湖北省荆门市沙洋县八年级(下)期中数学试卷
【三套打包】荆门市八年级下学期期中数学试卷

八年级(下)数学期中考试试题(答案)一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥33.(3分)已知一次函数y=kx﹣3且y随x的增大而增大,那么它的图象经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限4.(3分)如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为()A.4米B.4米C.8米D.8米5.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1.5,2,2.5C.2,3,4D.1,,3 6.(3分)若x≤0,则化简|1﹣x|﹣的结果是()A.1﹣2x B.2x﹣1C.﹣1D.17.(3分)如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5B.x>﹣2C.x>﹣3D.x<﹣28.(3分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n =8,则直线AB的表达式为()A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8 9.(3分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°10.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB =2,则矩形的面积为()A.2B.4C.D.311.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.1212.(3分)将2×2的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上.若直线y=kx(k ≠0)与正方形ABCD有公共点,则k的取值范围是()A.k≤2B.C.D.二、填空题(每题4分,共32分)13.(4分)函数y=中自变量x的取值范围是.14.(4分)一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),则表达式为:.15.(4分)矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为cm.16.(4分)计算:=.17.(4分)已知P1(﹣3,y1)、P2(2,y2)是一次函数y=﹣2x+1图象上的两个点,则y1y2.18.(4分)如果将直线y=﹣2x向上平移4个单位,那么平移后的直线与坐标轴围成的三角形面积为.19.(4分)一个平行四边形的一边长是9,两条对角线的长分别是12和6,则此平行四边形的面积为.20.(4分)如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为.三、解答题(共8小题,满分77分)21.(8分)计算(1)2﹣(﹣)(2)÷×22.(10分)我校要对如图所示的一块地进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米,求这块地的面积.23.(9分)如图所示为某汽车行驶的路程S(km)与时间t(min)的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式?24.(10分)已知y与x+2成正比例,且当x=2时,y=4.(1)y与x之间的函数关系式.(2)当x=4时,求y的值.(3)当y=7时,求x的值.25.(10分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.26.(10分)如图,一次函数y=ax+b的图象与正比例函数y=kx的图象交于点M.(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的x的取值范围;(3)求△MOP的面积.27.(10分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD(1)求AD的长;(2)若∠C=30°,求CD的长.28.(10分)如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC的中点,延长DE 到F,使得EF=DE,连接AF,CF.(1)求证:四边形ADCF是菱形;(2)请给△ABC添加一个条件,使得四边形ADCF是正方形,则添加的条件为.2018-2019学年山东省滨州市邹平县八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.(3分)二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥3【分析】根据二次根式有意义的条件求出x+3≥0,求出即可.【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选:C.【点评】本题考查了二次根式有意义的条件的应用,注意:要使有意义,必须a≥0.3.(3分)已知一次函数y=kx﹣3且y随x的增大而增大,那么它的图象经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限【分析】根据“一次函数y=kx﹣3且y随x的增大而增大”得到k<0,再由k的符号确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx﹣3且y随x的增大而增大,∴k<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.【点评】本题考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.4.(3分)如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为()A.4米B.4米C.8米D.8米【分析】由菱形花坛ABCD的周长是40米,∠BAD=60°,可求得边长AD的长,AC ⊥BD,且∠CAD=30°,则可求得OA的长,继而求得答案.【解答】解:如图,连接AC、BD,AC与BD交于点O,∵菱形花坛ABCD的周长是32米,∠BAD=60°,∴AC⊥BD,AC=2OA,∠CAD=∠BAD=30°,AD=8米,∴OA=AD•cos30°=8×=54(米),∴AC=2OA=8米.故选:D.【点评】此题考查了菱形的性质以及三角函数的性质.注意根据菱形的对角线互相垂直且平分求解是解此题的关键.5.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1.5,2,2.5C.2,3,4D.1,,3【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6.(3分)若x≤0,则化简|1﹣x|﹣的结果是()A.1﹣2x B.2x﹣1C.﹣1D.1【分析】利用二次根式的意义以及绝对值的意义化简.【解答】解:∵x≤0,∴1﹣x>0,|1﹣x|=1﹣x,=﹣x,∴|1﹣x|﹣=1﹣x﹣(﹣x)=1.故选:D.【点评】此题考查了绝对值的代数定义:①正数的绝对值是它本身;②负数的绝对值是它的相反数;③零的绝对值是零.7.(3分)如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5B.x>﹣2C.x>﹣3D.x<﹣2【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【解答】解:∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2,故选:B.【点评】本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.8.(3分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n =8,则直线AB的表达式为()A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8【分析】由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y﹣y0=k(x﹣x0)求得解析式即可.【解答】解:∵直线AB是直线y=﹣2x平移后得到的,∴直线AB的k是﹣2(直线平移后,其斜率不变)∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①把点(m,n)代入①并整理,得y=﹣2x+(2m+n)②∵2m+n=8 ③把③代入②,解得y=﹣2x+8,即直线AB的解析式为y=﹣2x+8.故选:B.【点评】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.9.(3分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°【分析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【解答】解:设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=45°+x°,∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣x°)﹣(45°+x°)=45°.答:∠BEF的度数是45°.【点评】本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.10.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB =2,则矩形的面积为()A.2B.4C.D.3【分析】由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AC,然后根据勾股定理即可求出BC,进而得出矩形面积即可.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC=,∴矩形的面积=AB•BC=4;故选:B.【点评】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.11.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,=•AF•BC=10.∴S△AFC故选:C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.12.(3分)将2×2的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上.若直线y=kx(k ≠0)与正方形ABCD有公共点,则k的取值范围是()A.k≤2B.C.D.【分析】分别确定点A和点C的坐标,代入正比例函数的解析式即可求得k的取值范围.【解答】解:由题意得:点A的坐标为(1,2),点C的坐标为(2,1),∵当正比例函数经过点A时,k=2,当经过点C时,k=,∴直线y=kx(k≠0)与正方形ABCD有公共点,k的取值范围是,故选:C.