小学三年级奥数专题十六:简单枚举

合集下载

三年级奥数.计数综合.枚举法(A级).学生版

三年级奥数.计数综合.枚举法(A级).学生版

胖子的枚举法几个人又坐回到自己的座位上,都是唉声叹气,我让他人省点力气,其实这样盲目的试验,反而会导致思维的中断。

接着事情又回到我睡觉前,我们又开始毫无意义的讨论起来。

讨论中总是有人睡过去,但是好在一个人睡觉,其他几个人都能继续思考。

就这样,我们东一个想法,西一个想法,提出来,然后否决掉,一开始说法还很多,后来几个人话就越来越少,时间不知不觉就过去了六七个小时,我们的肚子又开始叫起来。

最后胖子点起一只烟,想了想,对我们说:“不行,咱们这么零散的想办法是很浪费时间的,我们把所有的可能性全部都写出来,然后归纳成几条,之后直接把这条验证,不就行了。

”我点点头,其实说到最后很多的问题我们都在重复的讨论,几个人都进入到一种混乱状态了 胖子在金器铺满的地面上整理出一块石头面,然后写下来几个数字:1、2、3、4,然后说:“我们想想我们现在有几种假设,你们都回忆一下,不要具体的,要大概的方向就行了。

”潘子就道:“最有可能就是有机关。

”胖子在1那个地方写了机关。

然后顺子就说道:“你的想法,可能有东西在影响我们的感觉,比如说心理暗示或者催眠,让我们自己不知不觉的走回来。

”胖子对他道:“不用说这么详细。

”按着在2的后面写了错觉,然后看向我。

我道:“要说理论上,也有可能是空间折叠。

”“你这个不可能,太玄乎了。

”潘子道。

胖子道:“不管,有万分之一地可能性,我们就承认,我们只是列一个备忘录而已。

”说着也写了上去,在3后面写了空间折叠。

然后自己说:“也可能是有鬼。

”说着写了个4,有鬼。

“你这样写出来有什么意义?”潘子不理解的问。

胖子道:“你们念的书多,不懂,我读书少,凡事都必须用笔写下来,但是这样有个好处,比如说有几件事情,你可以一起做,你事先一理就能知道,可以节省不少时间。

咱们不是只有两天了吗?还是得省点,对了,还有5吗?谁还有5?”我看了看这四点,这确实己经是包括量子力学到玄学到心理学到工程学四大都齐了,第五点一时半会儿还真想不出来。

三年级奥数简单枚举

三年级奥数简单枚举

4、简单枚举上图中,整个平面被分成了几个部分?枚举,词典里的意思是“一一列举”顾名思义,“枚举法”就是把所有可能的情况一一列举出来,然后数一下总共有几种情况,虽然枚举法看上去很简单,但当情况复杂时,想要不重漏地枚举出所有情况就有一定难度了,需要同学们有严谨的思维。

对于简单的题目,直接按题意一条条地枚就可以了,由于情况较少,枚举出所有情况还是比较容易的,先来看一道简单的题目。

例题1小明、小红、小亮三个人去看电影,他们买了3个相邻座位的票,他们三人的座位顺序一共有多少种不同的安排方法?分析:如果小明在最左边的话,有几种安排方法?练习1、(1)用0、1、2这三个数字各一次,一共能组成多少个不同的三位数?(2)用3、5、6、7这四个数字各一次,一共能组成多少个不同的三位数?当满足条件的方法数较多时,为了达到不重不漏的目的,往往会按照一定的顺序来枚举,可能是“从前往后”、“从大到小”等等。

例题2(1)老师给了小红14个相同的练习本,如果小红把这些本子全都分给了小李和小高,并且每人都要分到练习本,共有几种不同的分法?(2)老师给了小红14个相同的练习本,如果小红只需要把这些本子分成2堆,又有多少种分法?分析:仔细审题,两个小题之间有什么区别?在例题2中,同样是把练习本分成两部分,第(1)小题中给小李10本,小高4本是一种情况,而给小李4本,小高10本又是另一种情况,但到了第(2)小题里,一堆10本、一堆4本和一堆4本,一堆10本是同一种情况,我们可以说第(1)小题是“有顺序”的情况,而第(2)小题是“无顺序”,在枚举时尤其要注意这一点,究竟什么时候是“有顺序”,什么时候是“无顺序”。

