卡诺图化简法.ppt

合集下载

数电课件第八次课 无关项卡诺图化简法、门电路2

数电课件第八次课 无关项卡诺图化简法、门电路2

AB
CD 00
1 0 0 0
00 01 11 10
结论: F = G
18
第三章
§3.1 概述
门电路
§3.2 二极管及其构成的与、或门电路 §3.3 三极管及其构成的非门电路 §3.4 TTL门电路 §3.5 CMOS门电路
19
§3.1 概述
一、门电路的概念:
算的电子电路,叫逻辑门电路。实 实现基本和常用逻辑运 实现基本和常用逻辑运算的电子电路,叫逻辑门电路。实 现与运算的叫与门,实现或运算的叫或门,实现非运算的叫非 门,也叫做反相器,等等。 门电路主要有: 与门 、或门 、与非 门,也叫做反相器,等等。门电路主要有: 门电路主要有:与门 与门、 或门、 、异或门 等。 门、或非门 或非门、 异或门等。

11 0 × 0 0
10 1 0 0 0
Y = B′C ′ + A′ B′D′
Y = B′(C ′ + D′) ( A′ + C ′ )
12
⎧ Y= m(1,2,8,9) ⎪ 【例 2】 试化简逻辑函数 ⎨ 为最简与或式、 ⎪ ⎩ A′ C ′D′ + A′BCD = 0

或与式和与或非式。 CD 00 AB 00 × 01 11 10 × 0 1
01 0 0 0 0 11 0 0 1 0 10 0 0 0 0
AB
CD 00
1 0 0 0
00 01 11 10
16
G = ( A′ B + B′C + C ′D + D′A)′
G ′ = A′B + B′C + C ′D + D′A
A′B =
∑ C ′D = m(1,5,9,13) ∑

逻辑函数的卡诺图表示和卡诺图化简法省公开课获奖课件市赛课比赛一等奖课件

逻辑函数的卡诺图表示和卡诺图化简法省公开课获奖课件市赛课比赛一等奖课件
01 0 0 1 0
11 0 0 1 1 10 0 1 1 1
例:将F(A、B、C、D) ACD AB BCD ABC AC
化为最简与非—与非式。 CD
解:
ACD
AB
00 01 11 10
00 01
1 1
1 0
0 m104,m15 1 两1次填1
AB
11 1 1 1 1
10 0 1 1 1
B CD AC
ABC
1.卡诺图化简逻辑函数旳原理 : 具有相邻性旳最小项能够合并,并消去不同旳因子,
合并旳成果为这些项旳公因子.
(1)2个相邻旳最小项结合,2项能够而合并为1项, 并消去1个不同旳变量。
(2)4个相邻旳最小项结合, 4项能够而合并为1项, 并消去2个不同旳变量。
(3)8个相邻旳最小项结合, 8项能够而合并为1项, 并消去3个不同旳变量。
解: 写成简化形式: F m0 m3 m6 m7 然后填入卡诺图:
例3 画出 Y ABC D ACD AC 旳卡诺图
解:直接填入
CD 00 01 11 10
AB
00 0 0 1 0
01 0 0 1 0
11 0 0 1 1
10 0 1 1 1
CD 00 01 11 10
AB
00 0 0 1 0
总之, 2n 个相邻旳最小项结合,2n 项能够而合并为1
项,能够消去n个不同旳变量。
化简根据
2n项相邻,并构成一种矩形组, 2n项能够而合并为 1项,消去n个因子,合并旳成果为这些项旳公因子。
利用卡诺图化简旳规则
相邻单元格旳个数必须是2n个,并构成矩 形组时才能够合并。
CD 00 01 11 10
诺图

卡诺图化简

卡诺图化简
Y ( A, B, C , D ) ABC ABCD ABCD ABCD 约束条件:A ⊙ B=0
逻辑函数中的无关项
• 无关项在逻辑函数化简中的作用:
– 例2:用卡诺图简化下列逻辑函数,并写成最 简与或式和或与式。
Y ABC ABCD ABCD ABCD CD AB 00 约束条件:A B=0 00 × 约束条件可表示为:AB AB 0 01 1
逻辑函数中的无关项
• 约束项:
– 表示方法:
ABC 0 ABC 0 ABC 0 ABC 0 ABC 0

由于约束项的值始终为 0,所以既可以将约束 项写进逻辑函数式,也 可以不写。
ABC ABC ABC ABC ABC 0
逻辑函数中的无关项
BC A 0 1
1
00
01
1 1
11
1
10
1 1
卡诺图化简法
• 利用卡诺图化简函数
– 例1:用卡诺图化简 Y AC AC BC BC
Y AC AC BC BC AC BC AB
BC A 0 1
1
00
01
1 1
11
1
10
1 1
注:卡诺图化简不是唯 一,不同的圈法得到的 简化结果不同,但实现 的逻辑功能相同的。
0
11
0
10
0
最简或与式:
Y B( A C D)( A C D)
1
0 0
1
1 0
0
1 0
1
1 0
卡诺图化简法
• 利用卡诺图化简函数
– 例3:用卡诺图化简为最简与或式和最简或与式 Y M (2,3,4,6,11,12,14)

