析】从左面只看到两列,左边一列3个正方形、右边一列1个正方形,据此解答即可.【题目详解】解:观察几何体,从左面看到的图形是故选:C .【题目点拨】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7、C【解题分析】选项A ,,数值不相等;选项B ,(﹣2)2=4,﹣22=﹣4,数值不相等;选项C ,|﹣2|=2,数值相等;选项D , , ,数值不相等,故选C. 点睛:解决此类题目的关键是熟记有理数的乘方法则.负数的奇数次幂是负数,负数的偶数次幂是正数;正数的任何次幂都是正数.8、A【分析】利用规定的运算方法,分别算得a 1,a 2,a 3,a 4…找出运算结果的循环规律,利用规律解决问题.【题目详解】∵a 1=-4a 2=111111(4)5a ==---, a 3=211511415a ==--, a 4=31145114a ==---, …数列以-4,15,三个数依次不断循环,∴45658512360619115514,45420a a a a a a a =.a a a a ..++=+++=+=-++=-==- ∴12346112351()20(4)20(4)5520a a a a a a a a =⨯+-++++⋯+++=-⨯+-=- 故选:A.【题目点拨】此题考查规律型:数字的变化类,倒数,解题关键在于掌握运算法则找到规律.9、C【分析】首先根据题意,应用逆推法,用1乘以2,得到2;用2乘以2,得到4;用4乘以2,得到8;用8乘以2,得到16;然后分类讨论,判断出所有符合条件的m 的值为多少即可.【题目详解】定义新运算故答案为C【题目点拨】本题考查逆推法,熟练掌握计算法则是解题关键.10、A【分析】根据题意先计算出∠COD 的度数,然后进一步利用∠BOD −∠COD 加以计算求解即可.【题目详解】∵∠AOC =∠BOD =80°,∠AOD =138°,∴∠COD=∠AOD −∠AOC=58°,∴∠BOC=∠BOD −∠COD=80°−58°=22°,【题目点拨】本题主要考查了角度的计算,熟练掌握相关方法是解题关键.二、填空题(本大题共有6小题,每小题3分,共18分)11、1【分析】直接把x 的值代入进而得出答案.【题目详解】解:∵关于x 的一元一次方程mx =5x ﹣2的解为x =2,∴2m =10﹣2,解得:m =1.故答案为:1.【题目点拨】本题主要考查了一元一次方程的解得知识点,准确计算是解题的关键.12、1.68×1 【解题分析】分析:用科学记数法表示较大的数时,一般形式为a×10n ,其中1≤|a|<10,n 为整数,据此判断即可. 详解:16800000=1.68×1. 故答案为1.68×1. 点睛:此题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键.13、70.65°> 【分析】将角的度数换算成度分秒的形式,再进行比较即可得出结论.【题目详解】70°39′=70°+39′÷60=70°+0.65°=70.65°,∵0.52×60=31.2,0.2×60=12, ∴52.52°=52°31′12″, 52°52′>52°31′12″,故答案为:70.65°;>.【题目点拨】本题考查的度分秒的换算以及角的大小比较,解题的关键是将角的度数换算成度分秒的形式,再进行比较. 14、1【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,可得出m 、n 的值. 【题目详解】解:单项式253x y 与1312m n x y ---是同类项,12m ∴-=,315n -=,解得:1m =-,2n =,故()211n m =-=,故答案为:1.【题目点拨】本题考查了同类项的定义,关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.15、1.【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.【题目详解】解:8:30时,时钟上时针和分针相距2+1522=份, 8:30时,时钟上时针和分针的夹角为30×52=1°.故答案为1.考点:钟面角.16、5°34′【解题分析】22°16′÷4=(20÷4)°(136÷4)′=5°34′, 故答案是:5°34′.三、解下列各题(本大题共8小题,共72分)17、(1)12时;(2)60km . 【分析】(1)设小颖追上队伍用了x 小时,根据题意列出方程,求解即可;(2)总距离减去小颖追上大巴车所走的路程,即为此时距离雷锋纪念馆的距离.【题目详解】(1)设小颖追上队伍用了x 小时.依题意得1060()8060x x += 解得12x = 答:小颖追上队伍用了12小时 (2)小颖追上队伍时.距离雷锋纪念馆: 100-80×12=60(km )【题目点拨】本题考查了一元一次方程的实际应用,掌握解一元一次方程的方法是解题的关键.3【分析】去分母、去括号、移项、合并同类项、系数化1即可.【题目详解】解: 641152x x +--= 去分母,得()()2645110x x +--=.去括号,得1285510x x +-+=.移项、合并同类项,得73x =-.系数化1,得37x =-【题目点拨】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键.19、-1【分析】先进行指数幂运算,再进行乘除运算,最后进行加法运算.【题目详解】解:原式=1÷2×(-18)×16-2 =-1-2=-1.【题目点拨】本题考查有理数的混合运算,熟练掌握运算法则和运算顺序是解题的关键.20、700【分析】首先设进价为每件x 元,根据题意得选题关系:(1+利润率)×进价=原售价×打折-让利,代入相应数值列出方程,解方程即可.【题目详解】设进价为每件x 元,由题意得(1+10%)x=900×90%-40 解得:x=700,答:这种商品的进价为700元21、(1)10-;(2)7-【分析】(1)根据题意求得x 和y 的值,然后将2A B -化简,化简后代入x 、y 的值运算即可;(2)先求出两个多项式的差,不含有2x ,y 代表含有2x ,y 项的系数为0,求出m 和n 的值代入原式即可求解.