练习2、老师把9颗糖分给阿呆阿瓜两个人,每人都有糖,那么一共有多少种不同的分法?(1)小明买回了一袋糖豆,他数了一下,一共有10个,现在他要把这些糖豆分成3堆,一共有多少种不同的分法?(2)如果小明有两袋糖豆,每袋10个,要把这两袋糖豆分成3堆,每堆最少要有5个,那么一共有多少种不同的分法?分析:(1)本题属于“有顺序”还是“无顺序”的情况?(2)每堆至少有5个,那么先在每堆中放上5个,还剩几个糖豆?练习3、阳阳有12颗巧克力,要把这些巧克力分成3堆,并且一堆里的巧克力不能超过8块,有几种不同的分法?要把一个数分成3份,可以先确定其中一份,于是问题就变为把剩下的部分分成2份的问题了这种简化问题的思想在数学中经常运用,最后来看两个较为复杂的问题。

三年级奥数简单枚举省公开课获奖课件市赛课比赛一等奖课件

三年级奥数简单枚举省公开课获奖课件市赛课比赛一等奖课件
一条铁路,共有10个车站,假如每个起 点站到终点站只用一种车票(中间至少相 隔5个车站),那么这么旳车票共有多少种?
疯狂操练4
1、上海、北京、天津三个城市分别设有一 种飞机场,它们之间通航一共需要多少种 不同旳机票?
1、一条公路上,共有8个站点。假如每个 起点到终点只用一种车票(中间至少相隔3 个车站),那么共有多少种不同旳车票?
简朴枚举
利用枚举法解应用题时,必须注意无
反复、无漏掉,所以必须有顺序、有规 律地进行枚举。关键是要正确分类,注 意一下两点:一是分类要齐全,不能造 成漏掉;二是枚举要清楚,要将每一种 符合条件旳对象都列举出来。
例题1
从小华家到学校有3条路可走,从学校 到文峰公园有4条路可走。从小华家到文峰 公园,有几种不同旳走法?
例题2
一种长方形旳周长是30厘米,假如它 旳长和宽都是整厘米数,那么这个长方形 旳面积有多少种可能值?
1、一种长方形旳周长是22米,假如它 旳长和宽都是整米数,那么这个长方形旳 面积有多少种可能?
3、3个自然数旳乘积是18,问由这么旳3个数 构成旳数组有多少个?(顺序不同算同一 组如1,2,9和2,9,1算同一组)
3、在长江旳某一航线上共有6个码头,假
如每个起点终点只许用一种船票(中间至 少要相隔2个码头),那么这么旳船票共有 多少种?
例题5、
在1-99中,任取两个和不大于100旳数, 共有多少种不同旳取法?
疯狂操练5
1、在两位整数中,十位数字不大于个位数 字旳共有多少个?
2、从1-9这九个数字中,每次取2个数字, 这两个数旳和都必须不小于10,能有多少 种不同旳取法?
3、十把不同旳锁,每把锁都有一把能打开它旳 钥匙。可是这10把钥匙已混在了一起,不懂 得哪把钥匙开哪把锁 。问最多要试多少次

2019-2020年三年级数学奥数讲座枚举法

2019-2020年三年级数学奥数讲座枚举法

2019-2020年三年级数学 奥数讲座 枚举法1. 1. 如图9-19-1,有,有8张卡片,上面分别写着自然数1至8。

从中取出3张,要使这3张卡片上的数字之和为9。

问有多少种不同的取法?。

问有多少种不同的取法?解答:三数之和是9,不考虑顺序。

,不考虑顺序。

1+2+6=91+2+6=91+2+6=9,,1+3+5=91+3+5=9,,2+3+4=9答:有3种不同的取法。

种不同的取法。

2. 2. 从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于1010,共有多,共有多少种不同的取法?少种不同的取法?解答:两数之和大于1010,不考虑顺序。

,不考虑顺序。

,不考虑顺序。

8+78+78+7,,8+68+6,,8+58+5,,8+48+4,,8+3 8+3 7+67+67+6,,7+57+5,,7+4 7+4 6+5 6+5 答:共有9种不同的取法。

种不同的取法。

3. 3. 现在1分、分、22分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?种不同的支付方法?解答:2角3分=23分 5×4+2×1+1×1=23,5×4+1×3=23,5×3+2×4=23,5×3+2×3+1×2=23,5×3+2×2+1×4=23答:一共有5种不同的支付方法。

种不同的支付方法。

4. 4. 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?个,吃完为止,有多少种不同的吃法? 需要考虑吃的顺序不同。

