第八章 酮

合集下载

第八章醛、酮、醌第一节醛和酮一、醛酮的结构和命名羰基碳原子SP2杂化

第八章醛、酮、醌第一节醛和酮一、醛酮的结构和命名羰基碳原子SP2杂化

二、醛酮的物理性质羰基是极性基团,羰基中的氧原子可以与水形成氢键,醛酮的沸点比相应分子质量的烷烃高得多,而比相应分子质量的醇低得多。

三、醛酮的化学性质(一)羰基的加成羰基碳原子带部分正电荷,显正电性,易发生羰基的亲核加成反应醛、酮亲核加成反应的活泼性z空间效应考虑:醛羰基中有一个小的氢原子,酮羰基中有两个烃基,加成产物的中心碳原子周围较拥挤,反应平衡中产率较低z电子效应考虑:烃基是推电子的基团,醛只连有一个推电子的基团,而酮则连有两个推电子基团z直接连有吸电子基可使羰基碳原子正电性增高,更易于发生加成反应CCl3CHO>HCHO>RCHO>CH3COCH3>RCOCH3>ArCOCH3>ArCOAr常见醛酮的相对活泼性顺序为:(二)与氨的衍生物的加成—消除反应氨的衍生物通式H 2N-X 。

氨的衍生物氮原子上仍保留一对孤电子,容易与醛酮发生反应最常见的有:羟胺H 2N-OH 肼H 2N-NH 2;苯肼、H 2N-NHC 6H 52,4-二硝基苯肼H 2N-NHC 6H 5(NO 2)2 -2,4氨基脲H 2N-NHCONH 2醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。

对酸不稳定而对碱稳定的化合物可用Wolff-Kishner-黄鸣龙反应还原。

反应机理本反应的反应机理较复杂,目前尚不很清楚。

参考文献[1]E. Clemensen, Ber.,1913, 46, 1837.[2]S. Yamamura, S. Ueda, Y. Hirata, Chem. Commun., 1967, 1049.[3]S. Yamamura, Y. Hirata, J.Chem. Soc.,C,1968, 2887.[4]S. Yamamura, Chem. Commun., 1968, 1494.[5]S. Yamamura,Tetrahedron Lett., 1967, 3361.[6]M. Toda, Y. Hirata, S.Yamamura,Chem. Commun., 1969, 919.。

醛、酮的亲核加成反应

醛、酮的亲核加成反应

缩醛(酮 ),双醚结构。 对碱、氧化剂、还原剂稳定, 可分离出来。 酸性条件下易水解
醛较易形成缩醛,酮在一般条件下形成缩酮较困难,用 1,2-二醇或1,3-二醇则易生成缩酮。
上述反应可以看成是1mol醛与2mol醇分子间脱去1mol水,生 成缩醛。
比如:
H3C C
H
H OC2H5 O+
H OC2H5
2.与饱和亚硫酸氢钠(40%)的加成
R C O + H SO3Na
(CH 3)H
R C
(CH 3)H
OH SO3Na
α -羟基磺酸盐
产物α -羟基磺酸盐为白色结晶,不溶于饱和的亚硫酸氢钠 溶液中,容易分离出来;与酸或碱共热,又可得原来的醛、 酮。故此反应可用以提纯醛、酮。
α- 羟基磺酸钠如果在酸或碱存在下,加水稀释,产物又可 分解成原来的醛或酮。
例题: 2-己酮中含有少量3-己酮,试将其分离除去。
CH3CCH2CH2CH2CH3 O
2-己 酮
CH3CH2CCH2CH2CH3 O
3-己 酮
(1)加 NaHSO3饱 和 溶 液
(2)分 离
沉淀
滤液
SO3Na
CH3CCH2CH2CH2CH3
OH
(1)加 HCl溶 液
CH3CH2CCH2CH2CH3 , H2O, NaHSO3 O
CH3CHCH2 CH3
CH2OH
(3)写出合成路线。
HCHO + CH3CHCH2MgBr 干 醚 CH3
CH3CHCH2CH2OMgBr CH3
H2O CH3CHCH2CH2OH CH3
若合成仲醇 OH 因连有羟基的碳原子上R和Rˊ两个烃基故
RCHR'