【题目详解】(1)∵()2230x y ++-=∴2x =-,3y =2A B -=()222312x xy y x xy ++---=2223122x xy y x xy ++--+=331xy y当2x =-,3y =时,原式=()323331⨯-⨯+⨯-=10-(2)()2221236x my nx y +---+=()()22318n x m y -++- ∵两多项式的差中不含有2x ,y∴20n -=,30m +=∴2n =,3m =-当2n =,3m =-时,原式=()3232-++-⨯=7-故答案为(1)10-;(2)7-.【题目点拨】本题考查了整数的加减混合运算,绝对值的非负性,偶次方的非负性,整式的意义,多项式中不含有某项,令该项的系数为0即可.22、327x x y ++,1【分析】先根据两个非负数的和等于0,得到20x +=,102y -=,可求出x 、y 的值,再化简代数式,把x 、y 的值代入化简后的代数式计算即可. 【题目详解】解:∵21202x y ⎛⎫++-= ⎪⎝⎭,∴2x =-,12y =, 323222122357533x x y x x y xy xy -++++- 327x x y =++()()3212272=-+-⨯+ 827=-++67=-+1=【题目点拨】本题考查了整式的化简求值、非负数的性质.熟练掌握整式的运算法则是解题的关键.23、当k=1或k=-4或k=6时,原方程无解;当k ≠-4或k ≠6时,x=101k --是原方程的解. 【分析】根据解分式方程的步骤解得即可,分情况讨论,检验【题目详解】解:两边同时乘以(x+2)(x-2)得:2(x+2)+kx=3 (x-2)移项合并得:(k-1)x=−10,当k-1=0时,即k=1时,方程无解,当k-1≠0时,即k ≠1时, x= 101k -- 检验:当x=101k --=±2时,即k=-4或k=6时,则(x+2)(x-2)=0, ∴当k=-4或k=6时,原方程无解;当k ≠-4或k ≠6时,则(x+2)(x-2)≠0,∴当k ≠-4或k ≠6时,x=101k --是原方程的解. 【题目点拨】此题主要考查了解分式方程,正确地分情况讨论是解决问题的关键.24、(1)①3;②是,理由见解析;(2)经过5秒或69秒时,OC 平分DOE ∠;(3)经过21011秒时,OC 平分DOB ∠. 【分析】(1)①先求出0t =时的DOC ∠的度数,再求出当OD 恰好平分BOC ∠时DOC ∠,最后根据旋转的角度等于前后两次所求DOC ∠度数的差列出方程即得.②在①中求出的t 的条件下,求出此时的COE ∠的度数即可.(2)先根据OC 平分DOE ∠可将OC 旋转度数与三角板旋转度数之差分为15︒、375︒和345︒三种情况,然后以OC 平分DOE ∠为等量关系列出方程即得.(3)先根据OC 旋转速度与三角板旋转速度判断OC 平分DOB ∠应该在两者旋转过OB 之后,然后用t 分别表示出COB ∠与DOB ∠的度数,最后依据OC 平分DOB ∠为等量关系列出方程即可.【题目详解】(1)①当0t =时∵30AOC ∠=︒,90AOD ∠=︒∴60∠=∠-∠=︒DOC AOD AOC当直角三角板绕O 点旋转t 秒后∴60+5∠=︒DOC t∵30AOC ∠=︒,+180∠∠=︒BOC AOC∴150BOC ∠=︒∵OD 恰好平分BOC ∠∴12∠=∠DOC BOC ∴60+575︒=︒t∴3t =.②是,理由如下:∵转动3秒,∴15AOE ∠=︒,∴15COE AOC AOE ∠=∠-∠=︒,∴COE AOE ∠=∠,即OE 平分AOC ∠.(2)直角三角板绕O 点旋转一周所需的时间为360725=(秒),射线OC 绕O 点旋转一周所需的时间为 360458=(秒), 设经过x 秒时,OC 平分DOE ∠,由题意:①854530x x -=-,解得:5x =,②853603045x x -=-+,解得:12572x =>,不合题意,③∵射线OC 绕O 点旋转一周所需的时间为360458=(秒),45秒后停止运动, ∴OE 旋转345︒时,OC 平分DOE ∠, ∴345695x ==(秒), 综上所述,5x =秒或69秒时,OC 平分DOE ∠.(3)由题意可知,OD 旋转到与OB 重合时,需要90518÷=(秒),OC 旋转到与OB 重合时,需要3(18030)8184-÷=(秒), 所以OD 比OC 早与OB 重合,设经过x 秒时,OC 平分DOB ∠. 由题意:18(18030)(590)2x x --=-, 解得:21011x =, 所以经过21011秒时,OC 平分DOB ∠. 【题目点拨】本题考查角的和与差的综合问题中的动态问题,弄清运动情况,将动态问题静态化是解题关键,根据等量关系确定所有满足条件的状态是难点也是容易遗漏点,在解题过程中一定要检验每一种情况是否符合题目条件,做到不重不漏的分类讨论.。
七年级数学第一学期学业水平测试卷

七年级数学第一学期学业水平测试卷(考试总分:150 分)一、单选题(本题共计8小题,总分24分)1.整数2022的绝对值是( )A.﹣2022B.2022C.D.2.2021年5月15日7时18分,我国首次火星探测任务“天问一号”探测器在火星着陆,在火星上首次留下中国印迹.火星是太阳系九大行星之一,火星的半径约为3395000米,数3395000用科学记数法表示为( )A.33.95×105B.3.395×105C.3.395×106D.0.3395×1073.(3分)下列计算正确的是( )A.3a+2b=5abB.5y﹣3y=2xC.7a+a=8D.3x2y﹣2yx2=x2y4.(3分)若|x﹣|+(y+2)2=0,则(xy)2017的值为( )A.1B.﹣2017C.﹣1D.20175.(3分)已知关于x的一元一次方程x﹣2a﹣4=0的解是x=2,则a的值为( )A.﹣5B.﹣1C.1D.56.