(完整版)逻辑函数的卡诺图化简法

(完整版)逻辑函数的卡诺图化简法

第十章 数字逻辑基础补充:逻辑函数的卡诺图化简法1.图形图象法:用卡诺图化简逻辑函数,求最简与或表达式的方法。

卡诺图是按一定规则画出来的方框图。

优点:有比较明确的步骤可以遵循,结果是否最简,判断起来比较容易。

缺点:当变量超过六个以上,就没有什么实用价值了。

公式化简法优点:变量个数不受限制缺点:结果是否最简有时不易判断。

2.最小项(1)定义:是一个包括所有变量的乘积项,每个变量均以原变量或反变量的形式出现一次。

注意:每项都有包括所有变量,每个乘积它中每个变量出现且仅出项1次。

如:Y=F (A ,B ) (2个变量共有4个最小项B A B A B A AB )Y=F (A ,B ,C ) (3个变量共有8个最小项C B A C B A C B A BC A C B AC B A C AB ABC )结论: n 变量共有2n 个最小项。

三变量最小项真值表(2)最小项的性质①任一最小项,只有一组对应变量取值使其值为1: ②任意两个最小项的乘种为零; ③全体最小项之和为1。

(3)最小项的编号:把与最小项对应的变量取值当成二进制数,与之相应的十进制数,就是该最小项的编号,用m i 表示。

3.最小项表达式——标准与或式任何逻辑函数都可以表示为最小项之和的形式——标准与或式。

而且这种形式是惟一的,即一个逻辑函数只有一种最小项表达式。

例1.写出下列函数的标准与或式:Y=F(A,B,C)=AB+BC+CA 解:Y=AB(C +C)+BC(A +A)+CA(B +B)=ABC C B A ABC BC A ABC C AB +++++ =ABC C B A BC A C AB +++ =3567m m m m +++例2.写出下列函数的标准与或式:C B AD AB Y ++=解:))()(C B D A B A Y +++=( ))((C B D B A ++= D C B C A B A B A +++=D C B A D C B A C B A C B A BC A ++++=D C B A D C B A D C B A D C B A D C B A D BC A BCD A ++++++=_ 8014567m m m m m m m ++++++= =)8,7,6,5,4,1,0(m ∑ 列真值表写最小项表达式。

用卡诺图化简逻辑函数合并最小项的规则

用卡诺图化简逻辑函数合并最小项的规则

上页 下页 返回
24
2020/3/4
第五节 逻辑函数的化简
[例2.5.17]:用卡诺图将下式化简为最简与-或逻辑
函数式。
Y ABC ABD CD ABC ACD ACD
解: Y CD
AB 00 01 11 10
D
00 1 0 0 1
01 1 0 0 1
11 1 1 1 1
第五节 逻辑函数的化简
A A 1
可在逻辑函数式中的某一项乘 ( A A),
然后拆成两项分别与其他项合并。
[例2.5.13]:Y BC AC AB
( A A)BC AC AB
ABC ABC AC AB
AB AC
上页 下页 返回
则可合并为一项并消去一对因子。 2. 若四个最小项相邻且排列成一个矩形组,
则可合并为一项并消去两对因子。 3. 若八个最小项相邻且排列成一个矩形组,
则可合并为一项并消去三对因子。
上页 下页 返回
20
2020/3/4
第五节 逻辑函数的化简
合并两个相邻最小项的情况:

BC A 00 01 11 10
01 1 0 1
B
上页 下页 返回
23
2020/3/4
第五节 逻辑函数的化简
卡诺图化简的步骤:
1. 将函数化为最小项之和的形式。
2. 画出表示该逻辑函数的卡诺图。
3. 找出可以合并的最小项。
4. 选取化简后的乘积项。
选取乘积项的原则: 1. 这些乘积项应包含函数式中所有的最小项。 2. 所用的乘积项数目最少。 3. 每个乘积项包含的因子最少。
12
2020/3/4