有机化学第八章醛酮醌

有机化学第八章醛酮醌
答:都可以。 注意:乙酸不可以(Why?)
乙酸中也含有CH3CO基团,但不发生碘仿反应,为什么?
乙酸在NaOI条件下,形成CH3COO-,氧负离子 与羰基共轭,电子均匀化的结果,降低了羰基碳的 正电性,因此氢活泼性降低,不能发生碘仿反应。
3、氧化反应
由于醛的羰基碳上有一个氢原子,所以醛比酮容易氧 化;使用弱的氧化剂都能使醛氧化:
• 凡碳上有氢原子的-羟基醛都容易失去一分子水,生成 ——烯醛。 • 含有氢原子的酮也能起类似反应,生成,-不饱和酮
补充: • 完成下列反应,写出主要产物。
• 两种不同的含有氢原子的羰基化合物之间进行羟醛 缩合反应(称为交叉羟醛缩合);若参加反应的一种 化合物不含-H原子,产物种类减少:
(黄色) 熔点 116℃
醌氢醌(暗绿色) 171 ℃
无色
• 对苯醌与对苯二酚可生成分子络合物,称为醌氢醌, 其缓冲溶液可用作标准参比电极。 • 对苯二酚的水溶液中加入FeCl3,溶液先呈绿色,再 变棕色,最后也析出暗绿色的醌氢醌晶体。
二、 萘醌 — 维生素K1、K3为萘醌衍生物。 黄
萘醌:有1,4-、1,2-和 2,6-三种异构体。
(3) 克莱门森(Clemmensen)还原——转化为烃 • 将醛、酮用锌汞齐加盐酸还原成烃:
• 这是将羰基还原成亚甲基的一个较好方法,在有机合成上
常应用(注意:对醛-CHO而言还原到甲基-CH3)。
•芳烃与直链卤烷进行傅-克烷基化反应有重排,所以可先进 行傅-克酰基化反应再用克莱门森还原反应制取直链烷基苯:
色 挥

•1,4-萘醌的制备1


•工业上用氧气氧化。

•1,4-萘醌的制备2
双烯合成
氧化

醛、酮的其它反应

醛、酮的其它反应

(b)用还原剂(金属氢化物)还原 LiAlH4还原:
CH3CH=CHCH2CHO ① LiAlH 4 干乙醚 ② H2O CH3CH=CHCH2CH2OH ( 只还原 C=O )
LiAlH4是强还原剂,但①选择性差,除不还原C=C、C≡C外,其它不 饱和键都可被其还原;②不稳定,遇水剧烈反应,通常只能在无水醚或THF 中使用 。
a) 羰基加成
O N OH
N OH
H2N OH
+ NH2 OH
O
羟氨
O
对苯醌单肟
N OH
对苯醌双肟
b) 双键加成
O O O
+ Cl 2
O O
Cl H Cl H
Cl2
Cl H Cl H
O
Cl H Cl H
二氯苯醌
四氯苯醌
O + HCl O
O
[
OH
Cl H
OH
]
重排
Cl OH

还原反应 O
[H]
[O]
C6H5CHO + CH 3CHO
C6H5CHO + CH 3CH 2CHO
OH
OH
C6H5CH=CHCHO
C6H5CH=CCHO CH 3 68%
含有α -H的酮在碱催化下,也可发生类似反应,称为羟 酮缩合,但反应比醛难以进行。
十、 醌的性质
醌是一类特殊环状不饱和二元酮,醌分子中两个碳-碳 双键与两个羰基共轭,形成交错共轭体系,而不是闭合共 轭体系,故醌不具芳香性。 ① 加成反应:(具有典型烯、羰基化合物性质)
第八章 醛、酮、醌
8.3醛、酮的其它反应
八、氧化和还原反应
1.氧化反应 醛易被氧化,弱的氧化剂即可将醛氧化为羧酸。 酮难被氧化,使用强氧化剂(如重铬酸钾和浓硫酸) 氧化酮,则发生碳链的断裂而生成复杂的氧化产物。 (1)与多伦(B.Tollen)试剂反应