【点评】本题考查了正比例函数的性质,解题的关键是求得点A和点C的坐标,难度不大.二、填空题(每题4分,共32分)13.(4分)函数y=中自变量x的取值范围是x≥﹣2且x≠1.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x﹣1≠0,解得x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(4分)一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),则表达式为:y=2x+10.【分析】根据一次函数与y=2x+1平行,可求得k的值,再把点(﹣3,4)代入即可求得一次函数的解析式.【解答】解:∵一次函数y=kx+b与y=2x+1平行,∴k=2,又∵函数经过点(﹣3,4)∴4=﹣6+b,解得:b=10∴函数的表达式为y=2x+10.【点评】本题考查了待定系数法求一次函数的解析式,比较简单,同学们要熟练掌握.15.(4分)矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为24cm.【分析】根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.【解答】解:如图:AB=12cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=BD=AC.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=12cm,BD=2OB=2×12=24cm.故答案为:24.【点评】矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.16.(4分)计算:=.【分析】根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=2×5﹣3×3+=(10﹣9+1)=2;故答案是:2.【点评】本题主要考查了二次根式的加减法.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并;合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.17.(4分)已知P1(﹣3,y1)、P2(2,y2)是一次函数y=﹣2x+1图象上的两个点,则y1>y2.【分析】根据题目中的函数解析式,可以得到函数图象的变化趋势,从而可以解答本题.【解答】解:∵一次函数y=﹣2x+1,∴y随x的增大而减小,∵P1(﹣3,y1)、P2(2,y2)是一次函数y=﹣2x+1图象上的两个点,﹣3<2,∴y1>y2,故答案为:>.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.18.(4分)如果将直线y=﹣2x向上平移4个单位,那么平移后的直线与坐标轴围成的三角形面积为4.【分析】根据函数图象向上平移加,可得函数解析式,根据三角形的面积公式,可得答案.【解答】解:直线y=﹣2x向上平移4个单位得直线的解析式为y=﹣2x+4,则与坐标轴的交点为(2,0)和(0,4),所以平移后的直线与坐标轴围成的三角形面积为:×2×4=4.故答案为:4.【点评】本题考查了一次函数图象与几何变换,平移的规律“左加右减,上加下减”.19.(4分)一个平行四边形的一边长是9,两条对角线的长分别是12和6,则此平行四边形的面积为36.【分析】由题意画出相应的图形,得到平行四边形的边BC=9,对角线AC和BD分别为12和6,根据平行四边形的对角线互相平分,求出OB及OC的长,计算发现OC2+OB2=BC2,利用勾股定理的逆定理得到∠BOC为直角,根据垂直定义得到AC与BD垂直,根据对角线互相垂直的平行四边形为菱形得到四边形ABCD为菱形,根据菱形的面积等于对角线乘积的一半,由两对角线的长即可求出菱形ABCD的面积.【解答】解:根据题意画出相应的图形,如图所示:则有平行四边形ABCD中,BC=9,AC=12,BD=6,∴OC=AC=6,OB=BD=3,∵OC2+OB2=36+45=81,BC2=81,∴OC2+OB2=BC2,∴∠BOC=90°,即AC⊥BD,∴四边形ABCD为菱形,则菱形ABCD的面积S=BD•OC+BD•OA=BD(OC+OA)=AC•BD=×12×6=36.故答案为:36.【点评】此题考查了勾股定理的逆定理,菱形的判定与性质,以及菱形面积的求法,若四边形的对角线互相垂直,可得到其面积等于对角线乘积的一半,而菱形的对角线互相垂直,故菱形的面积也可以用对角线乘积的一半来求.20.(4分)如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为30.【分析】根据勾股定理求出AB的长,即可用减法求出阴影部分的面积.【解答】解:由勾股定理AB==13,=π()2+π()2﹣[π()2﹣×5×12]=30.根据题意得:S阴影【点评】观察图形的特点,用各面积相加减,可得出阴影部分的面积.三、解答题(共8小题,满分77分)21.(8分)计算(1)2﹣(﹣)(2)÷×【分析】(1)先将化为最简二次根式,再去括号、合并同类二次根式即可;(2)先按从左往右的顺序计算乘除,再化简即可.【解答】解:(1)2﹣(﹣)=2﹣(3﹣)=2﹣3+=﹣+;(2)÷×===.【点评】本题考查了二次根式的混合运算,掌握运算法则是解题的关键.22.(10分)我校要对如图所示的一块地进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米,求这块地的面积.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:连接AC.由勾股定理可知AC===5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,故所求面积=△ABC的面积﹣△ACD的面积=24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用,关键是作出辅助线得到直角三角形.23.(9分)如图所示为某汽车行驶的路程S(km)与时间t(min)的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式?【分析】(1)根据速度=路程÷时间,列式计算即可得解;(2)根据停车时路程没有变化列式计算即可;(3)利用待定系数法求一次函数解析式解答即可.【解答】解:(1)平均速度==km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b,将(16,12),C(30,40)代入得,,解得.所以,当16≤t≤30时,求S与t的函数关系式为S=2t﹣20.【点评】本题考查了一次函数的应用,待定系数法求函数解析式,比较简单,准确识图并获取信息是解题的关键.24.(10分)已知y与x+2成正比例,且当x=2时,y=4.(1)y与x之间的函数关系式.(2)当x=4时,求y的值.(3)当y=7时,求x的值.【分析】(1)根据题意设y与x之间的函数关系式y=k(x+2)(k≠0).然后把x、y 的值代入,求得k的值;(2)把x=4代入(1)中的函数解析式,求得相应的y的值;(3)把y=7代入(1)中的函数解析式,求得相应的x的值.【解答】解:(1)设y=k(x+2)(k≠0).把x=2,y=4代入,得4=k(2+2)解得k=1则y与x之间的函数关系式y=x+2;(2)把x=4代入y=x+2,得y=6;(3)把y=7代入y=x+2,得7=x+2解得x=5.【点评】本题考查了待定系数法求一次函数的解析式.解题时,注意是y与(x+2)成正比例关系,不是y与x成正比例关系.25.(10分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是平行四边形,证明你的结论;(2)当四边形ABCD的对角线满足互相垂直条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.【分析】(1)连接BD,根据三角形的中位线定理得到EH∥BD,EH=BD,FG∥BD,FG═BD,推出,EH∥FG,EH=FG,根据一组对边平行且相等的四边形是平行四边形得出四边形EFGH是平行四边形;(2)根据有一个角是直角的平行四边形是矩形,可知当四边形ABCD的对角线满足AC ⊥BD的条件时,四边形EFGH是矩形;(3)菱形的中点四边形是矩形.根据三角形的中位线平行于第三边并且等于第三边的一半可得EH∥BD,EF∥AC,再根据矩形的每一个角都是直角可得∠1=90°,然后根据平行线的性质求出∠3=90°,再根据垂直定义解答.【解答】解:(1)四边形EFGH的形状是平行四边形.理由如下:如图,连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=BD,同理FG∥BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形;(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形;(3)菱形的中点四边形是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∵EH∥BD,HG∥AC,∴EH⊥HG,∴平行四边形EFGH是矩形.故答案为:平行四边形;互相垂直;菱形.【点评】本题主要考查对三角形的中位线定理,平行四边形的判定,矩形的判定,菱形的性质等知识点的理解和掌握,熟练掌握各定理是解决此题的关键.26.(10分)如图,一次函数y=ax+b的图象与正比例函数y=kx的图象交于点M.(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的x的取值范围;(3)求△MOP的面积.【分析】(1)将(2,2)代入y=kx解出正比例函数的解析式,将(2,2)(1,0)代入一次函数解析式解答即可;(2)根据图象得出不等式的解集即可;(3)利用三角形的面积公式计算即可.【解答】解:(1)将(2,2)代入y=kx,解得:k=1,所以正比例函数解析式为:y=x,将(2,2)(1,0)代入一次函数解析式,可得:,解得:.故一次函数的解析式为:y=2x﹣2;(2)因为正比例函数的值大于一次函数的值,可得:x<2;(3)△MOP的面积为:=1.【点评】此题考查两条直线平行问题,关键是根据待定系数法解出解析式.27.(10分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD(1)求AD的长;(2)若∠C=30°,求CD的长.【分析】(1)根据角平分线和平行线的性质:∠BAF=∠AFB,所以AB=BF=3,再证明四边形AFCD是平行四边形,可得结论;(2)作高线BG,根据特殊的三角函数或勾股定理可得FG的长,所以得AF的长,由(1)知:四边形AFCD是平行四边形,得结论.【解答】解:(1)∵AD∥BC,∴∠DAF=∠AFB,∵AF平分∠DAB,∴∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF=3,∵BC=5,∴CF=5﹣3=2,∵AD∥BC,AE∥CD,∴四边形AFCD是平行四边形,∴AD=CF=2;(2)过B作AF的垂线BG,垂足为G.