需要考虑吃的顺序不同。

77,5+25+2,,4+34+3,,3+43+4,,3+2+23+2+2,,2+52+5,,2+3+22+3+2,,2+2+3答:有8种不同的吃法。

种不同的吃法。

5.有3个工厂共订300份《吉林日报》,每个工厂最少订99份,最多101份。

最新三年级奥数简单枚举教学提纲

最新三年级奥数简单枚举教学提纲

简单枚举1.从小华家到学校有3条路可以走,从学校到文峰公园有4条路可以走。

从小华家到文峰公园有几种不同的走法?2.从甲地到乙地有3条公路直达,从乙地到丙地有2条铁路直达,从甲地到丙地有多少种不同的走法?3.新华书店有3种不同的英语辅导书、4种不同的数学辅导书在销售,小明想买一本英语辅导书和一本数学辅导书,共有多少种不同的买法?4.明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子,最多可以搭配成多少种不同的装束?5.一个长方形的周长是22米,如果他的长和宽都是整米数,那么这个长方形的面积有多少种可能?6.一个长方形的周长是30厘米,如果它的长和宽都是整厘米数,那么这个长方形的面积有多少种不同的可能?7.把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?8.3个自然数的乘积是18,由这样的3个数所组成的数组有多少个?如(1,2,9)就是其中的一个,而且数组中的数字相同但顺序不同的算作同一数组,如(1,2,9)和(2,9,1)是同一数组。

9.4个小朋友在寒假中相互打一次电话,他们一共打了多少次电话?10.6个小队进行排球比赛,每两队比赛一场,共要进行多少场比赛?11.小芳出席由19人参加的联欢会,散会后每两人都要握一次手,它们一共握了多少次手?12.A,B,C,D,E这5个人一起回答一个问题,结果只有两个人答对了,所有可能的回答情况一共有多少种?13.一条铁路有10个车站。

如果每个起点站到终点站只用一种车票(中间至少相隔5个车站),那么这样的车票共有多少种?14.上海、北京、天津三个城市分别建有一个飞机场,它们之间通航一共需要多少种不同的机票?15.小王准备从青岛、北京、海南、桂林4个城市中选2个去旅游,有多少种不同的选择方法?如果小王想去其中的3个城市,又有多少种不同的选择方法?16.一条公路上共有8个站点,如果每个起点站到终点站只用一种车票(中间至少相隔3个车站),那么共有多少种不同的车票?17.小悦买了一些大福娃和小福娃,一共不到10个,且两种福娃的个数不一样多。

三年级奥数简单枚举

三年级奥数简单枚举

蔚然教育精品班导学案
年级:_ ___ 科目:教师第次课
导学目标与考点、重、难点分析:
运用枚举法解题的关键是要正确分类,要注意以下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

导学内容:
例题1从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?
例题2 用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
思路导航:要使信号不同,要求每一种信号颜色的顺序不同,我们可以把这些信号进行列举:
例题3一个长方形的周长是22米,如果它的长和宽都是整米数,那么这个长方形的面积有多
教务处签字:
年月日。

枚举法和树形图三年级上册数学(共16张PPT)


例2:薇儿准备在未来5天学习钢琴、舞蹈或唱歌,一天只学 习一个课程,相邻两天不相同。她计划第一天学习钢琴,并 且最后一天也学习钢琴,那么一共有多少种学习方案?
课堂练习
艾迪和薇儿两人进行乒乓球赛,规定谁先胜三局谁就会取得 比赛的胜利。那么比赛的过程有多少种可能?
课堂练习
如果一只蚂蚁从一个四棱锥的顶点P出发,沿着这个四棱准 的棱一次不重复的走遍5个顶点即挺会,请问:这只蚂蚁一共 有多少种不同的走法?
为什么要学奥数? 三、锻炼思维能力 二、克服畏难情绪 一、提高数学成绩
课堂要求
专心听讲 主动思考 积极发言 仔细完成作业
从树形图谈起
第一课
01 枚举法
例1:冬冬在一张纸上画了一些图形,如图所示,每个图形 都是由若干条线段连接组成的。请你数一数,纸上一共有多 少条线段?(最外面的大长方形是纸的边框,不算在内)
解析:1357、1358、1368、1468、2468 答:这样的四位数一共有5个
课堂练习
从1~9这9个数码中取出3个,使它们的和是3的倍数,则不同取法有 几种
解析:加法原理 分类枚举 (1)3个数都是3的倍数,有1种情况 (2)3个数除以3都余1,有1种情况 (3)3个数除以3都余2,有1种情况 (4)一个除以3余1,一个除以3余2,一个是3的倍数
P
D
C
A
B
课堂练习
一个四位数,每一位上的数字都是0,1,2中的某一个,并且 相邻的两个数字不相同,一共有多少个满足条件的四位数?
课堂练习
一个三位数,百位数字比十位数字大,十位数字比个位数字 大,个位数字不小于5,那么这样的三位数一共有__________ 个.
课堂练习
如图,ABCDEF是一个正六边形,一只青蛙开始在顶点A处, 它每次可以随意跳到相邻两顶点之一。若在4次内跳到D点, 则停止跳动(例如:A-B-C-D);若4次之内不能跳到D点,则 调完4次也停止跳动(例如:A-B-C-B-A).那么这只青蛙从 开始到停止,则可能出现的不同跳法有多少种?