第八章 醛和酮(一)醛和酮的命名(二)醛和酮的结构(三)醛和

第八章 醛和酮(一)醛和酮的命名(二)醛和酮的结构(三)醛和

N
六亚甲基四胺(乌咯托品)
(己)与Wittig试剂加成
Ph3P + CH3CH2Br C6H6
PhLi
Ph3PCH2CH3 Br
Ph3P=CHCH3 + C6H6+LiBr
Ph3P CHCH3
O CH3 C CH3 + Ph3P=CHCH3
O PPh3 CH3 C CHCH3
CH3
O PPh3 CH3 C CHCH3 0oC CH3 C CHCH3 + Ph3P O
C
O
92%
(4)羧酸衍生物的还原
COCl
LiAl(OBu-t)3H OCH3 乙醚,-78 oC
CH3
H+/H2O
CHO
OCH3 CH3
60%
CH3(CH2)10
COOC2H5
Al(Bu-n)2H 己烷,-78 oC
H+/H2O CH3(CH2)10 CHO 88%
(5)芳烃的氧化
V2O5 CH3 + O2(air) 350-360oC
CH CCOOH CH3
(丙)Mannich反应
O CCH3 HCHO
HN(CH3)2 HCl
O CCH2CH2N(CH3)2
H3C
CO +HCl AlCl3_ CuCl, 20oC
H3C
CHO
(四)醛和酮的物理性质
沸点:介于烃、醚与醇、酚之间。
CH3CH2CH2CH3 CH3OCH2CH3 CH3CH2CHO CH3COCH3 CH3CH2CH2OH
沸点/ oC -0.5
8
49
56
97
CH2CH3
CHO

第八章 醛和酮

第八章 醛和酮

NO2
②消除
乙醛-2,4乙醛-2,4-二硝基苯腙 黄色结晶) (黄色结晶)
O C H
正丁醛
O CH3 C CH2CH3
异戊醛
苯甲醛
C O
二苯甲酮
甲基乙基(甲 酮 甲基乙基 甲)酮 甲乙酮
系统命名法:是选择含有羰基在内的最长碳链为主链, 系统命名法:是选择含有羰基在内的最长碳链为主链,称 为某醛或某酮。主链从离羰基较近的一端开始编号。 为某醛或某酮。主链从离羰基较近的一端开始编号。醛基 总是在碳链的一端。有取代基时,应标出其位置。例: 总是在碳链的一端。有取代基时,应标出其位置 CH3CHCH2CHO C2H5 3-甲基戊醛 甲基戊醛) (β-甲基戊醛) CH3-C=CH-CHO = - CH3 3-甲基-2-丁烯醛 甲基O - CH3-CH-C- CH2CH3 CH3 2-甲基-3-戊酮 甲基甲基- 戊酮) (α-甲基-3-戊酮)
水合三氯乙醛可用作安眠药和麻醉剂;水合茚三酮则用 水合三氯乙醛可用作安眠药和麻醉剂;水合茚三酮则用 可用作安眠药和麻醉剂 检验α 氨基酸色层分析指示剂。 于检验α-氨基酸色层分析指示剂。
(6)与氨的衍生物的加成反应 与氨的衍生物的加成反应 氨的衍生物(羰基试剂): 氨的衍生物(羰基试剂): NH2OH 羟胺 NH2-NH NH2-NH2 肼 NO2 NO2 NH2-NH 苯肼 O NH2-NH-C-NH2 氨基脲
② 反应历程
实验发现碱对上例加成反应有极显著的影响。例如: 实验发现碱对上例加成反应有极显著的影响。例如: 丙酮 + HCN 丙酮 + HCN 丙酮 + HCN HCN C=O OC CN + H+ + CN→ 在3-4小时内只有一半原料起反应 反应在2 反应在2分钟内完成 放置几星期也不反应 放置几星期也不反应 OC CN OH C CN

