一元一次方程 优秀教案设计

合集下载

《解一元一次方程》数学教案精选3篇

《解一元一次方程》数学教案精选3篇

《解一元一次方程》数学教案精选3篇.3 解一元一次方程篇一教学目标1.使学生掌握含有以常数为分母的一元一次方程的解法;2.培养学生观察、分析、归纳及概括的能力,加强他们的运算能力。

教学重点:含有以常数为分母的一元一次方程的解法。

教学难点:正确地去分母。

(一)情境创设:与书同(二)探索活动由情景问题入手,引导学生审清题意,根据等量关系:学生总数的+学生总数的+学生总数的+3=学生总数列出方程。

即设毕达哥拉斯的学生有x名,想一想由题意得+++3=x.学生独立思考问题,尝试解方程,交流自己的解法,相互加以比较。

思考: (1)怎样才能将它化成上节课中所学的方程的类型?(去分母)(2)如何去分母?(方程的每一项都乘以分母的最小公倍数)(三)自学例题1、解方程-=-1解:(本题应如何去分母?学生答)去分母,得4(2x-1)-(10x+1)=3(2x+1)-12,去括号,得移项,得合并同类项,得 -8x=-4,系数化1,得 x= (1)为了去分母,方程两边应乘以什么数? .(2)去分母应注意什么? .例2、解方程=+1 例 3、(2x-5)= (x-3)- 去分母时须注意:(1)(2)不要漏乘没有分母的项;(3)分数线有括号作用,去掉分母后,若分子是多项式,要加括号,视多项式为一整体。

建议进行专项训练,如,-乘以6,8……例4、-=3总结:解方程的一般步骤:1、去分母;2、去括号;3、移项;4、合并同类项;5、系数化为1(四)、教学小结:首先,应让学生思考以下问题,并回答:1.形式上比较复杂的一元一次方程是怎样求解的?2.它的解法的主要思路是什么?3.它的解法的主要步骤是什么?在计算或变形时,要养成良好的教学习惯,注意书写格式的规范性,避免在去分母,去括号、移项时易犯的错误。

.3 解一元一次方程篇二4.2 解一元一次方程的算法(三)教学目标1.在具体情景中建立方程模型。

2.能准确应用去括号法则解一元一次方程。

数学《一元一次方程》教学设计(优秀3篇)

数学《一元一次方程》教学设计(优秀3篇)

数学《一元一次方程》教学设计(优秀3篇)随着时光的流逝,新的一个学期又开始了,为了更好的完成新学期的教育教学工作,使以后的工作有目的、有计划、有组织的顺利的进行,这次帅气的小编为您整理了数学《一元一次方程》教学设计(优秀3篇),希望大家可以喜欢并分享出去。

教学目标:篇一知识与技能:理解有关概念:方程,一元一次方程,方程的解,体会用方程来表示数量关系的优越性。

过程与方法:能将实际问题抽象为数学问题,并会找相等关系来列方程。

情感与态度:增强应用数学的意识,激发学习数学的热情。

教学重点:从实际问题中寻找相等关系。

教学难点:从实际问题中寻找相等关系。

学习路线:篇二1、阅读课本。

2、完成以下学习任务:(1)章前图中的汽车匀速行驶途经王家庄、青山、秀水三地,时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米。

求王家庄到翠湖的路程?①列算式用算术方法解决这个实际问题:____________________②用方程来解决这个实际问题:先画示意图:再找相等关系来列方程:(小组交流,讨论多种方法)(2)方程的概念:___________________________判断以下式子哪些是方程?是的画3+1=4; ;(3)根据下列问题列方程:①用一根长24cm的铁丝围成一个正方形,设正方形的边长是x cm,则可列方程:________②一台计算机已使用1700小时,预计每月再使用150小时,经过x 月这台计算机的使用时间达到规定的检修时间2450小时,则可列方程:____________________③某校女生占全体学生数的52℅,比男生多80人,设这个学校有x 名学生,则可列方程:___________________④课本的三道练习题:(完成后小组批改)(4)一元一次方程的概念:___________________________注意:是整式方程。

(5)什么叫做解方程:____________________________(6)什么叫做方程的解?__________________________(7)括号里的数( =3,=4,=-4)是方程的解有____________归纳:设未知数列方程实际问题一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇

七年级数学一元一次方程的教案推荐7篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!七年级数学一元一次方程的教案推荐7篇本文将为大家推荐七年级数学一元一次方程的教案,共计7篇。