(3分)如图的正方体纸巾盒,它的平面展开图是( )A. B. C. D.7.2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以5km/h 的速度行进24min后,爸爸骑自行车以15km/h的速度按原路追赶小明.爸爸从出发到途中与小明会合用了多少时间?设爸爸出发xh后与小明会合,那么所列方程正确的是( )A.5x=15(x+)B.5(x+24)=15xC.5x=15(x+24)D.5(x+)=15x8.如图1,天平呈平衡状态,其中左侧秤盘中有一袋玻璃球,右侧秤盘中也有一袋玻璃球,还有2个各20克的砝码.现将左侧袋中一颗玻璃球移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图2,则被移动的玻璃球的质量为( )A.10克B.15克C.20克D.25克二、填空题(本题共计8小题,总分24分)9.(3分)已知单项式3x3y m与﹣x n y的和是单项式,则m﹣n=_____.10.如图,面积为2的正方形放置在数轴上,以原点为圆心,a为半径,用圆规画出数轴上的一个点A,则点A表示_____(选填“有理数”或“无理数”)11.(3分)若x﹣2y=3,则代数式2x﹣4y﹣4的值等于_____.12.(3分)数a,b,c在数轴上的对应的点如图所示,有这样4个结论:①c>a>b;②b+a> 0;|a| > |b|;④abc> 0其中,正确的是_____.(填写序号即可)13.魔术师在表演中请观众任意想一个数,然后将这个数按照以下步骤操作,魔术师立刻说出了观众想的那个数.小乐想了一个数,并告诉魔术师结果为80,则小乐想的这个数是_____.14.已知关于x的方程4x+2m=3x+1与方程3x+2m=6x+5的解相同,则方程的解为_____.15.牛顿在他的《普遍的算术》一书中写道:“要解答一个含有数量间的抽象关系的问题,只要把题目由日常语言译成代数语言就行了.”请阅读下表,并填写表中空白._____16.定义一种对正整数n的“C运算”:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为(其中k是使为奇数的正整数).“C运算”不停地重复进行,例如,n=66时,其“C运算”如下:若n=35,则第2020次“C运算”的结果是_____.三、解答题(本题共计10小题,总分102分)17.(8分)计算:(1)2×(﹣3)3﹣4×(﹣3);(2)﹣22÷(﹣)×(﹣).18.(10分)化简:(1)x2﹣5xy+yx+2x2;(2)2(3ab﹣2c)+3(﹣2ab+5a).19.(10分)解下列方程:(1)2x﹣1=5x﹣7;(2)﹣1=.20.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣a)﹣2ab2﹣2b的值,其中a、b满足(a+2)2+|b﹣3|=0 .21.(8分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.22.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程4x=8和x+1=0为“美好方程”.(1)若关于x的方程3x+m=0与方程4x﹣2=x+10是“美好方程“,求m的值;(2)若“美好方程”的两个解的差为8,其中一个解为n,求n的值;(3)若关于x的一元一次方程x+3=2x+k和x+1=0是“美好方程”,求关于y的一元一次方程(y+1)+3=2y+k+2的解.23.(10分)分别观察下面的左、右两组等式:根据你发现的规律解决下列问题:(1)填空:_____﹣2=﹣|1+1|+5;(2)已知﹣4﹣2=﹣|x+1|+5,则x的值是_____;(3)设满足上面特征的等式最左边的数为y,求y的最大值,并写出此时的等式.24.如图是某涌泉蜜桔长方体包装盒的展开图.具体数据如图所示,且长方体盒子的长是宽的2倍.(1)展开图的6个面分别标有如图所示的序号,若将展开图重新围成一个包装盒,则相对的面分别是_____与_____,_____与_____,_____与_____;(2)若设长方体的宽为xcm,则长方体的长为_____cm,高为_____cm;(用含x的式子表示)(3)求这种长方体包装盒的体积.25.某超市第一次用3600元购进了甲、乙两种商品,其中甲种商品80件,乙种商品120件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为3 0元/件.(注:获利=售价﹣进价)(1)该超市第一次购进甲、乙两种商品每件各多少元?(2)该超市将第一次购进的甲、乙两种商品全部销售完后一共可获得多少利润?(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多260元,那么a的值是多少?26.【建立概念】如图1,A、B为数轴上不重合的两定点,点P也在该数轴上,我们比较线段P A和PB的长度,将较短线段的长度定义为点P到线段AB的“靠近距离”.特别地,若线段P A 和PB的长度相等,则将线段P A或PB的长度定义为点P到线段AB的“靠近距离”.【概念理解】如图2,数轴的原点为O,点A表示的数为﹣2,点B表示的数为4.(1)点O到线段AB的“靠近距离”为_____;(2)点P表示的数为m,若点P到线段AB的“靠近距离”为3,则m的值为_____;(3)【拓展应用】如图3,在数轴上,点P表示的数为﹣8,点A表示的数为﹣3,点B表示的数为6.点P以每秒2个单位长度的速度向正半轴方向移动时,点B同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为t(t>0)秒,当点P到线段AB的“靠近距离”为3时,求t的值.。
2023年初中学业水平考试数学试题及答案详解