第八章 醛、酮

第八章 醛、酮

>H
R
C=O
>(
)
>
CH3 C=O R
由于HCN是一种极易挥发的剧毒液体,一般采用 NaCN 或 KCN 水溶液与醛酮混合,再慢慢滴加硫酸。 这样可使反应产生的HCN随即与醛酮反应。即使这样 操作也必须在通风厨中进行。
18
2. 加亚硫酸氢钠
R H C=O + NaHSO3
O-Na+ S O R H C OH SO3Na R H
O O O O O O H C H R C H Ar C H CH3CCH3 R CCH3 R-C-R
烃基的斥电子效应和空间位阻增大
O Ar-C-Ar
课堂练习2.下列各化合物发生加成反应活性顺序?
O CH3 (CH 2 )2 CHO
O
C6H5CHO
(A)
(B)
(C)
CH3
(D)
C CH2C6H5
A >C > B > D
H(R)
碳与氧相连 氢易被氧化
α碳有吸电子基 α-H有弱酸性
羰基碳有亲电性 可与亲核试剂结合
12
不同结构醛酮的反应活性
亲核加成反应的活性与羰基碳原子亲电性强弱、 羰基所连R基大小,即诱导效应、空间效应等因 素有关。
诱导效应
羰基碳原子连有吸电子基团将使羰基碳原子的正电 性↑,从而有利于亲核试剂的进攻;反之,连有斥 电子基团将使羰基碳原子的正电性↓,不利于亲核 试剂的进攻。
(—)
白色结晶
3. 加醇——形成缩醛(或缩酮)
在干燥HCl存在的条件下,醇与醛加成生成半缩 醛;然后,半缩醛又与另一分子醇反应,生成缩醛。
OR' OH O HOR' 干HCl R C H + H2O R C H R C H + HOR' 干HCl OR' OR'

第八章 醛、酮和羧酸

第八章 醛、酮和羧酸
第八章 醛、酮和羧酸
1
学习重点 ❖ 醛、酮和羧酸的概念、结构和命 名 ❖ 常见的醛、酮和羧酸在医学上的 用途
2
第一节 醛 和 酮
3
一、醛、酮的结构和命名
在醛和酮分子中,都含有一个共同的官能 团——羰基,故统称为羰基化合物。
羰基:碳原子以双键与氧原子相连形成的原子团。