∵AF∥DC,∴∠AFB=∠C=30°,在Rt△BGF中,GF=BF•cos30°=3×=,∵AB=BF,BG⊥AF,∴AF=2FG=3,由(1)知:四边形AFCD是平行四边形,∴DC=AF=3.【点评】本题考查了平行四边形的判定,三角函数的应用(或勾股定理)、等腰三角形的判定、平行线的性质,正确作出辅助线是关键.28.(10分)如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC的中点,延长DE 到F,使得EF=DE,连接AF,CF.(1)求证:四边形ADCF是菱形;(2)请给△ABC添加一个条件,使得四边形ADCF是正方形,则添加的条件为CA=CB或∠B=45°.【分析】(1)利用菱形和平行四边形的判定得出即可;(2)根据当菱形内角是90°则是正方形,进而得出答案.【解答】(1)证明:∵E为线段AC的中点,∴AE=EC.∵EF=DE∴四边形ADCF是平行四边形.又∵D为线段AB的中点,∴DE∥BC,∵∠AED=∠ACB=90°,∴AC⊥FD.∴平行四边形ADCF是菱形.(2)CA=CB或∠B=45°,∵CA=CB,AD=DB,∴CD⊥AB,∴∠CDA=90°,∵ADCF是菱形,∴ADCF是正方形.故答案为:CA=CB或∠B=45°【点评】此题主要考查了平行四边形、菱形、正方形的判定,正确区分它们是解题关键.八年级(下)数学期中考试题(答案)一、选择题(每小题3分,共30分)1.下列二次根式中属于最简二次根式的是(A)A. 5B.8C.12 D.0.32.(2016·泸州)如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是(B)A.10 B.14 C.20 D.22,第2题图),第5题图),第8题图),第9题图) 3.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是(D) A.a=9,b=41,c=40 B.a=5,b=5,c=5 2C.a∶b∶c=3∶4∶5 D.a=11,b=12,c=154.(2016·南充)下列计算正确的是(A)A.12=2 3B.32=32 C.-x3=x-x D.x2=x5.如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是6,则△ABC的周长是(C)A.8 B.10 C.12 D.146.(2016·益阳)下列判断错误的是(D)A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形7.若x-1-1-x=(x+y)2,则x-y的值为(C)A.-1 B.1 C.2 D.38.如图,在△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF 的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是(A) A.2 3 B.3 3 C.4 D.4 39.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=52,如果Rt△ABC的面积为1,则它的周长为(D)A.5+12 B.5+1 C.5+2 D.5+310.(2016·眉山)如图,在矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE∶S△BCM=2∶3.其中正确结论的个数是(B)A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.若代数式xx-1有意义,则x的取值范围为__x≥0且x≠1__.12.如图,在平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于点F,则CF=__2__.,第12题图) ,第13题图),第14题图) ,第15题图) 13.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=__16__时,∠ACB=90°.14.如图,它是一个数值转换机,若输入的a值为2,则输出的结果应为3.15.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件__答案不唯一,如:OA=OC__,使ABCD成为菱形.(只需添加一个即可) 16.如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,则线段DH的长为__1__.,第16题图),第17题图),第18题图)17.(2016·南京)如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为__13__ cm.18.如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A ,C 的坐标分别为A(10,0),C(0,4),点D 是OA 的中点,点P 为线段BC 上的点.小明同学写出了一个以OD 为腰的等腰三角形ODP 的顶点P 的坐标(3,4),请你写出其余所有符合这个条件的P 点坐标__(2,4)或(8,4)__.三、解答题(共66分) 19.(8分)计算:(1)8+23-(27-2); (2)(43-613)÷3-(5+3)(5-3).解:(1)32- 3 (2)020.(8分)已知a =7-5,b =7+5,求值: (1)b a +ab; (2)3a 2-ab +3b 2. 解:a +b =27,ab =2,(1)b a +a b =(a +b )2-2abab=12 (2)3a 2-ab +3b 2=3(a +b )2-7ab =7021.八年级(下)数学期中考试试题【答案】一、选择题(本大题共10小题,每小题4分,共40分)1.下列式子是最简二次根式的是A .31 B .4C .9D .3A. B C.D.3.由下列条件不能判定为直角三角形的是A .B .C .4,3,2===c b aD .4.如图,在2×2的正方形网格中,每个小正方形边长为1,点A ,B ,C 均为格点,以点A为圆心,AB 长为半径作弧,交格线于点D ,则CD 的长为A .21 B .31C . 3D .2-3 5.如图,若∠1=∠2,AD =CB ,则四边形ABCD 是A .平行四边形B .菱形C .正方形D .以上说法都不对 6.下列说法正确的有几个(1)对角线互相平分的四边形是平行四边形;(2)对角线互相垂直的四边形是菱形; (3)对角线互相垂直且相等的平行四边形是正方形;(4)对角线相等的平行四边形是矩形.;A .1个B .2个C .3个D .4个7.如图所示,四边形ABCD 为矩形,点O 为对角线的交点,∠BOC =120°, AE ⊥BO 交BO 于点E ,AB =4,则BE 等于A . 1B .2C . 3D . 48.如图,在∠MON 的两边上分别截取OA 、OB ,使OA =OB ;分别以点A 、B 为圆心,OA 长为半径作弧,两弧交于点C ;连接AC 、BC 、AB 、OC .若AB =2cm ,四边形OACB 的面积为4cm 2.则OC 的长为A .2B .3C .4D .5第5题图 第7题图 第8题图9. 如图所示,E 为正方形ABCD 的边BC 延长线上一点,且CE =AC ,AE 交CD 于点F , 那么∠AFC 的度数为A .112.5°B .125°C .135°D .150°10.如图,已知直线l 1∥l 2∥l 3∥l 4,相邻两条平行线间的距离都是1,正方形ABCD 的四个顶点分别在四条直线上,则正方形ABCD 的面积为A . 3B . 5C .3D .5第9题图 第10题图二、填空题(本大题共6小题,每小题4分,共24分) 11. 计算:23= .12.若x <0,则xx 2的结果是 .13.如图,在▱ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若∠EAF =55°,则∠B =_____ . 14.已知直角三角形两条直角边长为1和,则此直角三角形斜边上的中线长是_____ .15.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE =DF =2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为________ .。
荆门市八年级下学期数学期中考试试卷

荆门市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列二次根式中,是最简二次根式的是()A .B .C .D .2. (2分)下列几组数中,不能作为直角三角形三边的是()A . 1,,B . 7,24,25C . 4,5,6D . ,,13. (2分)(2019·道外模拟) 若菱形的周长为8,高为1,则该菱形较大内角的度数为()A .B .C .D .4. (2分)下列计算正确的是()A .B .C .D .5. (2分) (2019八下·陕西期末) 下列计算正确的是()A .B .C .D .6. (2分)(2019·鄂州) 已知一组数据为7,2,5,x,8,它们的平均数是5,则这组数据的方差为()A . 3B . 4.5C . 5.2D . 67. (2分) (2020八下·贵港期末) 如图,在中,,则的度数为()A .B .C .D .8. (2分)(2020·镇江) 如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cosB的值等于()A .B .C .D .9. (2分) (2018九上·台州期末) 如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF的长为()A . 2B . 2C .D . 410. (2分)下列说法错误的是()A . Rt△ABC中,AB=3,BC=4,则AC=5B . 极差能反映一组数据的变化范围C . 经过点A(2,3)的双曲线一定经过点B(-3,-2)D . 连接菱形各边中点所得的四边形是矩形11. (2分)下列命题:①正多边形都是轴对称图形;②通过对足球迷健康状况的调查可以了解我国公民的健康状况;③方程的解是x=0;④如果一个角的两边与另一个角的两边分别平行,那么这两个角相等.其中真命题的个数有()A . 1个B . 2个C . 3个D . 4个12. (2分) (2019七下·临洮期中) 如图,把一张长方形纸片ABCD沿EF折叠,若∠EFG=50°,则∠DEG的度数是()A . 80°B . 100°C . 110°D . 130°二、填空题 (共6题;共7分)13. (1分) (2016八上·顺义期末) 若式子是分式,则x的取值范围是________.14. (1分)在实数范围内分解因式:x3-3x=________.15. (1分) (2020八下·南康月考) 如图,在四边形中,,,,,且,则四边形的面积是________.16. (1分)如图,以边长为1的正方形ABCD的对角线AC为边,作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去.