2023年初中学业水平考试数学试题及答案详解一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数1,0,23-,﹣2中最大的是()A.1B.0C.23-D.﹣22.原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1秒.数据1700000用科学记数法表示()A.51710⨯ B.61.710⨯ C.70.1710⨯ D.71.710⨯3.某物体如图所示,它的主视图是()A. B. C. D.4.一个不透明的布袋里装有7个只有颜色不同的球,其中4个白球,2个红球,1个黄球.从布袋里任意摸出1个球,是红球的概率为()A.47B.37C.27D.175.如图,在△ABC 中,∠A =40°,AB =AC ,点D 在AC 边上,以CB ,CD 为边作□BCDE ,则∠E 的度数为()A.40°B.50°C.60°D.70°6.山茶花是温州市的市花,品种多样,“金心大红”是其中的一种.某兴趣小组对30株“金心大红”的花径进行测量、记录,统计如下表.这批“金心大红”花径的众数为()A.6.5cmB.6.6cmC. 6.7cmD. 6.8cm7.如图,菱形OABC 的顶点A ,B ,C 在⊙O 上,过点B 作⊙O 的切线交OA 的延长线于点D .若⊙O 的半径为1,则BD 的长为()A.1B.2C.D.8.如图,在离铁塔150米的A 处,用测倾仪测得塔顶的仰角为α,测倾仪高AD 为1.5米,则铁塔的高BC 为()A.(1.5+150tan α)米B.(1.5+150tan α)米 C.(1.5+150sin α)米D.(1.5+150sin α)米9.已知(﹣3,1y ),(﹣2,2y ),(1,3y )是抛物线2312y x x m =--+上的点,则()A.3y <2y <1yB.3y <1y <2yC.2y <3y <1yD.1y <3y <2y 10.如图,在Rt △ABC 中,∠ACB =90°,以其三边为边向外作正方形,过点C 作CR ⊥FG 于点R ,再过点C 作PQ ⊥CR 分别交边DE ,BH 于点P ,Q .若QH =2PE ,PQ =15,则CR 的长为()A.14B.15C. D.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:x 2-25=_________________.12.不等式组30412x x -<⎧⎪⎨+≥⎪⎩的解集为_______.13.若扇形的圆心角为45°,半径为3,则该扇形的弧长为_______.14.某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生猪有_______头.15.点P ,Q ,R 在反比例函数ky x=(常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为_______.16.如图,在河对岸有一矩形场地ABCD ,为了估测场地大小,在笔直的河岸l 上依次取点E ,F ,N ,使AE ⊥l ,BF ⊥l ,点N ,A ,B 在同一直线上.在F 点观测A 点后,沿FN 方向走到M 点,观测C 点发现∠1=∠2.测得EF =15米,FM =2米,MN =8米,∠ANE =45°,则场地的边AB 为_______米,BC为_______米.三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(102(1)-+--;(2)化简:2(1)(7)x x x --+.18.如图,在△ABC 和△DCE 中,AC =DE ,∠B =∠DCE =90°,点A ,C ,D 依次在同一直线上,且AB ∥DE .(1)求证:△ABC ≌△DCE ;(2)连结AE ,当BC =5,AC =12时,求AE 的长.19.A ,B 两家酒店规模相当,去年下半年的月盈利折线统计图如图所示.(1)要评价这两家酒店7~12月的月盈利的平均水平,你选择什么统计量?求出这个统计量;(2)已知A ,B 两家酒店7~12月的月盈利的方差分别为1.073(平方万元),0.54(平方万元).根据所给的方差和你在(1)中所求的统计量,结合折线统计图,你认为去年下半年哪家酒店经营状况较好?请简述理由.20.如图,在6×4的方格纸ABCD 中,请按要求画格点线段(端点在格点上),且线段的端点均不与点A ,B ,C ,D 重合.(1)在图1中画格点线段EF ,GH 各一条,使点E ,F ,G ,H 分别落在边AB ,BC ,CD ,DA 上,且EF =GH ,EF 不平行GH ;(2)在图2中画格点线段MN ,PQ 各一条,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且PQMN .21.已知抛物线21y ax bx =++经过点(1,﹣2),(﹣2,13).(1)求a ,b 的值;(2)若(5,1y ),(m ,2y )是抛物线上不同的两点,且2112y y =-,求m 的值.22.如图,C,D为⊙O上两点,且在直径AB两侧,连结CD交AB于点E,G是 AC上一点,∠ADC=∠G.(1)求证:∠1=∠2;(2)点C关于DG的对称点为F,连结CF,当点F落在直径AB上时,CF=10,tan∠1=25,求⊙O的半径.23.某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进单批相同的T恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b;②已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.24.如图,在四边形ABCD中,∠A=∠C=90°,DE,BF分别平分∠ADC,∠ABC,并交线段AB,CD于点E,F(点E,B不重合).在线段BF上取点M,N(点M在BN之间),使BM=2FN.当点P从点D匀速运动到点E时,点Q恰好从点M匀速运动到点N.记QN=x,PD=y,已知6125y x=-+,当Q为BF中点时,245y=.(1)判断DE与BF的位置关系,并说明理由;(2)求DE,BF的长;(3)若AD=6.