R CO
H
( RCHO )
CH2—COOH
苯乙酸
19
二、乙酸的性质
(一)乙酸的物理性质 物态:C1~C3 有刺激性酸味的液体,溶于水。
C4~C9 有酸腐臭味的油状液体(丁酸为脚臭味),难溶于水。 > C9 腊状固体,无气味。
●乙酸是无色、具有强烈刺激性酸味的液体,溶于水。 ●沸点118摄氏度,熔点16.5摄氏度。 ★ 当温度低于16.5摄氏度时,纯净的乙酸很容易凝结成
布洛芬
阿司匹林
15
分类
1.按烃基的种类可分为: a.脂肪族羧酸:饱和羧酸、不饱和羧酸 b、脂环族羧酸
c、芳香酸 2.按羧基数目可分为:一元羧酸、二元羧酸、多元羧酸
饱和酸 不饱和酸
芳香酸
一元酸 乙酸
丙烯酸
苯甲酸
二元酸 乙二酸 顺丁烯二酸 邻二苯甲酸
16
(二)羧酸的命名
1、俗名 HOOCCH-CHCOOH
7
醛酮的命名
1、普通命名法
根据碳原子的个数称为“某醛”“某 酮”。
O H—C—H
甲醛
O CH3—C—H
乙醛
O CH3—C—CH3
丙酮
8
2、系统命名法 Ⅰ 选择含羰基碳原子在内的最长碳链为主链,支链作取代基,
根据主链碳原子数目称为“某醛”或“某酮” Ⅱ 从靠近羰基的一端开始给主链碳原子编号。 Ⅲ 取代基的位次、数目和名称写在醛或酮名称的前面。 Ⅳ 醛基因位于碳链首端,其位次不必标示;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是一步法合成酮的重要方法,常用试剂为PdCl2/CuCl2催化下用氧气氧化,其他 催化体系有PdCl2/CuCl, PdCl2/Cu(NO3) ,PdCl2/Cu(OAC)2,Pd/Pd(OAC)2等。 端烯基化合物氧化产物为α—甲基酮。在内烯键的存在下可以选择氧化端烯。
烯烃除可进行wacker反应生成羰基化合物外,还可以被氧化生成α-二酮。
格氏试剂还可以在催化量的二氯化锰和氯化锂存在下,直接与酰氯反应合成酮 将氯化庚基镁加入戊酰氯的四氢呋喃溶液中,在0一10℃反应40min,以87% 产率生成十二烷—5—酮。
二、有机金属化合物与腈反应
腈与格氏试剂反应是合成酮最简便的方法之一,因为格氏试剂不与中间体酮亚 胺加成,副反应较少。 一般而言,分子量较大的脂肪族腈及芳腈反应时产率较好。分子量较小的脂 肪族腈与卤化烷基镁反应生成的酮亚胺可发生多种副反应,因此,酮的产串不高。 但与卤化芳基镁反应尚能以良好产率生成烷基芳基酮。 68% 在Lewis酸催化下,磷叶立德与芳腈反应可生成芳酮。
在三氧化铬存在下,对乙基苯甲酸甲酯被空气氧化成对乙酰基苯甲酸甲酯
在含有Ce(皿)/Ce(1V)和硫酸的Pb—PbO2电解池中,乙苯被氧化成苯乙酮 产率达93%。
2、丙烯的亚甲基氧化
丙烯的亚甲基亦可被氧化成αβ—不饱和酮。常用的氧化剂有铬试剂如三氧化铬—乙 酸、三氧化铬吡啶、PCC、PDC、高碘酸钠、催化量的铬试剂或高锰酸钾/叔丁醇也 可以氧化烯丙位亚甲基,反应具有良好的区域选择性。 室温下,胆固醇乙酸酯用PDC/BuOOH氧化,仅7-亚甲基被选择氧化
三、有机金属化合物与酯反应
格氏试剂与酯的反应是合成叔醇的重要方法,但对于高支链的烷基或具看双邻 位取代的苯基有机镁试剂与酯反应,可停留在酮阶段,在过量的三乙胺存在下,甲 基格氏试剂亦可与酯反应生成酮。 四、有机金属化合物与酰胺反应
氮上末取代的酰胺因其离去基团的离去能力较差,一般难以与有机金属 试剂反应生成酮。若氨基是易离去的基团,则与有机金属试剂在温和的条件 下反应,以良好的产率生成酮。
2、炔烃的氧化
双取代炔烃可被多种氮化剂氧化,成为合成。α—二酮的新方法。常用的氧化 剂有二氧化硒、四氧化钌(只需催化量的四氧化钌作氧的供体,并用次氯酸钠或过 碘酸钠使它再生),DMSO, 臭氧等。
七、硝基烷和卤代烃的氧化 1、硝基烷的氧化
硝基烷氧化生成碳基化合物的反应是一种合成酮的实用方法。硝基烷首 先与碱(如醇钠或氢氧化钠)作用生成氮酸盐,继而在酸存在下,发生分子内氧 化—还原反应生成酮。 下列硝基化合物先用氢氧化钠的甲醇溶液处理,再酸化,以95%的产率得 到相应的酮。 95%
OH NC Cl BCl 3 H2O
OH
O Cl
+
86%
四、酚酯和芳酰胺的重排
酚酮可在三氯化铝存在下由酚与酰氯反应制得。但是,为了避免由于酚铝的形成 而引起的复杂性,更方便的方法是先制得相应的酚酯,继而在Lewis酸催化下重排 生成酚酮。常用的催化剂有三氯化铝、四氯化锡、四氯化钛、二氯化锌、三氟化硼 以及氟化氢、多聚磷酸等。
第三节 通过烃化反应合成酮(略) 第四节 通过加成反应合成酮(略)
第五节 芳香族化合物及烯、炔类化合物的酰化反应 一、芳香族化合物的酰化(Friedel—Crafts反应)
本法应用极广,特别适用于芳基酮的合成。常用的催化剂为Lewis酸,如三氯化 铝、三氯化硼、五氯化锑、四氯化锡、二氯化锌,其活性次序为: AlCl3>BF3>SbCl5>SnCl4>ZnCl2。如α-四氢萘酮的合成:
第八章