简单枚举

简单枚举作者:来源:《小天使·三年级数学人教版》2010年第12期在解决《数学广角》中的穿法、排法问题时,我们常常将可能的穿法、排法一一列举出来再计算总数。

这种一一列举的方法就叫枚举法。

枚举法是一种常见的分析问题、解决问题的方法。

下面我们就来看看枚举法在解题中的运用吧!王牌例题1从浩浩家到学校有3条路可以走,从学校到游乐场,有4条路可以走。

浩浩从家经学校到游乐场,有几种不同的走法?为了帮助理解题意,我们可以画出如下示意图。

我们把浩浩的不同走法一一列举如下:第一种走法:家→学校→游乐场第二种走法:家→学校→游乐场第三种走法:家→学校→游乐场第四种走法:家→学校→游乐场第五种走法:家→学校→游乐场第六种走法:家→学校→游乐场第七种走法:家→学校→游乐场第八种走法:家→学校→游乐场第九种走法:家→学校→游乐场第十种走法:家→学校→游乐场第十一种走法:家→学校→游乐场第十二种走法:家→学校→游乐场根据列举可知,从浩浩家经学校到游乐场,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。

答:从浩浩家到游乐场一共有12种不同走法。

技巧点拨在思考分析过程中,有次序、有规律地进行枚举有助于我们理清思路,这样就可以无重复、无遗漏地找出所有走法。

王牌例题2在1~19中,任取两个和小于20的数,共有多少种不同的取法?思路导航按次序枚举:当第一个数取1时,要使两个数的和小于20,另一个数可以是2,3,4,…,18,共17种;当一个数取2时,另一个数可以是3~17,共15种(第一个数取2,另一个数取1的情况与第一个数取1另一个数取2算一种情况);当第一个数取3时,另一个数可以是4~16,共有17+15+13+…+3+1=81(种)。

答:共有81种不同的取法。

技巧点拨分析过程中我们进行分类枚举,即当第一个数分别取1,2,…时,另一个数可以取哪些数(注意不能重复),再将各类情况中符合条件的数的个数相加就得到了答案。

(三年级奥数)枚举法

教师姓名学科数学上课时间年月日---学生姓名年级三年级课题名称枚举法教学目标1、做到不重补漏,把复杂的问题简单化;2、按照一定的规律,特点去枚举;3、从思想上认识到枚举的重要性。

教学重点枚举法教学过程枚举法【课题引入】枚举法是一种常见的分析问题、解决问题的方法。

一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的。

这种分析问题、解决问题的方法,称之为枚举法。

枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。

运用枚举法解题的关键是要正确分类,要注意一下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来。

【例题学习】例1:用数字1、3、4可以组成多少个不同的三位数?【即时练习】1、用0、3、5可以组成多少个不同的三位数?2、用4、7、8这三个数字,可以组成多少个没有重复数字的三位数,它们有哪些?其中最大的数和最小的数各是多少?【例题学习】例2、用0,2,5,9可以组成多少个是5的倍数的三位数?【即时练习】1、从1、2、3、4、5、6这些数中,任取两个数,使其和不能被3整除,则有_______种取法。