①当DP=DF时,通过计算比较BE与BQ的大小关系;②连结PQ,当PQ所在直线经过四边形ABCD的一个顶点时,求所有满足条件的x的值.2023年初中学业水平考试数学答案详解一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.A 【解析】排列得:-2<23-<0<1,则最大的数是1,故选:A .2.B 【解析】【详解】根据科学记数法的知识可得:1700000=61.710⨯.故选B .3.A 【解析】【详解】A 、是其主视图,故符合题意;B 、是其左视图,故不符合题意;C 、三种视图都不符合,故不符合题意;D 、是其俯视图,故不符合题意.故选:A .4.C 【解析】【详解】解:从布袋里任意摸出1个球,是红球的概率=27.故选:C .5.D 【解析】【详解】解:∵∠A =40°,AB =AC ,∴∠ABC =∠C =70°,∵四边形ABCD 是平行四边形,∴∠E =∠C =70°.故选D .6.C 【解析】【详解】解:花径6.7cm 的有12株,出现次数最多,因此这批“金心大红”花径的众数为6.7cm ,故选C .7.D 【解析】【详解】解:连接OB ∵菱形OABC ∴OA=AB 又∵OB=OA ∴OB=OA=AB ∴△OAB 是等边三角形∵BD 是圆O 的切线∴∠OBD=90°∴∠AOB=60°∴∠ODB=30°∴在Rt △ODB 中,OD=2OB=2,BD=OD·sin ∠ODB=2×32故选D .8.A 【解析】【详解】解:如图,过点A 作AE ⊥BC 于E ,可知AE=DC=150,EC=AD=1.5,∵塔顶的仰角为α,∴tan 150BE BEAE α==,∴150tan BE α=,∴ 1.5150tan BC BE CE BE AD α=+=+=+,故选A .9.B 【解析】【详解】解:抛物线2312y x x m =--+的对称轴为()12223x ==-⨯-,∵30-<,∴2x <-是y 随x 的增大而增大,2x >-是y 随x 的增大而减小,又∵(﹣3,1y )比(1,3y )距离对称轴较近,∴3y <1y <2y ,故选:B .10.A 【解析】【详解】解:如图,连接EC ,CH ,设AB 交CR 于点J ,∵四边形ACDE ,四边形BCIH 都是正方形,∴∠ACE =∠BCH =45°,∵∠ACB =90°,∠BCI =90°,∴∠ACE +∠ACB +∠BCH =180°,∠ACB +∠BCI =180°,∴点E 、C 、H 在同一直线上,点A 、C 、I 在同一直线上,∵DE ∥AI ∥BH ,∴∠CEP =∠CHQ ,∵∠ECP =∠QCH ,∴△ECP ∽△HCQ ,∴12PC CE EP CQ CH HQ ===,∵PQ =15,∴PC =5,CQ =10,∵EC :CH =1:2,∴AC :BC =1:2,设AC =a ,则BC =2a ,∵PQ ⊥CR ,CR ⊥AB ,∴CQ ∥AB ,∵AC ∥BQ ,CQ ∥AB ,∴四边形ABQC 为平行四边形,∴AB =CQ =10,∵222AC BC AB +=,∴25100a =,∴a =(舍负)∴AC =BC =∵1122AC BC AB CJ ⋅⋅=⋅⋅,∴4CJ ==,∵JR =AF =AB =10,∴CR =CJ +JR =14,故选:A .二、填空题(本题有6小题,每小题5分,共30分)11.()()x 5x 5+-【解析】因为x 2﹣25=x 2﹣52,所以直接应用平方差公式即可:()()2x 25x 5x 5-=+-.12.23x -≤<【解析】【详解】解:30412x x -<⎧⎪⎨+≥⎪⎩①②由①得:3x <,由②得:2x ≥-,∴不等式组的解集为:23x -≤<,13.34π【解析】【详解】45331801804n R L πππ⨯===.14.140【解析】【详解】由直方图,得质量在77.5kg 及以上的生猪有:90+30+20=140(头),15.275【解析】【详解】解:由题意知:矩形OFPC 的面积,k =,OE DE DC == 11,3S k ∴=同理:矩形OGQD ,矩形OARE 的面积都为k ,,OE DE DC == 2121,236S k k k ⎛⎫∴=-= ⎪⎝⎭3111,362S k k k k =--=1327,S S += 1127,23k k ∴+=162,5k ∴=2162127.565S ∴=⨯=16.(1).(2).【解析】【详解】解:过点C 作CP ⊥EF 于点P ,过点B 作直线GH ∥EF 交AE 于点G ,交CP 于点H ,如图,则GH ⊥AE ,GH ⊥CP ,∴四边形BGEF 、BHPF 是矩形,∵∠ANE =45°,∴∠NAE =45°,∴AE=EN=EF +FM +MN =15+2+8=25,∵∠ABG =45°,∴∠GAB =45°,∴AG =BG =EF =15,∴AB ==,GE=BF=PH =10,∵∠ABG =45°,∠ABC =90°,∴∠CBH =45°,∴∠BCH =45°,∴BH=CH,设FP=BH=CH=x ,则MP=x -2,CP=x +10,∵∠1=∠2,∠AEF =∠CPM =90°,∴△AEF ∽△CPM ,∴AE CP EF PM =,即2510152x x +=-,解得:x =20,即BH=CH =20,∴BC ==∴AB =BC =三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.解:(102(1)--+--=2-2+1+1=2;(2)2(1)(7)x x x --+=22217x x x x-+--=91x -+18.解:(1)∵//AB DE ∴BAC CDE∠=∠在△ABC 和△DCE 中,B DCE BAC CDE AC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCE(2)由(1),得BC =CE =5在直角三角形ACE 中,13AE ===19.解:(1)选择两家酒店月营业额的平均数:1(1 1.6 2.2 2.7 3.54) 2.56A x =+++++=,1(23 1.7 1.8 1.7 3.6) 2.36B x =+++++=,(2)A 酒店营业额的平均数比B 酒店的营业额的平均数大,且B 酒店的营业额的方差小于A 酒店,说明B 酒店的营业额比较稳定,而从图像上看A 酒店的营业额持续稳定增长,潜力大,说明A 酒店经营状况好.20.