氧化反应 还原反应 烃化反应 1,4-加成反应 芳香族化合物及烯、炔化合物的酰化反应 有机金属化合物的酰化及羰化反应 活性甲基、亚甲基化合物的酰化反应 水化及水解反应 重排反应
第一节 氧化反应 仲醇的氧化反应是合成酮的重要方法, 仲醇的氧化可采用多种氧化剂或催化脱氢。 化学氧化法虽是沿用己久的经典方法,但是具有良好选择性能的氧化刑仍不断涌现, 而催化脱氢具有经济、简便的特点,适用于工业生产。 与醛的合成类似,1,2—二酵的裂解氧化及烯烃的臭氧化,可用于酮的合成。 烯烃和炔烃的硼氢化—氧化是由烯、炔合成相同破原子阂的有效方法。 取代芳轻的亚甲基氧化是合成脂肪芳香混合团的有效方法。与此类似,丙烯亚甲 基氧化可以合成不饱和酮。酮的亚甲基氧化及炔烃的氧化均是二酮的重要合成方法。 烯烃的催化氧化是合成相同碳原子酮的新方法。 硝基烷及卤代烷均为易得原料,它们可被多种氧化剂氧化成酮。
二、腈对酚和苯胺的酰化
在Lewis波及质子酸共同存在下,酚和苯胺可用腈进行酰化。反应可能是 先先转化成氯化亚胺(RCN十HCl = RC(CI)=NH),继而对酚进行亲电进攻, 最后水解成酮。 在乙醚中,氯化锌/氯化氢存在下,间苯三酚与乙腈反应,生成的橙黄色 沉淀,经水解.得85%产率的2,4,6—三羟基苯乙酮。
第六节 有机金属化合物的酰化及羰化反应 一、有机金属化合物与酰卤反应
利用格氏试剂与酰卤反应合成酮的方法,在实用上受到一定的限制。因为生成 的酮能进一步与格氏试剂反应,生成副产物叔醇。但是,在氯化亚铜催化下或用四 氢呋喃代替乙醚溶剂,格氏试剂与酰卤在低温下反应,可以得到高产率的酮。 在一78℃将溴化己基镁慢慢加入乙酰氯的四氢呋喃溶液中反应,以93%的产率 生成辛—2—酮。
85%
7、仲醇的催化脱氢 仲醇的催化脱氢可用于制备酮。在催化氢化中使用的许多催化剂可用于醇的催 化脱氢,如铜、镍、锌、钡的盐‘、活性镍、酷酸钯、氯化钌等催化剂。常用环已 烯、乙烯、环己酮、丙酮等作氢的接受体l。 在活性镍催化下,3—胆甾醇与环已固在甲苯中回流,以80%产率生成了3—胆 甾酮。
二、1,2—二醇的氧化
环戊烯的二缩乙二醇二甲醚溶液与乙硼烷的四氢呋喃溶液在室温下反应生成三 环戊基硼烷。在加入少量水后,于100℃通入一氧化碳,反应完成后,用碱性过氧化 氢氧化,即以90%产率生成二环戊基酮。
1,1,2-三甲基丙基硼烷可与两种不同的烯经分别进行硼氢化反应,生成混合 取代的三烃基硼烷。利用此种硼烷进行上述反应时, 1,1,2-三甲基丙基硼烷 具有 不易重排的特点,从而提供了由两种烯烃合成不对称酮的重要方。若烯烃中带有 其他多种官能团如卤素、氰基、酯基等均不受影响。
溴化苯基镁与N-(3-氯苯甲酰)咪唑反应,以94%的产率生成了3-氯二苯甲酮。
N-甲氧基-N-甲基酰胺很容易由酰氯、酰基咪唑或羧酸酐与N-甲氧基-N-甲基氯化 铵反应得到。 它可与有机金属试剂反应先生成稳定的四面体中间体,即使是在有机金 属试剂过量的情况下,也不会进一步加成生成叔醇。
五、有机金属化合物与酸酐反应
三、烯烃的臭氧化及类似的氧化
四、烯、炔的硼氢化-氧化(Brown反应)
五、亚甲基氧化 1、取代芳烃的亚甲基氧化
取代芳烃的亚甲基可被多种试剂氧化成酮。高锰酸钾、重铬酸钾、过氧化叔丁 醇等都是有效的氧化剂。 催化下的空气氧化虽然转化率不高,但具有简便、经济的特点,适用于工业生 产,三氧化铬是常用的催化剂。此外,电化学氧化法也可以把芳烃的亚甲基氧化成 酮。 在五氟苯硒酸催化下,下列化合物被叔丁基过氧化氢定量地氧化成酮