若正方形ABCD的边长记为a1 ,按上述方法所作的正方形的边长依次记为a2、a3、a4、…、an ,则an=________.17. (1分) (2020八上·青岛期末) 甲乙两人8次射击的成绩如图所示(单位:环)根据图中的信息判断,这8次射击中成绩比较稳定的是________(填“甲”或“乙”)18. (2分)(2020·上海) 在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O 与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是________.三、解答题 (共6题;共32分)19. (10分)20. (5分) (2019八上·景泰期中) 八(2)班数学课外活动小组的同学测量学校旗杆的高度时,发现升旗的绳子垂到地面要多1米,当他们把绳子的下端拉开5米后,发现下端刚好接触地面.你能将旗杆的高度求出来吗?21. (2分) (2019八下·湖州期中) 如图,M、N是平行四边形ABCD对角线BD上两点.(1)若BM=MN=DN,求证:四边形AMCN为平行四边形;(2)若M、N为对角线BD上的动点(均可与端点重合),设BD=12cm,点M由点B向点D匀速运动,速度为2(cm/s),同时点N由点D向点B匀速运动,速度为a(cm/s),运动时间为t(s).若要使四边形AMCN为平行四边形,求a的值及t的取值范围.22. (2分)(2017·普陀模拟) 在平面直角坐标系xOy中,已知正比例函数的图象与反比例函数y= 的图象交于点A(m,4).(1)求正比例函数的解析式;(2)将正比例函数的图象向下平移6个单位得到直线l,设直线l与x轴的交点为B,求∠ABO的正弦值.23. (2分) (2019八下·重庆期中) 嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.(1)已知:如图1,在四边形ABCD中,BC=AD,AB= ________求证:四边形ABCD是________四边形.在方框中填空,以补全已知和求证;(2)按嘉淇同学的思路写出证明过程;(3)用文字叙述所证命题的逆命题.24. (11分)(2019·太仓模拟) 为了了解某校学生对以下四个电视节目:A《最强大脑》,B《中国诗词大会》,C《朗读者》,D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为________;(2)在扇形统计图中,A部分所占圆心角的度数为________;(3)请将条形统计图补充完整:(4)若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名?参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共32分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、24-4、。
湖北省荆门市八年级下学期数学期中考试试卷

湖北省荆门市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若a<b,则下列各式中一定正确的是()A . ab<0B . ab>0C . a-b>0D . -a>-b2. (2分)(2017·吴忠模拟) 下列既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分) (2019八上·龙湖期末) 下列由左到右的变形,属于因式分解的是()A . (x+2)(x-2)=x2-4B . x2+4x-2=x(x+4)-2C . x2-4=(x+2)(x-2)D . x2-4+3x=(x+2)(x-2)+3x4. (2分)如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是A . x>3B . ﹣2<x<3C . x<﹣2D . x>﹣25. (2分) (2017九上·老河口期中) 如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()A . 25°B . 40°C . 50°D . 65°6. (2分)如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于()A . 25°B . 30°C . 35°D . 40°7. (2分) (2020八下·郑州月考) 下列多项式能用公式法分解因式的有()①x2﹣2x﹣1;② ﹣x+1;③﹣a2﹣b2;④﹣a2+b2;⑤x2﹣4xy+4y2 ;⑥m2﹣m+1A . 1个B . 2个C . 3个D . 4个8. (2分)(2017·商河模拟) 二次函数y=﹣x2+1的图像与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A . 点C的坐标是(0,1)B . 线段AB的长为2C . △ABC是等腰直角三角形D . 当x>0时,y随x增大而增大9. (2分)已知点A(2,2),如果点A关于x轴的对称点是B,B点关于原点的对称点为C,那么C点的坐标是()A . (2,2)B . (-2,2)C . (2,-2)D . (-2,-2)10. (2分)如果不等式组的解集是x>4,则n的范围是()A . n≥4B . n≤4C . n=4D . n<4二、填空题 (共9题;共10分)11. (1分) (2017七下·东城期中) 不等式的正整数解是________12. (1分)(2012·内江) 分解因式:ab3﹣4ab=________.13. (1分)在平面直角坐标系中,有一条线段AB ,已知点A(-2,0)和B(0,2),平移线段AB得到线段A1B1 .若点A的对应点A1的坐标为(1,3),则线段A1B1的中点坐标是________.14. (1分)(2018·葫芦岛) 如图,OP平分∠MON,A是边OM上一点,以点A为圆心、大于点A到ON的距离为半径作弧,交ON于点B、C,再分别以点B、C为圆心,大于 BC的长为半径作弧,两弧交于点D、作直线AD 分别交OP、ON于点E、F.若∠MON=60°,EF=1,则OA=________.15. (1分) (2020七上·大丰期末) 在数学活动课上,同学们利用如图所示的程序进行计算,计算按箭头指向循环进行.如,当初始输入5时,即 =5,第1次计算结果为16,第2次计算结果为8,第3次计算结果为4,…(1)当初始输入1时,第1次计算结果为________;(2)当初始输入4时,第3次计算结果为________;(3)当初始输入3时,依次计算得到的所有结果中,有________个不同的值,第20次计算结果为________.16. (1分)已知P1点关于x轴的对称点P2(3-2a,2a-5)是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则P1点的坐标是________17. (1分)已知关于x的不等式组的整数解共有3个,则b的取值范围是________.18. (2分) (2017八下·昆山期末) 如图,将一个等腰直角三角形按图示方式依次翻折,若DE=a,则下列说法正确的有(________)①DC′平分∠BDE;②BC长为;③△ 是等腰三角形;④△CED的周长等于BC的长.A.1个B.2个C.3个D.4个19. (1分) (2017七上·乐清期中) 如图,AB∥CD,AD∥BC,点E、F分别是线段BC和CD上的动点,在两点运动到某一位置时,恰好使得∠AEF=∠AFE ,此时量得∠BAE=15°,∠FEC=12°,∠DAF=25°,则∠EFC=________°.三、解答题 (共8题;共59分)20. (10分)(2017·萍乡模拟) 综合题。
湖北省荆门市八年级下学期数学期中考试试卷

湖北省荆门市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020八下·龙岗期末) 下列代数式属于分式的是()A .B .C .D .2. (2分)已知点P(m+1,m),则点P不可能在第()象限A . 四B . 三C . 二D . 一3. (2分)反比例函数y=(k≠0)的图象过点(-1,1),则此函数的图象在直角坐标系中的()A . 第二、四象限B . 第一、三象限C . 第一、二象限D . 第三、四象限4. (2分) (2018七上·路北期中) 当a=﹣2时,代数式1﹣3a2的值是()A . ﹣2B . 11C . ﹣11D . 25. (2分) (2019九下·惠州月考) 改善空气质量的首要任务是控PM2.5.PM2.5指环境空气中空气动力学当量直径小于等于0.00025厘米的颗粒物.这里的0.00025用科学记数法表示为()A . 2.5×104B . 2.5×103C . 2.5×10﹣3D . 2.5×10﹣46. (2分) (2017八上·哈尔滨月考) 根据分式的基本性质,分式可变形为()A .B . -C . -D .7. (2分)方程有增根,则增根是()A . 1B . -1C . ±1D . 08. (2分)函数y=x+的图象如图所示,下列对该函数性质的论断不可能正确的是()A . 该函数的图象是中心对称图形B . y的值不可能为1C . 在每个象限内,y的值随x值的增大而减小D . 当x>0时,该函数在y时取得最小值29. (2分) (2017九上·江门月考) 若M(,y1)、N(,y2)、P(,y3)三点都在函数(k﹤0)的图象上,则y1、y2、y3的大小关系是()A .B .C .D .10. (2分)(2018·德州) 如图,函数和 ( 是常数,且 )在同一平面直角坐标系的图象可能是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2020七下·黄石期中) 点A(-3,-2)在第________象限,点B(0,- )在________轴上.12. (1分) (2020八上·嘉陵期末) 已知点A(a,2019)与点B(2020,b)关于y轴对称,则a+b的值为________。
湖北省荆门市八年级下学期数学期中考试试卷