解:(1)由,可得图形如下图:(2)如图所示,MN ==PQ ==所以∶PQ MN =得到:PQ21.解:(1)∵抛物线21y ax bx =++经过点(1,-2),(-2,13),∴2113421a b a b -=++⎧⎨=-+⎩,解得14a b =⎧⎨=-⎩,∴a 的值为1,b 的值为-4;(2)∵(5,1y ),(m ,2y )是抛物线上不同的两点,∴12221252014112y m m y y y -+=⎧⎪-+=⎨⎪=-⎩,解得12616y m y =⎧⎪=-⎨⎪=⎩或12656y m y =⎧⎪=⎨⎪=⎩(舍去)∴m 的值为-1.22.解:(1)证明:∵∠ADC =∠G ,∴ AC AD =,∵AB 为⊙O 的直径,∴ ACB ADB=∴ ACB AC ADB AD -=-,∴ CBDB =,∴∠1=∠2;(2)解:连接OD 、FD ,∵ AC AD =, CBDB =,∴点C 、D 关于直径AB 对称,∴AB 垂直平分CD ,∴FC =FD ,CE =DE =12CD ,∠DEB =90°,∵点C 关于DG 的对称点为F ,∴DG 垂直平分FC ,∴FD =CD ,又∵CF =10,∴FC =FD =CD =10,∴DE =12CD =5,∵在Rt △DEB 中,tan ∠1=25∴25BE DE =,∴255BE =,∴BE =2,设OB =OD =x ,则OE =5-x ,∵在Rt △DOE 中,222OE DE OD +=,∴222(2)5x x -+=,解得:294x =∴⊙O 的半径为294.23.解:(1)设3月份购进T 恤x 件,由题意得:180002(10)39000x x+=,解得x=150,经检验x=150是分式方程的解,符合题意,∵4月份是3月份数量的2倍,∴4月份购进T 恤300件;(2)①由题意得,甲店总收入为180(150)0.8180a a +-⨯⨯,乙店总收入为1801800.91800.7(150)a b a b +⨯+⨯⨯--,∵甲乙两店利润相等,成本相等,∴总收入也相等,∴180(150)0.8180a a +-⨯⨯=1801800.91800.7(150)a b a b +⨯+⨯⨯--,化简可得1502a b -=,∴用含a 的代数式表示b 为:1502a b -=;②乙店利润函数式为1801800.9+1800.7(150)19500y a b a b =+⨯⨯---,结合①可得362100y a =+,因为a b ≤,1502a b -=,∴50a ≤,∴max 36502100y =⨯+=3900,即最大利润为3900元.24.解:(1)DE 与BF 的位置关系为:DE ∥BF ,理由如下:如图1所示:∵∠A=∠C=90°,∴∠ADC+∠ABC=360°-(∠A+∠C )=180°,∵DE 、BF 分别平分∠ADC 、∠ABC ,1122ADE ADC ABF ABC ∴∠=∠∠=∠,,1180902ADE ABF ∴∠+∠=⨯︒=︒,∵∠ADE+∠AED=90°,∴∠AED=∠ABF ,∴DE ∥BF ;(2)令x=0,得y=12,∴DE=12,令y=0,得x=10,∴MN=10,把254y =代入6125y x =-+,解得x=6,即NQ=6,∴QM=10-6=4,∵Q 是BF 中点,∴FQ=QB ,∵BM=2FN ,∴FN+6=4+2FN ,解得FN=2,∴BM=4,∴BF=FN+MN+MB=16;(3)①连接EM 并延长交BC 于点H ,如图2所示:∵FM=2+10=12=DE ,DE ∥BF ,∴四边形DFME 是平行四边形,∴DF=EM ,∵AD=6,DE=12,∠A=90°,∴∠DEA=30°,∴∠DEA=∠FBE=∠FBC=30°,∴∠ADE=60°,∴∠ADE=∠CDE=∠FME=60°,∴∠DFM=∠DEM=120°,∴∠MEB=180°-120°-30°=30°,∴∠MEB=∠FBE=30°,∴∠EHB=180°-30°-30°-30°=90°,DF=EM=BM=4,122MH BM ∴==,∴EH=4+2=6,由勾股定理得:BH ===,∴BE ===,当DP=DF 时,61245x -+=,解得:302x =,2022141433BQ x ∴=-=-=,223>,BQ >BE ;②(Ⅰ)当PQ 经过点D 时,如图3所示:y=0,则x=10;(Ⅱ)当PQ 经过点C 时,如图4所示:∵BF=16,∠FCB=90°,∠CBF=30°,182CF BF ==,CD=8+4=12,∵FQ ∥DP ,∴△CFQ ∽△CDP ,∴FQ CF DP CD =,∴28612125x +=-+,解得:103x =;(Ⅲ)当PQ 经过点A 时,如图5所示:∵PE ∥BQ ,∴△APE ∽△AQB ,∴PE AEBQ AB =,根据勾股定理得:AE ===,∴AB ==,61212514x ⎛⎫--+ ⎪⎝⎭∴=-,解得:143x =;由图可知,PQ 不可能过点B ;综上所述,当x=10或103x =或143x =时,PQ 所在的直线经过四边形ABCD的一个顶点.。
湖北省孝感市孝昌县2023-2024学年七年级上学期期中学业水平测试数学试卷(含答案)