反应要在低温下(-78 C)进行,收率较高。 六、烃基硼烷与一氧化碳反应
在少量水存在下,三经基硼烷可用一氧化碳进行碳基化反应,继而用碱性过 氧化氢氧化,获得高产率的对称酮(80%一90%)。三烃基硼烷首先对一氧化碳进 行亲核进攻,继而与硼原于相联的两个烃基依次发生亲核重排生成三员环中间体, 然后在水存在下开环,氧化后得对称酮。 三烃基硼烷易由烯烃通过硼氢化反应制得,因此,本法可看成是由烯烃与一 氧化碳合成酮的简便方法。
一、仲醇的氧化
1、金属氧化 重铬酸钠(或钾)的稀硫酸溶液,三氧化铬的硫酸水镕液—丙酮体系 (Jones试剂、Collin试剂)、氯铬酸吡啶盐(PCC)、重铬酸吡啶盐(PDC)等
81%
89%
93%
85%
2、 氧气作氧化剂 氧气或空气是最理想的洁净氧化剂,它符合绿色化学的要求。在Cu、Pd等过 渡金后配合物或盐催化下,氧气甚至空气可以把仲醇高产率地氧化成酮,且可以 在水相中进行,
氮酸盐也可用三氯化钛的乙酸铵缓冲溶液分解,反应条件温和。
硝基烷亦可直接用亚硝酸丙酯及亚硝酸钠在二甲亚砜中氧化成酮。此法反应 条件温和产率较高。 2—硝基辛烷与 亚硝酸丙酯及亚硝酸酯在DMSO中反应,生成2—辛酮。
2、卤代烷的氧化
仲卤代烷氧化可生成酮。常用的氧化剂是二甲亚砜。本合成方法特别适用于 α-卤代酮, α-卤代酯及α-卤代酸氧化,对某些仲卤代烷亦得良好结果。若在四氟硼 化银催化下,用二甲亚砜氧化仲卤代烷,可以良好产宰生成酮。
6、仲醇被酮氯化(Oppenauer氧化)
OppenaMer氧化可用于醛及酮的合成,但对后者更为重要。常用的醇铝为叔 丁酵铝、异丙醉铝等。而丙酮、丁酮、环己酮可作为氢的接受体。 上述反应是一个平衡反应,通常采用过量的酮,使反应有利于产物的生成为 了减少醛的缩合副反应,可用惰性稀释剂如苯、甲苯等。由于反应条件温和,广 泛用于甾酮的合成。 在反应中,α,β-不饱和醇可氧化成相应的酮,α,γ—不饱和醇可重排成 α,β-不饱和酮。
采用较高的反应温度和过量的催化剂,均可提高邻位异构体的产率。 芳环上的供 电子取代基使反应活化,吸电子取代基则使反应钝化。
芳胺的酰化衍生物也可在Lewis酸的存在下发生类似的Fries重排反应。
五、烯、炔化合物的酰化
在Lewis酸或质子酸催化下,烯烃能与酰卤、酸酐等发生酰化反应,这是制备多 种不饱和酮的重要方法。由于烯烃易发生聚合等副反应,因而只能生成中等产率的 产物。常用的催化剂有三氯化铝、二氮化锌及四氯化锡,其中以四氯化锡最优。若 用酰氯为酰化剂,反应中间体β-氯代酮有时可以分离出,用碱(如碳酸钠或N,N—二 甲基苯胺等)处理生成烯酮。
除二甲基亚砜外,用硝酸银作氧化剂亦得良好产率的酮。
70%
第二节 还原反应 一、α,β -不饱和酮的选择还原 催化氢化是α,β—不饱和酮选择性还原最常用的方法。由于碳—碳双键比碳 基易于还原,因此,选择适当活性的催化剂和较低的反应温度,即可实现碳— 碳双键的优先还原。常用的催化剂有镍、钯、钌、铑等等,采用络合催化剂可 使反应在均相中进行。近年来出现了一些价格便宜、选择性好、效率高的新催 化剂,如铜—三氧化铝,钯的胺基巯基络合物,双核钯-膦络合物、胶态钯等。 除氢气作为氢供给体外,用醇,甲酸铵也可作为氢供给体。 二烯酮化合物 在胶态钯催化下,室温常压加氢几乎以定量产率选择还原成 酮。
相关文档
最新文档