chap3.3卡诺图化简

chap3.3卡诺图化简

∑ ( 0 , 2 ,5,6 ,7 ,8,9 ,10 ,11,14 ,15 )
AB D
01 11 10
B C
AB BD
F = A BD + B D + A B + BC
3.3 卡诺图化简
F = ABD + B D + AB + BC
B D
A B A B D B C
& &
≥1
F
&
&
3.3 卡诺图化简
3.3 卡诺图化简
由一般式获得最小项标准式 代数法: 代数法:对逻辑函数采用拆项法
F = AB C + BC + AC = AB C + BC ( A + A) + AC ( B + B)
= AB C + ABC + ABC + ABC + ABC
真值表法:逻辑函数是真值表中 真值表法:逻辑函数是真值表中F=1那 那 些最小项相或而成的。 些最小项相或而成的。
3.3 卡诺图化简
ABC
000 001 010 011 100 101 110 111
AB C
1 0 0 0 0 0 0 0
BC
0 0 0 1 0 0 0 1
AC
0 0 0 0 1 0 1 0
F
1 0 0 1 1 0 1 1
AB C
ABC AB C ABC
ABC
F = AB C + ABC + AB C + ABC + ABC
3.3 卡诺图化简
最小项编号
序号 0 1 2 3 4 5 6 7 ABC 000 001 010 011 100 101 110 111 最小项名称

卡诺图化简逻辑表达式

卡诺图化简逻辑表达式
对于包含多个非门或多个连续的与或 非门的逻辑表达式,卡诺图化简可能 无法得到最简结果。
卡诺图对于大规模逻辑电路的优化效果有限
随着逻辑电路规模的增大,卡诺图的化简过程变得复杂且耗时,难以在实际工程 中应用。
对于大规模逻辑电路,可能需要采用其他优化方法,如布尔代数、门级优化等, 以获得更好的优化效果。
THANKS
感谢观看
卡诺图化简逻辑表达式
• 卡诺图简介 • 卡诺图化简逻辑表达式的方法 • 卡诺图化简逻辑表达式的实例 • 卡诺图与其他化简方法的比较 • 卡诺图的局限性
01
卡诺图简介
卡诺图的定义
• 定义:卡诺图是一种用于表示二进制逻辑函数关系的图形表示 法,通过将逻辑函数输入变量的所有可能取值组合在网格中表 示出来,可以直观地观察到函数的最简形式。
卡诺图与布尔代数化简的比较
布尔代数化简
通过使用逻辑运算(与、或、非)的代数性质,如吸收律、分配律等,对逻辑表达式进 行简化。这种方法需要一定的数学基础,但在处理复杂逻辑表达式时可能较为繁琐。
卡诺图化简
利用图形直观地表示输入变量的所有可能组合,通过排除法简化逻辑表达式。卡诺图化 简简单易懂,不需要复杂的数学运算,特别适合初学者和解决多变量逻辑表达式的化简
问题。
卡诺图与公式化简的比较
公式化简
通过逻辑运算的公式和定理,对逻辑表达式 进行简化。这种方法需要熟练掌握各种逻辑 公式和定理,对于初学者有一定的难度。
卡诺图化简
利用图形化的方式表示输入变量的所有可能 组合,通过排除法简化逻辑表达式。卡诺图 化简直观、易于操作,不需要复杂的公式和 定理,特别适合初学者和解决多变量逻辑表 达式的化简问题。
05
卡诺图的局限性
卡诺图适用范围有限

卡诺图化简法

卡诺图化简法
数,将应为“1”
的项填到卡诺图中
表2.6.7 Y的卡诺图
例2.6.7 用卡诺图表示下面 的逻辑函数
CD AB 00 01 11 10
Y A' B'C' D A' BD' ACD AB'
00
1
A 01 1
1
解:其卡诺图如表 2.6.7所示
11
1
A
10 1 1 1 1
2.6.2 卡诺图化简法
从上面卡诺图可以看出
任意两个相邻的最小项 在图上是相邻的,并且图中 最左列的最小项与左右列相 应最小项也是相邻的(如m0 和m2, m9和m10 )。位于最上 面和最下面的相应最小项也 是相邻的( m0和m9 , m2和 m10),所以四变量的最小项 有四个相邻最小项。可以证 明n变量的卡诺图中的最小项 有n个相邻最小项
Y ( A, B,C) A AC BC ABC 解: Y的卡诺图如表2.6.9所示
表2.6.9 Y的卡诺图
BC
A 00 01 11 10
1
011 11
111 11
2.6.2 卡诺图化简法 练习:画出下列函数的卡诺图
Y1 AB B BCD
Y2 ( A, B,C, D) m(0,1,2,3,4,6,7,8,9,11,15)
2.6.2 卡诺图化简法 下面表2.6.1 是二变量的卡诺图
表2.5.10 二变量
十进 制数
A
B
mi
0 0 0 AB(m0)
1 0 1 AB(m1) 2 1 0 AB(m2 )
3 1 1 AB(m3)
表2.6.1 二变量的卡诺图
B A0
1
0 m0
m1
1 m2 m3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档