湖北省荆门市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)下列各组数据中的三个数,可作为三边长构成直角三角形的是()A . 1、2、3B . 3,4,5C . 2、2、3D . 3、4、72. (2分)下列轴对称图形中,对称轴条数最少的图形是()A .B .C .D .3. (2分)平行四边形的对角线分别为,一边长为12,则的值可能是下列各组数中的()A . 8与14B . 10与14C . 18与20D . 10与284. (2分)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A .B .C .D .5. (2分)(2019·苏州模拟) 如图,一船以每小时36海里的速度向正北航行到A处,发现它的东北方向有一灯塔B,船继续向北航行40分钟后到达C处,发现灯塔B在它的北偏东75°方向,则此时船与灯塔的距离为()A . 24B .C .D .6. (2分) (2020八下·涪陵期末) 下列命题是假命题的是()A . 对角线互相平分的四边形是平行四边形B . 对角线相等的平行四边形是矩形C . 对角线互相垂直的四边形是菱形D . 对角线互相垂直平分且相等的四边形是正方形7. (2分)若直线y=3x+6与直线y=2x+4的交点坐标为(a , b),则解为的方程组是()A .B .C .D .8. (2分)(2019·高台模拟) 如图,直线y=﹣x﹣1与y=kx+b(k≠0且k,b为常数)的交点坐标为(﹣2,l),则关于x的不等式﹣x﹣1<kx+b的解集为()A . x>﹣2B . x<﹣2C . x>1D . x<l9. (2分)如图所示,因为AB⊥l,BC⊥l,B为垂足,所以AB和BC重合,其理由是()A . 两点确定一条直线B . 在同一平面内,过一点有且只有一条直线与已知直线垂直C . 过一点能作一条垂线D . 垂线段最短二、填空题 (共8题;共18分)10. (1分) (2020九下·江夏期中) 如图,直线y=-x+6与反比例函数 (k>0,x>0)的图象交于A、B两点,将该函数的图象平移得到的曲线是函数 (k>0,x>0)的图象,点A、B的对应点是A′、B′.若图中阴影部分的面积为8,则k的值为________ .11. (1分)如图,在□ABCD中,AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,AB+AD=20,则□ABCD的面积为________.12. (1分) (2020八下·蓬溪期中) 将直线 y=-x-3向上平移5个单位,得到直线________13. (1分)(2020·上海) 如果函数y=kx(k≠0)的图象经过第二、四象限,那么y的值随x的值增大而________.(填“增大”或“减小”)14. (1分)如图,在四边形ABCD中,AB∥CD ,要使得四边形ABCD是平行四边形,应添加的条件是________.(只填写一个条件,不得使用图形以外的字母和线段).15. (1分) (2019八下·定安期中) 在平行四边形ABCD中,AB+BC=10,则平行四边形ABCD的周长是________.16. (1分) (2019八下·新乡期中) 如图,平行四边形的对角线,交于点,已知,,,则的周长为________.17. (11分)(2020·周口模拟) 问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图 1,将:矩形纸片 ABCD 沿对角线 AC 剪开,得到△ABC 和△ACD.并且量得 AB =4cm,AC=8cm.操作发现:(1)将图 1 中的△ACD 以点 A 为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图 2 所示的△AC′D,过点 C 作AC′的平行线,与 DC'的延长线交于点 E,则四边形ACEC′的形状是________.(2)创新小组将图 1 中的△ACD 以点 A 为旋转中心,按逆时针方向旋转,使 B、 A、D 三点在同一条直线上,得到如图 3 所示的△AC′D,连接 CC',取CC′的中点 F,连接 AF 并延长至点 G,使 FG=AF,连接 CG、C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC 沿着 BD 方向平移,使点 B 与点 A 重合,此时 A 点平移至 A'点,A'C 与BC′相交于点 H,如图 4 所示,连接CC′,试求tan∠C′CH 的值.三、解答题 (共9题;共110分)18. (5分) (2019八上·绥化月考) 如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M 岛到N岛的距离。
20140423 沙洋县实验初中2013——2014学年度八年级下学期数学期中试卷

沙洋县实验初中2013——2014学年度八年级下学期数学期中试题一.选择题(每题3分,共36分)1、a、b、c就是△ABC的三边,①a=5,b=12,c=13 ②a=8,b=15,c=17 ③a∶b∶c=3∶4∶5④a=15,b=20,c=25上述四个三角形中直角三角形有( )A、1个B、2个C、3个D、4个2、将一个直角三角形两直角边同时扩大到原来的两倍,则斜边扩大到原来的( )A、4倍B、2倍C、不变D、无法确定3.下面哪个点在函数y=12x+1的图象上( )A.(2,1)B.(-2,1)C.(2,0)D.(-2,0)4.若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围就是( )A.k>3B.0<k≤3C.0≤k<3D.0<k<35.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A.y=-x-2B.y=-x-6C.y=-x+10D.y=-x-16、如图,在三角形纸片ABC中,AC=6,∠A=30º,∠C=90º,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为( )A.1B. √2C.√3D.2AB ED CABC7.△ABC 的三边长分别为 a 、b 、c,下列条件:①∠A=∠B -∠C;②∠A:∠B:∠C=3:4:5;③若∠A:∠B:∠C=1:2:3;④a:b:c=2:3:4 ,其中能判断△ABC 就是直角三角形的个数有( )A.1个B.2个C.3个D.4个 8.一个四边形,对于下列条件:①一组对边平行,一组对角相等;②一组对边平行,一条对角线被另一条对角线平分;③一组对边相等,一条对角线被另一条对角线平分;④两组对角的平分线分别平行,不能判定为平行四边形的就是( )A.①B.②C.③D.④ 9.如图,已知E 就是菱形ABCD 的边BC 上一点,且∠DAE=∠B=80º,那么∠CDE 的度数为( )A.20ºB.25ºC.30ºD.35º 10.一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为( ) A.10米 B.15米 C.25米 D.30米11.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC 就是( ) A 、直角三角形 B 、锐角三角形 C 、钝角三角形 D 、以上答案都不对12.四边形ABCD 中,对角线AC 与BD 相交于点O,给出下列四个条件:①AD ∥BC ②AD=BC ③OA=OC ④OB=OD 从中任选两个条件,能使四边形ABCD 为平行四边形的选法有( ) A 、3种 B 、4种 C 、5 D 、6种 二.填空题(每题3分,共15分)13、一直角三角形的两边长分别为3与4,则第三边长为_________14、直线y=kx+2与两坐标轴所围成的三角形的面积就是4个面积单位,则k=_____15.在直线l 上依次摆放着七个正方形(如图所示)。
湖北省荆门市2020年八年级下学期数学期中考试试卷(I)卷
湖北省荆门市2020年八年级下学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、细心选一选,小心一些美丽的陷阱 (共10题;共20分)1. (2分)实数a在数轴上的位置如图所示,则化简后为()A . 7B . -7C . 2a-15D . 无法确定2. (2分)要使代数式有意义,则的取值范围是().A .B .C .D .3. (2分) (2015八下·嵊州期中) 在下列方程中,一定是一元二次方程的是()A . x2 =0B . (x+3)(x﹣5)=4C . ax2+bx+c=0D . x2﹣2xy﹣3y2=04. (2分)下列关于x的方程中,一定是一元二次方程的是()A . x﹣1=0B . x3+x=3C . x2+3x﹣5=0D . ax2+bx+c=05. (2分) (2017九上·遂宁期末) 化简:的结果是()A .B .C .D .6. (2分) (2018九上·青岛期中) 利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A . 直角三角形的每个锐角都小于45°B . 直角三角形有一个锐角大于45°C . 直角三角形的每个锐角都大于45°D . 直角三角形有一个锐角小于45°7. (2分)有下列四个命题:其中正确的个数为()(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是菱形;(3)两条对角线互相垂直的四边形是正方形;(4)两条对角线相等且互相垂直的四边形是正方形.A . 4B . 3C . 2D . 18. (2分) (2019七下·芜湖期末) 如图是某班级的一次数学考试成绩(得分均为整数)的频数分布直方图(每组包含最小值,不包含最大值),则下列说法不正确的是()A . 得分在70~79分的人数最多B . 人数最少的得分段的频数为2C . 得分及格(≥60分)的有12人D . 该班的总人数为40人9. (2分)(2017·路北模拟) 自来水公司为了解居民某月用水请款个,随机抽取了20户居民的月用水量x (单位:立方米),绘制出表格,则月用水量x<3的频率是()月用水量频数0≤x<0.510.5≤x<121≤x<1.531.5≤x<242≤x<2.532.5≤x<333≤x<3.523.5≤x<414≤x<4.51A . 0.15B . 0.3C . 0.8D . 0.910. (2分) (2017七上·宜兴期末) 下列各数中,比﹣2小的数是()A . ﹣3B . ﹣1C . 0D . 2二、耐心填一填,显示你的才智 (共8题;共8分)11. (1分)已知,则 =________.12. (1分)计算: =________.13. (1分) (2019八下·鼓楼期末) 已知关于x的方程x2+m2x﹣2=0的一个根是1,则m的值是________.14. (1分)线段垂直平分线性质定理的逆定理是________15. (1分) (2019七下·孝义期末) 一副三角板如图摆放,过点作,则的度数为________.16. (1分)某地某日最高气温为12℃,最低气温为-7℃,该日气温的极差是________℃.17. (1分) (2019七下·嘉兴期末) 在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为________ .18. (1分) (2018九上·遵义月考) 已知方程x2﹣3x+m=0与方程x2+(m+3)x﹣6=0有一个共同根,则这个共同根是________.三、解答题,仔细做一做,千万别出错 (共6题;共50分)19. (5分) (2016八上·蓬江期末) (﹣)×20. (5分) (2019九上·龙华期末) 解方程:x2-2x -15=021. (13分)(2017·峄城模拟) 国务院办公厅2015年3月16日发布了《中国足球改革的总体方案》,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园”知识竞赛活动,为了解足球知识的普及情况,随机抽取了部分获奖情况进行整理,得到下列不完整的统计图表:获奖等次频数频率一等奖100.05二等奖200.10三等奖30b优胜奖a0.30鼓励奖800.40请根据所给信息,解答下列问题:(1) a=________,b=________,且补全频数分布直方图________;(2)若用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少?(3)在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,若从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.22. (1分)某校九年级四个班的代表队准备举行篮球友谊赛.