孝昌县2023-2024学年度上学期期中学业水平测试七年级数学试卷一、精心选一选,相信自己的判断!(本大题共8小题,每小题3分,共24分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.受疫情影响,某商场2022年的总收入比去年下降了30%,增长率记作:,疫情得到控制后2023年的总收入比2020年增长了,增长率记作()A.B.C.D.2.有理数,0,,中,最小的数是()A.0B.C.D.3.悦悦和同学们一起参加了学校组织的无课日活动,这天晨跑她大约跑了12500步.12500用科学记数法表示为()A.B.C.D.4.已知,则为()A.1B.2C.3D.45.绝对值小于3的负整数有()A.2个B.3个C.4个D.无数个6.一个三位数,个位上是a,十位上是b,百位上是c,则这个三位数是()A.B.C.D.7.规定.则()A.B.3C.D.18.下列说法中,正确的个数是()①若且,则;②若三个连续的奇数中,最小的一个为,则最大的一个是;③若,则可能的值有4个;④使得成立的x的值有无数个.A.1个B.2个C.3个D.4个二、细心填一填,试试自己的身手!(本大题共8小题,每小题3分,共24分)9.某日傍晚,孝昌的气温由上午的零上下降了,这天傍晚孝昌的气温是__________℃.10.的相反数__________,倒数__________,绝对值__________11.某粮店出售三种品牌的大米,袋上分别标有质量为()kg,()kg,()kg的字样,其中任意拿出两袋,它们最多相差__________kg.12.若,那么__________, __________.13.数轴上点A表示的数是,将点A在数轴上平移8个单位长度得到点B,则点B表示的数是__________14.已知三个有理数a,b,c,其积是负数,其和是正数,当时,求代数式的值__________.15.如图所示是某月的日历表,在此日历表上可以用一个“梯子”形状框出3个数,若框出的3个数的和为63,则这3个数中最大值与最小值的差为__________16.用●表示实心圆,用O表示空心圆,现有若干个实心圆与空心圆,按一定的规律排列如下:O●O●●O●●●O●O●●O●●●O●O●●O●●●O问:前2023个圆中,有__________个空心圆.三、用心做一做。
七年级学生学业水平测试数学试题(含答案 )

第二学期期末七年级学生学业水平测试数学试题考生注意:1.本试题共三大题,23个小题,满分120分,考试时间120分钟.2.请将各题答案填在答题卡上.一、精心选一选(每小题3分,共30分)1.下列等式成立的是( )A .236a a a ⋅=B .()328a a =C .0( 3.14)1π-=D .236x x x ⋅= 2.下列事件是必然事件的是( )A .同旁内角互补B .任何数的平方都是正数C .两个数的绝对值相等,则这两个数一定相等D .任意写一个两位数,个位数字是7的概率是1103.下列多项式乘法中,能用平方差公式计算的是( )A .()()31a a +-B .()()a b a b +--C .()()x y y x --D .()()11x x ---+4.如图,已知:ABC ∆是不等边三角形,请以AB 为公共边,能作出( )个三角形与ABC ∆全等,且构成的整体图形是轴对称图形.( )A .1个B .2个C .3个D .4个 5.已知等腰三角形的两边长x ,y 满足2|4|(8)0x y -+-=,则这个等腰三角形的周长为( )A .16B .20C .16或20D .以上都不对 6.“已知:2m a =,3n a =,求m n a⋅的值”,解决这个问题需要逆用幂的运算性质中的哪一个?( ) A .同底数幂的乘法 C .积的乘方B .幂的乘方 D .同底数幂的除法 7.如图,//AB CD ,AB CD =,点A 、E 、F 、C 在同一条直线上,请你添加一个条件,使得ABF CDE ∆≅∆,则不能添加的条件是( )A .AE CF =B .//BF DEC .BF DE =D .B D ∠=∠8.三张同样的卡片上正面分别有数字5、6、7,背面朝上放在桌子上,小明从中任意抽取一张作为百位,再任意抽取一张作为十位,余下的一张作为个位,组成一个三位数,则得到的三位数小于600的概是( )A .13 B .16 C .19 D .239.甲、乙两人骑行车从A 地沿同一条路到地游玩,已知甲比乙晚出发,他们离出发地的距离()S km 与骑车时间()t h 的关系如图,给出下列说法:①他们都骑行了20km②乙在途中停留了0.5h③两人同时到达目的地④相后甲的速度小于乙的速度正确的个数为( )A .1个B .2个C .3个D .4个10.如图,在ABC ∆中,90C ∠=︒,DE 垂直平分AB ,分别交AB 、BC 于点D 、E ,若30CAE B ∠=∠+︒,则B ∠的度数为( )A .40︒B .30︒C .25︒D .20︒二、耐心填一填(每小题3分,共18分)11.如图,射线OP 平分AOB ∠,PQ AO ⊥,垂足为Q ,3PQ =,4OQ =,点M 是OB 上的一个动点,则线段PM 的最小值是_________.12.“五一劳动节”,老师将全班分成6个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示,则第4小组被抽到的概率是__________.13.一个长方形的长为a ,宽为b ,面积为8,且满足2248a b ab +=,则长方形的周长为_________.14.生物课上,老师告诉同学们:“微生物很小很,一种病毒的直径仅有0.1微米.”这相当于_________米.(1米610=微米,请用科学记数法表示)15.如图,将一个正三角形纸片剪成4个全等的小正三角形,再将其中的一个按同样的方法剪成4个更小的全等正三角形如此下去,10次后得到的正三角形的总个数为__________.第一次 第二次 第三次16.如图,ABC ∆中,90ACB ∠=︒,50B ∠=︒,点M 是AB 上的一个动点,连接CM ,当BCM ∠是_________度时,BCM ∆是等腰三角形.三、解答题(共72分)17.细心算一算(1)利用乘法公式简便计算①2499②2130129131-⨯(2)利用幂的运算性质计算.①220172018123332-⎛⎫⎛⎫⎛⎫--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②32122()()n n x x x x --⋅+-(3)化简.①(2)(2)(1)(3)x x x x -+-+-②(21)(21)x y x y +-++18.游戏与数学请你设计一个摸球游戏:在一个不透明的袋子中装有若干个除颜色外完全相同的黄球,绿球和红球,每次摸出一个球,使摸到球的概率为:()14P =黄球,()23P =绿球,请问你设计的游戏中: (1)摸到红球的概率是多少?