2、从l~9这9个数码中取出3个,使它们的和是3的倍数,则不同取法有_______种。

3、小明的两个口袋中各有6张卡片,每张卡片上分别写着1,2,3,……,6。

从这两个口袋中各拿出一张卡片来计算上面所写两数的乘积,那么,其中能被6整除的不同乘积有_____个。

3、从1~8中每次取两个不同的数相加,和大于10的共有多少种取法?【例题学习】例5:甲、乙、丙三个工厂共订300份报纸,每个工厂至少订了99份,至多101份,问:一共有多少种不同的订法?【即时练习】1、四个学生每人做了一张贺年片,放在桌子上,然后每人去拿一张,但不能拿自己做的一张.问:一共有多少种不同的方法?2、一次,齐王与大将田忌赛马.每人有四匹马,分为四等.田忌知道齐王这次比赛马的出场顺序依次为一等,二等,三等,四等,而且还知道这八匹马跑的最快的是齐王的一等马,接着依次为自己的一等,齐王的二等,自己的二等,齐王的三等,自己的三等,齐王的四等,自己的四等.田忌有________种方法安排自己的马的出场顺序,保证自己至少能赢两场比赛.【例题学习】例6:用100元钱购买2元、4元或8元饭票若干张,没有剩钱,共有多少不同的买法?【即时练习】1、一个文具店橡皮每块5角、圆珠笔每支1元、钢笔每支2元5角.小明要在该店花5元5角购买两种文具,他有多少种不同的选择.2、用1元、5元、10元、50元、100元人民币各一张,20元人民币两张,在不找钱的情况下,最多可以支付种不同的款额。

三年级思维训练-简单枚举


1,一个长方形的周长是30厘米,如果它的长和宽都是整厘米 数,那么这个长方形的面积有多少种可能值?
7
2,把15个玻璃球分成数量不同的4堆,共有多少种不同的分法? 6
3,3个自然数的乘积是18,问由这样的3个数所组成的数组有
多少个?如(1,2,9)就是其中的一个,而且数组中数字相
同但顺序不同的算作同一数组,如(1,2,9)和(2,9,1)
简单枚举
三年级·思维训练
专题解析
枚举是一种常见的分析问题、解决问题的方 法。一般地,要根据问题要求,一一列举问题 解答。运用枚举法解应用题时,必须注意无重 复、无遗漏,因此必须有次序、有规律地进行 枚举。
运用枚举法解题的关键是要正确分类,要注 意以下两点:一是分类要全,不能造成遗漏; 二是枚举要清,要将每一个符合条件的对象都 列举出来。
24
王牌例题②
一个长方形的周长是22米,如果它的长和宽都是整米数, 那么这个长方形的面积有多少种可能?
长(米) 10 9 8 7 6 宽(米) 1 2 3 4 5
面积(米^2) 10 18 24 28 30
由于长方形的周长是22米,可知它的长与宽之和为11米。下面列举出符 合这个条件的各种长方形
举一反三②
枚举法(列举法)是小学数学非 常重要的解题方法之一
三年级:认识枚举法(列举法),会进行简单的列举。 四年级:寻找列举的规律,并且尝试用列举法解决问题。 五年级:尝试有限制条件的列举,熟练掌握列举的规律。 六年级:认识列举背后的两大原理和排列数、组合数。
王牌例题①
从小华家到学校有3条路可走,从学校到文峰公园有4条
举一反三③
1,6个小队进行排球比赛,每两队比赛一场,共要进行多少次 比赛?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学三年级奥数专题十六:简单枚举
专题简析:一是分类要全,不能造成遗漏;二是枚举要清,必须有次序、有规律地进行枚举。

例题1:从小华家到学校有3条路可走,从学校到文峰公园有4条路可走。

从小华家到文峰公园,有几种不同的走法?
思路:为了帮助理解题意,可以画出示意图。

根据图中可知,从小明家经学校到文峰公园,走①路有4种不同走法,走②路有4种不同走法,走③路也有4种不同走法,共有4×3=12种不同走法。

试一试1:明明有2件不同的上衣,3条不同的裤子,4双不同的鞋子。

最多可搭配成多少种不同的装束?例题2:用红、绿、黄三种信号灯组成一种信号,可以组成多少种不同的信号?
思路:组成的信号有:红绿黄、红黄绿;绿红黄、绿黄红;黄红绿、黄绿红等6种。

可以把组成的信号看成是三个位置:第1个位置有3种选择,第2个位置有2种选择,第3个位置就只有1中选择。

所以排列方法一共有:3×2×1=6(种)
试一试2:用数字1、2、3,可以组成多少个不同的三位数?分别是哪几个数?
例题3:有4位小朋友,寒假中互相通一次电话,他们一共打了多少次电话?
思路1:每个小朋友都节打电话3次。

但两人之间只需打1次电话,互打就重复了。

因此一共打3×4÷2=6(次)
思路2:第1个小朋友打了3个电话,第2个小朋友打了2个电话,第3个小朋友打了1个电话,第4个小朋友不需要打电话。

因此一共打3+2+1=6(次)
试一试3:
(1)6个小队进行排球比赛,每两队比赛一场,共要进行多少次比赛?
(2)暑假里,三位小朋友互发一封问候邮件,他们一共发了多少封邮件?。

相关文档
最新文档