甲、乙、丙三位同学预测比赛的结果如下:甲说:“902班得冠军,904班得第三”;乙说:“901班得第四,903班得亚军”;丙说:“903班得第三,904班得冠军”.赛后得知,三人都只猜对了一半,则得冠军的是 ________.23. (6分) (2018九上·苏州月考) 某公司实行年工资制,职工的年工资由基础工资、住房补贴和医疗费三项组成,具体规定如下:项目第一年的工资(万元)一年后的计算方法基础工资1每年的增长率相同住房补贴0.04每年增加0.04医疗费0.1384固定不变(1)设基础工资每年的增长率为x,用含x的代数式表示第三年的基础工资,为 ________ 万元.(2)某人在公司工作了3年,他算了一下这3年拿到的住房补贴和医疗费正好是这3年基础工资总额的18%,问基础工资每年的增长率是多少?24. (20分)(2017·泰州模拟) 我们知道:三角形的三条角平分线交于一点,这个点称为三角形的内心(三角形内切圆的圆心).现在规定:如果四边形的四个角的角平分线交于一点,我们把这个点也成为“四边形的内心”.(1)试举出一个有内心的四边形.(2)如图1,已知点O是四边形ABCD的内心,求证:AB+CD=AD+BC.(3)如图2,Rt△ABC中,∠C=90°.O是△ABC的内心.若直线DE截边AC,BC于点D,E,且O仍然是四边形ABED的内心.这样的直线DE可画多少条?请在图2中画出一条符合条件的直线DE,并简单说明作法.(4)问题(3)中,若AC=3,BC=4,满足条件的一条直线DE∥AB,求DE的长.参考答案一、细心选一选,小心一些美丽的陷阱 (共10题;共20分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、耐心填一填,显示你的才智 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题,仔细做一做,千万别出错 (共6题;共50分)19-1、20-1、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、24-3、24-4、。
荆门市八年级下学期数学期中考试试卷
荆门市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下面各组点关于y轴对称的是()A . (0,10)与(0,-10)B . (-3,-2)与(3,-2)C . (-3,-2)与(3,2)D . (-3,-2)与(-3,2)2. (2分)下列说法正确的是A . 相等的圆心角所对的弧相等B . 无限小数是无理数C . 阴天会下雨是必然事件D . 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k3. (2分) (2019八下·江阴期中) 下列各式中,从左到右的变形正确的是()A .B .C .D .4. (2分) (2019八下·江阴期中) 分式和的最简公分母是()A . 2xyB . 2x2y2C . 4x2y2D . 4x3y35. (2分) (2019八下·江阴期中) 下列事件中,属于必然事件的是()A . 任意数的绝对值都是正数B . 两直线被第三条直线所截,同位角相等C . 如果a、b都是实数,那么a+b=b+aD . 抛掷1个均匀的骰子,出现6点朝上6. (2分) (2019八下·江阴期中) 下列调查适合用普查的是()A . 夏季冷饮市场上冰淇淋的质量B . 某本书中的印刷错误C . 公民安全意识D . 一批灯泡的使用寿命7. (2分) (2019八下·江阴期中) “五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A .B .C .D .8. (2分) (2019八下·江阴期中) 下列命题是真命题的是()A . 对角线互相平分的四边形是平行四边形B . 对角线相等的四边形是矩形C . 对角线互相垂直且相等的四边形是正方形D . 对角线互相垂直的四边形是菱形9. (2分) (2019八下·江阴期中) 如图,▱ABCD绕点A逆时针旋转30°,得到□AB′C′D′(点B′与点B 是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A . 105°B . 170°C . 155°D . 145°10. (2分) (2019八下·江阴期中) 如图,已知直线l//AB,l与AB之间的距离为2.C,D是直线l上两个动点(点C在D点的左侧),且AB=CD=5.连接AC,BC,BD,将△ABC沿BC折叠得到△A′BC.下列说法:①四边形ABDC的面积始终为10;②当A′与D重合时,四边形ABDC是菱形;③当A′与D不重合时,连接A′、D,则∠CA′D+∠BCA′=180°;④若以A′,C,B,D为顶点的四边形为矩形,则此矩形相邻两边之和为3 或7.其中正确的是()A . ①②③④B . ①③④C . ①②④D . ①②③二、填空题 (共8题;共8分)11. (1分) 0-|-7|=________12. (1分) (2019八下·江阴期中) 当x=________时,分式的值为零.13. (1分) (2019八下·江阴期中) 某中学为了了解本校3500学生视力情况,在全校范围内随机抽取200名学生进行调查,本次抽样调查的样本容量是________.14. (1分) (2019八下·江阴期中) 小芳抛一枚硬币5次,有4次正面朝上,当她抛第5次时,正面朝上的概率为________.15. (1分) (2019八下·江阴期中) 若顺次连接四边形ABCD四边中点所得的四边形是菱形,则原四边形的对角线AC、BD所满足的条件是 ________.16. (1分) (2019八下·江阴期中) 如图,在菱形ABCD 中,AC与BD相交于点O,点P是AB的中点,PO=2,则菱形ABCD的周长是________.17. (1分) (2019八下·江阴期中) 如图,在□ABCD中,∠A=75° ,将□ABCD绕顶点B顺时针旋转到□A1BC1D1 ,当C1D1首次经过顶点C时,旋转角∠AB A1=________.18. (1分) (2019八下·江阴期中) 如图,四边形ABCD是菱形,AB=2,且∠ABC=∠ABE=60°,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM,则AM+BM+CM的最小值为________.三、解答题 (共9题;共69分)19. (15分) (2019八下·施秉月考) ()()20. (5分)(2019·河池模拟) 计算:2 (﹣3)﹣|﹣5|+(﹣1)2019+5tan45°.21. (5分) (2019八下·江阴期中) 如图,在□ABCD中,点E、F分别在AD、BC边上,且AE=CF,求证:BE//FD.22. (7分) (2019八下·江阴期中) 如图,已知△ABC的三个顶点坐标为A(-4,3)、B(-6,0)、C(-1,0).(1)请画出△ABC关于坐标原点O的中心对称图形△A′B′C′,并写出点A的对应点A′的坐标;(2)若将点B绕坐标原点O顺时针旋转90°,请直接写出点B的对应点B″的坐标________;(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标________.23. (11分) (2019八下·江阴期中) 某中学为了解学生每天参加户外活动的情况,对部分学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)这次抽样调查,一共抽查了________名学生;(2)补全频数分布直方图;(3)若该中学共有1500名学生,请估计该校每天参加户外活动的时间为1小时的学生人数.24. (5分) (2019八下·江阴期中) 如图,AC、BD相交于点O,且O是AC、BD的中点,点E在四边形ABCD 外,且∠AEC=∠BED=90° 求证:四边形ABCD是矩形.25. (5分) (2019八下·江阴期中) 某个体经营户了解到有一种盒装商品能畅销市场,就用4万元购进这种商品,面市后果然供不应求,他又用8.8万元购进了第二批这种商品,所购数量是第一批购进量的2倍,但每盒单价涨了4元,他在销售这种盒装商品时每盒定价都是56元,最后剩下的150盒按八折销售,很快售完,在这两笔生意中,这位个体经营户共赢利多少元?26. (5分) (2019八下·江阴期中) 如图,矩形ABCD中,AB=12cm,BC=5cm,动点P从点A出发,以每秒1cm 的速度沿线段AB向点B运动,连接DP,把∠A沿DP折叠,使点A落在点A′ 处.求出当△BPA′为直角三角形时,点P运动的时间.27. (11分) (2019八下·江阴期中) 已知:如图1,平面直角坐标系xOy中,四边形OABC是矩形,点A,C 的坐标分别为(8,0),(0,3).点D是线段BC上的一个动点(点D与点B,C不重合),过点D作直线=-+b交折线O-A-B于点E.(1) 在点D 运动的过程中,若△ODE 的面积为S ,求S 与b 的函数关系式,并写出自变量的取值范围;(2) 如图2,当点E 在线段OA 上时,矩形OABC 关于直线DE 对称的图形为矩形O′A′B′C′,C′B′分别交CB ,OA 于点D ,M ,O′A′分别交CB ,OA 于点N ,E.求证:四边形DMEN 是菱形;(3) 问题(2)中的四边形DMEN 中,ME 的长为________.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共69分)19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、25-1、26-1、27-1、27-2、27-3、。
湖北省荆门市八年级下学期期中数学试卷