(2)袋子中各种颜色的球分别有几个?19.探究与说理数学兴趣小组的同学们在一次课外探究活动时,发现了一个有趣的结论:两个有理数和的平方减去它们差的平方,总等于它们积的4倍.(1)若这两个有理数分别为m 、n ,请用含m 、n 的等式表示上述结论.(2)利用你学过的知识,说明①中等式的正确性.20.尺规作图已知:线段a 、b 及α∠()a b <求作:ABC ∆,使A α∠=∠,BC a =,AC b =(1)(要求:不写作法,保留作图痕迹)(2)思考发现.通过动操作,你发现了怎样的结论?试用文字语言叙述出来:_______________________________________________________.21.生活与数学前几天,在青岛召开了举世目的“上合”会议,会议之前需要印刷批宣传彩页.经招标,A 印务公司中标,该印务公司给出了三种方案供主办方选择:方案一:每份彩页收印刷费1元.方案二:收制版费1000元,外加每份彩页收印刷费0.5元.方案三:印数在1000份以内时,每份彩页收印刷费1.2元,超过1000份时,超过部分按每份0.7元收费.(1)分别写出各方案的收费y (元)与印刷彩页的份数x (份)之间的关系式.(2)若预计要印刷5000份的宣传彩页,请你帮主办方选择一种合算的方案.22.推理论证如图,在AEF ∆中,点D ,B 分别在边AF 和AF 的延长线上,且AD BF =,过点B 作//BC AE ,且BC AE =,连接CD 、CF 、DE .判断:线段CD 与EF 的关系,并说明理由.(温馨提示:两条线段的关系包含两种哦)23.综合运用阅读下面的题目及分析过程已知:如图点E 是BC 的中点,点A 在DE 上,且AB DC =原图 ① ②∠=∠说明:BAE D分析:说明两个角相等,常用的方法是应用全等三角形或等腰三角形的性质.观察本题中说明的两个角,∠=∠,必须添加适它们既不在同一个三角形中,而且们所在两个三角形也不全等.因此,要说明BAE D当的辅助线,构造全等三角形或等腰三角形,现在提供两种添加辅加线的方法如下:CF AB,交DE的延长线于点F.如图①过点C作//=,连接BM.如图②延长DE至点M,使ME DE(1)请从以上两种辅助线中选择一种完成上题的说理过程.(2)在解决上述问题的过程中,你用到了哪种数学思想?请写出一个._______________.(3)反思应用:⊥于点B.如图,点B是AE的中点,BC BD+与CD之间的大小关系,并请类比(1)中解决问题的思想方法,添加适当的辅助线,判断线段AC DE说明理由.。
山东省济南市章丘区2023-2024学年上学期期末学业水平测试七年级数学试题(含答案)

章丘区2023-2024学年第一学期期末质量检测七年级数学试题本试题分选择题和非选择题两部分.选择题部分共 2 页,满分为 40分:非选择题部分共6页满分为 110分本试题共 8 页,满分为 150 分,考试时间 120 分钟。
本考试不允许使用计算器。
选择题部分共40分一、选择题(本大题共 10 小题,每小题 4 分,共4分在每个小题给出四个选项中只有一项符合题目要求)1.-2023的相反数是【 】A.-2023B.2023C.D.2.2023 年9月21日,在距离地球400000米的中国空间站“天宫课堂”第四课正式开讲,神舟十六号航天员景海鹏、朱杨柱、桂海潮为广大青少年带来了一场精彩纷呈的太空科普课。
数据 400000 用科学记数法表示为【 】A.40×104B.4×105C.4×106D.0.4×1043.从正面观察如图所示的图形,看到的形状是 【 】4.若关于x 的方程x+a =2的解为x=1,那么a 的值为【】A.0B.- 1C.11202312023D.-25.下列调查方式合适的是 【 】A 为了了解市民对 70 周年国庆大阅兵的感受,小华在某校随机采访了 8 名初一学生B.为了了解全校学生用于做数学作业的时间,小民同学在网上向 6 位好友做了调查C.为了了解全国青少年儿童的睡眠时间,统计人员采用了普查的方式D.为了了解“北斗导航”卫星零部件的状况,检测人员采用了普查的方式6.某市为创建全国卫生城,在街头制作了正方体宜传板进行宣传,它的展开图如图示, 请你找一按“境”字所在面的对面文字是【 】A.烟B.台D.岸C.海7.用一个平面截下列几何体,得到的截面不可能是圆的是【 】A.球B.圆柱C.圆锥D.正方体8.连接多边形不相邻两个顶点的线段叫做多边形的对角线,若从多边形的一个顶点可以引出九条对角线,则这个多边形是【 】A.九边形B.十边形C.十一边形D.十二边形9.有理数 a ,b 在数上的位置如图,则正确的结论是 【 】A.a>bB.a+b>0C.a-b>0D|a|>|b|10.如图是长为a ,宽为b 的小长方形卡片,把六张这样的小长方形卡片不重叠地放在一个底面为长方形(长为 8,宽为 6)的盒子底部(如图),盒子底部未被卡片覆盖的部分用阴影表示,则两块阴影部分的周长之和为【 】A.16B.24C.20D.28章丘区2023-2024 学年第一学期期末质量监测七年级数学试题非选择题部分共110分仙景海岸烟台a二、填空题(本大题共6小题,每小题 4 分,共 24分)11.已知 和是同类项,则 2m +n 的值是 .12.一种商品每件按进价的 1.5 倍价,再降价 20元售出后每件可以得 40%的利润那么该商品每件的进价为 元13.如图,点0是直线AD 上一点,射线 OC ,OE 分别平分∠AOB 、∠BOD.若∠AOC=28°,则∠BOE= .14.如图所示的钟表,当时钟指向上午 7:50 时,时针与分针的夹角等于 .15.若x- 2y =3,则代数式 2x - 4y - 4 的值等于 .16.如图都是由同样大小的黑棋子按一定规律摆出的图案,图1中有4枚黑棋子,图2中有9枚黑棋子,图3中有14 枚黑棋子,……,依此规律,第个图中有 1049 枚黑棋子,则n = .三、解答题(本大题共10小题,共86分,解答须写出文字说明、证明过程或演算步骤)17.(本小题满分6分)如图是由5个同样大小的小正方体搭成的几何体,请在下面方格中分别画出这个几何体从正面看、从侧面看、从上面看的形状图。