湖北省荆门市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)(2020·硚口模拟) 下列图形中,既是中心对称图形,又是轴对称图形的是()A .B .C .D .2. (2分)(2019·丹阳模拟) 有一张平行四边形纸片ABCD,已知,按如图所示的方法折叠两次,则的度数等于()A . 60°B . 55°C . 50°D . 45°3. (2分) (2019九下·义乌期中) 如图,点A(﹣2,0),B(0,1),以线段AB为边在第二象限作矩形ABCD,双曲线y=(k<0)过点D,连接BD,若四边形OADB的面积为6,则k的值是()A . ﹣9B . ﹣12C . ﹣16D . ﹣184. (2分) (2019八下·端州期中) 下列各比值中,是直角三角形的三边之比的是()A . 3∶4∶5B . 2∶3∶4C . 2∶5∶6D . 1∶2∶35. (2分) (2019九上·龙泉驿期中) 下列命题正确的是()A . 对角线互相垂直且相等的四边形是菱形B . 一组对边平行,一组邻角互补的四边形是平行四边形C . 对角线相等的四边形是矩形D . 等腰梯形的两条对角线相等6. (2分)(2017·溧水模拟) 如图所示,若干个全等的正五边形排成环状,要完成这一圆环共需要正五边形的个数为()A . 10B . 9C . 8D . 77. (2分)如图,一棵大树被台风刮断,若树在离地面6m处折断,树顶端落在离树底部8m处,则树折断之前高()A . 15mB . 17mC . 18mD . 16m8. (2分) (2017八下·新野期末) 在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为()A . 3B . 5C . 2或3D . 3或59. (2分)如图,正方形ABCD的边长为3cm,∠ABE=15°,且AB=AE,则DE的长是()A . 3cmB . 4cmC . 6cmD . 9cm10. (2分)(2020·安庆模拟) 为了调查某校学生课后参加体育锻炼的时间,学校体育组随机抽样调查了若干名学生的每天锻炼时间,统计如下表:每天锻炼时间(分钟)20406090学生数(人)2341下列说法错误的是()A . 众数是60分钟B . 平均数是52.5分钟C . 样本容量是10D . 中位数是50分钟11. (2分) (2020八下·随县期末) 下列说法正确的是()A . 样本7,7,6,5,4的众数是2B . 样本1,2,3,4,5,6的中位数是4C . 若数据,,…,的平均数是,则D . 样本50,50,39,41,41不存在众数12. (2分)已知圆锥的底面的半径为3cm,高为4cm,则它的侧面积为()A . 15πcm2B . 16πcm2C . 19πcm2D . 24πcm213. (2分) (2018八上·建湖月考) 如图,在△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD、DE、BE,则下列结论:①∠ECA=165°,②BE=BC;③AD=BE;④CD=BD.其中正确的是()A . ①②③B . ①②④C . ①③④D . ①②③④14. (2分) (2018八上·镇平期末) 如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果CD= ,那么线段BE的长度为()A . 1B . 2C .D .二、填空题 (共4题;共4分)15. (1分) (2019七下·新泰期末) 如图,已知,,若平分,平分,且,则为________°.16. (1分) (2018八上·洛宁期末) 如图所示,折叠长方形的一边AD,使点D落在边BC上的点F处,已知AB=5cm,BC=13cm,则EC的长为________cm.17. (1分)小新家今年4月份头6天用米量如表:估计小新家4月份用米量为________kg.用米量(kg)0.60.80.9 1.0天数122118. (1分) (2020九下·江岸月考) 如图,△ABC中,∠ABC=30º,BC=4,AB= ,将边AC绕着点A逆时针旋转120º得到AD,则BD的长为________.三、解答题 (共8题;共77分)19. (5分)某同学使用计算器求30个数据的平均数时,错将其中一个数据105输成了15,则由此求出的平均数与实际平均数的差是多少?20. (5分) (2019八上·毕节月考) 如图,从高8米的电杆AC的顶部A处,向地面的固定点B处拉一根铁丝,若B点距电杆底部的距离为6米.现在准备一根长为9.9米长的铁丝,够用吗?请你说明理由.21. (5分) (2019八下·南沙期末) 如图,在YABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.22. (15分) (2017九上·鄞州月考) 如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0),与y轴相交于点C(0,3).(1)求抛物线的函数关系式.(2)将y=ax2+bx+c化成y=a(x﹣m)2+k的形式(请直接写出答案).(3)若点D(3.5,m)是抛物线y=ax2+bx+c上的一点,请求出m的值,并求出此时△ABD的面积.23. (15分)(2018·潮南模拟) 如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.24. (12分) (2017七下·东莞期末) 在对18-35岁的青年人每天发微博数量的调查中,随机抽查部分符合年龄条件的青年人开展每人“日均发微博条数”的调查,一个人的“日均发微博条数”为m,根据调查数据整理并制作图表如下:请你根据以上信息解答下列问题:(1)在表中:a=________,b=________;(2)补全频数分布直方图;(3)若某大城市常住人口中18-35岁的青年人大约有530万人,试估计其中“日均发微博条数”不少于10条的大约有多少万人.25. (5分) (2018八上·辽阳月考) 小强家有一块三角形菜地,量得两边长分别为,,第三边上的高为 .请你帮小强计算这块菜地的面积.(结果保留根号)26. (15分) (2017八下·宁江期末) 如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE、CF.(1)求证:DE=CF;(2)在(1)条件下,如图2,过点E作BG⊥DE,且EG=DE,连接FG,试判断:FG与CE的数量关系和位置关系?给出证明.(3)如图3,若点E、F分别是CB、BA的延长线上的点,其他条件不变,(2)中结论是否仍然成立?请直接写出你的判断.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共4题;共4分)15-1、16-1、17-1、18-1、三、解答题 (共8题;共77分)19-1、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、26-1、26-2、26-3、。
湖北省荆门市八年级下学期数学期中考试试卷
湖北省荆门市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为()A . 6.7×10﹣5B . 6.7×10﹣6C . 0.67×10﹣5D . 0.67×10﹣62. (2分) (2018八上·江汉期末) 由线段a,b,c组成的三角形不是直角三角形的是()A . a=3,b=4,c=5B . a=12,b=13,c=5C . a=15,b=8,c=17D . a=13,b=14,c=153. (2分)把分式中的都扩大3倍,那么分式的值().A . 扩大3倍B . 缩小3倍C . 扩大9倍D . 不变4. (2分)(2014·河池) 若反比例函数y= (k≠0)的图象过点(2,1),则这个函数的图象一定过点()A . (2,﹣1)B . (1,﹣2)C . (﹣2,1)D . (﹣2,﹣1)5. (2分)若将分式中的a与b的值都扩大为原来的2倍,则这个分式的值将()A . 扩大为原来的2倍B . 分式的值不变C . 缩小为原来的D . 缩小为原来的6. (2分)根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0时,y=②△OPQ的面积为定值.③x>0时,y随x的增大而增大.④MQ=2PM.⑤∠POQ可以等于90°.其中正确结论是()A . ①②④B . ②④⑤C . ③④⑤D . ②③⑤7. (2分)实数a,b在数轴上的位置如图所示,则下列各式正确的是()A . a>bB . a>-bC . a<bD . -a<-b8. (2分) (2019八上·鹿邑期末) 小玲每天骑自行车或坐公交车上学,她上学的路程为20千米,坐公交车的平均速度是骑自行车的平均速度的3倍,坐公交车比骑自行车上学早到40分钟,设小玲骑自行车的平均速度为千米/小时,根据题意,下面列出的方程正确的是()A .B .C .D .9. (2分)(2017·无棣模拟) 下列各式计算正确的是()A . a+3a2=3a3B . (a﹣b)2=a2﹣ab+b2C . 2(a﹣b)=2a﹣2bD . (2ab)2÷ab=2ab10. (2分)三角形的三个角的度数之比为1:2:3,它的最大边长等于16,则最小边为().A . 1B . 2C . 8D . 4二、填空题 (共10题;共10分)11. (1分) (2020八上·常德期末) 计算: ________.12. (1分)(2015·宁波模拟) 关于x的方程 =1的解是负数,则a的取值范围是________.13. (1分) (2019八上·瑞安期中) “两直线平行,内错角相等”的逆命题是________.14. (1分)(2017·费县模拟) 当x满足x﹣4=0时,()÷ =________.15. (1分) (2016七下·河源期中) 若是一个完全平方式,则k=________.16. (1分)直角三角形两直角边的平方和等于________;反之,有两边的平方和等于________平方的三角形是直角三角形.17. (1分)乳韶公路全长为38km,一辆汽车以每小时vkm从乳源开往韶关,则所需时间t(h)与汽车速度v(km/h)之间的函数关系式是:________ .18. (1分) (2019九上·南山期末) 已知点A(x1 , 3),B(x2 , 6)都在反比例函数y=- 的图象上,则x1________x2(填“<”或“>”或“=”)19. (1分)如图,若将四根木条钉成的矩形ABCD变形为▱FBCE的形状,EF交CD于点H,已知AB=20cm,BC=30cm,当矩形ABCD的面积是▱FBCE面积的2倍时,四边形FBCH的面积为________20. (1分)(2017·陕西模拟) 如图,在第一象限内,点P(2,3),M(a,2)是双曲线y= (k≠0)上的两点,PA⊥x轴于点A,MB⊥x轴于点B,PA与OM交于点C,则△OAC的面积为________.三、解答题 (共9题;共75分)21. (15分)分式计算(1)(2).22. (10分)(2017·平塘模拟) 计算:(1)(﹣)﹣1﹣|﹣ 3 |﹣20110+( 2 )2+tan60°;(2)解分式方程:﹣ = .23. (5分)(2017·玉林模拟) 先化简,再求值:÷(x﹣),其中x=3.24. (5分)先化简,再求值:,其中x=+1.25. (10分) (2019九上·辽源期末) 如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2= (m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n)(1)求反比例函数与一次函数的解析式;(2)连接OA、OB,求△AOB的面积;(3)直接写出当y1<y2时,自变量x的取值范围.26. (10分) (2017八下·卢龙期末) 我市为迎接省运会,要将某一城市美化工程招标,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?27. (5分) (2019八下·江城期中) 如图,在四边形ABCD中,已知AB=5,BC=3,CD=6,AD=2 ,若AC⊥BC,求证:AD∥BC.28. (5分) (2016八上·扬州期末) 如图,一块四边形草地ABCD,其中∠B=90°,AB=4m,BC=3m,AD=12m,CD=13cm,求这块草地的面积.29. (10分) (2018八上·新疆期末) 我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共9题;共75分)21-1、22-1、22-2、23-1、24-1、25-1、25-2、25-3、26-1、26-2、27-1、28-1、29-1、29-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
16.(3 分)如图,已知在 Rt△ABC 中,∠ACB=90°,AB=4,分别以 AC、BC 为直径作
半圆,面积分别记为 S1、S2,则 S1+S2 等于
.
17.(3 分)如图,在图(1)中,A1、B1、C1 分别是△ABC 的边 BC、CA、AB 的中点,在
图(2)中,A2、B2、C2 分别是△A1B1C1 的边 B1C1、C1A1、A1B1 的中点,…,按此规律,
(1)求证:AB=CF; (2)当 BC 与 AF 满足什么数量关系时,四边形 ABFC 是矩形,并说明理由.
24.(12 分)如图,在 Rt△ABC 中,∠B=90°,AC=60cm,∠A=60°,点 D 从点 C 出 发沿 CA 方向以 4cm/秒的速度向点 A 匀速运动,同时点 E 从点 A 出发沿 AB 方向以 2cm/ 秒的速度向点 B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点 D、E 运动的时间是 t 秒(0<t≤15).过点 D 作 DF⊥BC 于点 F,连接 DE,EF.
13.(3 分)已知
,则 x+y=
.
14.(3 分)如图,已知△ABC 中,AB=5cm,BC=12cm,AC=13cm,那么 AC 边上的中线
BD 的长为
cm.
15.(3 分)如图,在矩形 ABCD 中,AB=8,BC=10,E 是 AB 上一点,将矩形 ABCD 沿
CE 折叠后,点 B 落在 AD 边的 F 点上,则 DF 的长为
湖北省荆门市沙洋县八年级(下)期中数学试卷
一、选择题(每小题 3 分,共 36 分)
1.(3 分)若
在实数范围内有意义,则 x 的取值范围是( )
A.x≥
B.x≥﹣
C.x>
D.x≠
2.(3 分)一直角三角形的两直角边长为 12 和 16,则斜边长为( )
A.12
B.16
C.18
D.20
3.(3 分)如图,在▱ABCD 中,已知 AD=5cm,AB=3cm,AE 平分∠BAD 交 BC 边于点 E,
E,BF⊥a 于点 F,若 DE=4,BF=3,则 EF 的长为( )
第1页(共6页)
A.1
B.5
C.7
7.(3 分)下列根式中,是最简二次根式的是( )
A.
B.
C.
D.12 D.
8.(3 分)如图,已知四边形 ABCD 是平行四边形,下列结论中不正确的是( )
A.当 AB=BC 时,它是菱形 B.当 AC⊥BD 时,它是菱形 C.当∠ABC=90°时,它是矩形 D.当 AC=BD 时,它是正方形 9.(3 分)如图所示,数轴上点 A 所表示的数为 a,则 a 的值是( )
≠ =c2.
所以由 a、b、c 组成的三角形不是直角三角形,你认为小明的解答正确吗?请说明理由. 20.(10 分)如图,铁路上 A,B 两点相距 25km,C,D 为两村庄,DA⊥AB 于点 A,CB⊥
AB 于点 B,已知 DA=16km,CB=11km,现在要在铁路 AB 上建一个土特产品收购站 E, 使得 C,D 两村到 E 站的距离相等,则 E 站应建在离 A 站多少 km 处?
21.(10 分)如图,E,F,G,H 分别是边 AB,BC,CD,DA 的中点. (1)判断四边形 EFGH 的形状,并证明你的结论; (2)当 BD,AC 满足什么条件时,四边形 EFGH 是正方形.(不要求证明)
22.(10 分)如图,四边形 ABCD 是一个菱形绿草地,其周长为 40 m,∠ABC=120°,
12.C; 二、填空题(每小题 3 分,共 15 分) 13.1; 14. ; 15.6; 16.2π; 17.3n;
三、解答题(共 69 分)
18.
; 19.
; 20.
; 21.
; 22.
; 23.
; 24.
;
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布
日期:2019/1/22 8:06:28; 用户:qgjyus er104 02;邮箱:qg jyus er10402.2195 7750;学号: 21985409
A.﹣ +1
B. ﹣1
C.
D. +1
10.(3 分)已知菱形 ABCD 中,对角线 AC 与 BD 交于点 O,∠BAD=120°,AC=4,则
该菱形的面积是( )
A.16
B.16
C.8
D.8
11.(3 分)如图,四边形 ABCD 中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD 于点 E,
且四边形 ABCD 的面积为 8,则 BE=( )
(1)求证:AE=DF; (2)四边形 AEFD 能够成为菱形吗?如果能,求出相应的 t 值,如果不能,说明理由; (3)当 t 为何值时,△DEF 为直角三角形?请说明理由.
第5页(共6页)
湖北省荆门市沙洋县八年级(下)期中数学试卷
参考答案
一、选择题(每小题 3 分,共 36 分) 1.C; 2.D; 3.B; 4.D; 5.A; 6.C; 7.C; 8.D; 9.B; 10.C; 11.C;
第6页(共6页)
A.2
B.3C.ຫໍສະໝຸດ D.第2页(共6页)
12.(3 分)如图所示,A(﹣ ,0)、B(0,1)分别为 x 轴、y 轴上的点,△ABC 为等边 三角形,点 P(3,a)在第一象限内,且在直线 AB 的下方,满足 2S△ABP=S△ABC,则 a 的值为( )
A.
B.
C.
D.2
二、填空题(每小题 3 分,共 15 分)
第3页(共6页)
则第 n 个图形中平行四边形的个数共有
个.
三、解答题(共 69 分)
18.(8 分)计算:
(1)2 +3 ﹣ ﹣
;
(2) ﹣ ÷2+(3﹣ )(1+ ).
19.(9 分)在解答“判断由长为 、2、 的线段组成的三角形是不是直角三角形”一题中,
小明是这样做的 解:设 a= ,b=2,c= ,又因为 a2+b2=( )2+22=
第4页(共6页)
在其内部有一个矩形花坛 EFGH,其四个顶点恰好在菱形 ABCD 各边中点,现准备在花 坛中种植茉莉花,其单价为 10 元/m2,则需投资资金多少元?( 取 1.732)
23.(10 分)如图,在平行四边形 ABCD 中,E 为 BC 的中点,连接 AE 并延长交 DC 的延 长线于点 F.
则 EC 等于( )
A.1 cm
B.2 cm
C.3 cm
D.4 cm
4.(3 分)下列计算错误的是( )
A.
B.
C.
D.
5.(3 分)如图,点 P 是平面坐标系中一点,则点 P 到原点的距离是( )
A.3
B.
C.
D.
6.(3 分)如图所示,直线 a 经过正方形 ABCD 的顶点 A,分别过顶点 B,D 作 DE⊥a 于点