《解一元一次方程》教案优秀7篇

《解一元一次方程》教案优秀7篇

《解一元一次方程》教案优秀7篇元一次方程篇一一元一次方程的复习复习目标:(1)了解方程、一元一次方程以及方程的解等基本概念。

(2)会解一元一次方程。

(3)会根据具体问题中的数量关系列出一元一次方程并求解。

重点、难点:1. 重点:一元一次方程及方程的解的基本概念。

一元一次方程的解法。

会用一元一次方程解决实际问题。

2. 难点:一元一次方程的解法的灵活应用。

寻找实际问题中的等量关系。

【典型例题】例1.分析:明确一元一次方程的概念。

方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

在这里特别注意:未知数的次数及系数。

这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

解:例2.分析:此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。

(2)方程的解,即使方程左右两边相等的未知数的值。

此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

解:将m=1代入关于x的方程,得:例3.解:注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

例4.分析:此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

解:例5.分析:此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

解:注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

解:例6. 已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

《一元一次方程》的优秀教案(精选9篇)

《一元一次方程》的优秀教案(精选9篇)

《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。

数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。

进一步发展符号意识。

2.通过一元一次方程的学习,体会方程模型思想和化归思想。

解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。

经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。

情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。

教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。

教学难点分析实际问题中的相等关系,列出方程。

教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。

出示问题(幻灯片)。

学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。

教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。

本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。

(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。

通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。

活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。

一元一次方程教案(通用14篇)

一元一次方程教案(通用14篇)

一元一次方程教案(通用14篇)一元一次方程篇1一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。

2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。

(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。

3、情感态度与价值观:通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。

三、重难点与关键1、重点:经历探索具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。

2、难点:以上重点也是难点3、关键:明确问题中的已知量与未知量间的关系,寻找等量关系。

四、教具准备:投影仪,每人一根质地均匀的直尺,一些相同的棋了和一个支架。

五、教学过程:(一)活动1一种商品售价为2.2元件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品n件,讨论下面问题:这个人买了n件商品需要多少元?教师活动:(1)把学生每四人分成一组,进行合作学习,并参入学生中一起探究。

(2)教师对学生在发表解法时存在的问题加以指正。

学生活动:(1)分组后对活动一的问题展开讨论,探究解决问题的方法。

(2)学生派代表上黑板板演,并发表解法。

解:2.2nn1002.2100+2(n-100)n100问题转换:一种商品售价为2.2元/件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品共花了n元,讨论下面的问题:(1)这个人买这种商品多少件?(2)如果这个人买这种商品的件数恰是0.48n,那么n的值是多少?教师活动:同上学生活动:同上解:(1)n220100+n220(2)=0.48nn=0100+=0.48nn=500(二)活动2:本活动课前布置学生做好活动前的准备工作:1、准备一根质地均匀的直尺,一些相同的棋子和一个支架。

一元一次方程教案最新7篇

一元一次方程教案最新7篇

一元一次方程教案最新7篇元一次方程教学设计篇一一、教材分析1、教材地位和作用本节课是义务教育课程标准实验教科书数学六年级上册第五章《一元一次方程》中第一节课的内容。

是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。

并在前一章刚学过整式的概念及其运算的基础上,本节课将带领学生继续学习方程、一元一次方程等内容。

要求教师帮助学生在现实情境中,通过对多种实际问题的分析,感受方程作为刻画现实世界的模型的意义,建立方程归纳得出一元一次方程的概念并用尝试检验法来求解,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。

2、教学目标综上分析及教学大纲要求,本课时教学目标制定如下:⒈.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义⒈.会根据简单数量关系列方程,通过观察、归纳一元一次方程的概念⒈.体会解决问题的一种重要的思想方法----尝试检验法⒈.回顾理解等式的两个性质,并初步学会利用等式的两个性质解一元一次方程3、教学重点和难点重点:一元一次方程的概念和用尝试检验法求方程的解难点:利用等式的两个性质解一元一次方程二、教法与学法分析:教法方法与手段:本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。

从学生熟悉的实际问题开始,将实际问题“数学化”建立方程模型。

采用教师引导,学生自主探索、观察、归纳的教学方式。

利用多媒体和天平演示等教学设备辅助教学,充分调动学生的积极性。

学法指导:根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。

通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考,探索情境中的所包含的数量关系,学生在经历“建立方程模型”这一数学化的过程后,理解学习方程和一元一次方程的意义,培养学生抽象概括等能力。

一元一次方程教案优秀7篇

一元一次方程教案优秀7篇

一元一次方程教案优秀7篇元一次方程教案篇一一、背景与意义分析本课安排在第1章有理数之后,属于《全日制义务教育数学课程标准(实验稿)中的数与代数领域。

方程有悠久的历史,它随着实践需要而产生,被广泛应用。

从数学科学本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展。

从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础。

本课中引出了方程、一元一次方程等基本概念,并且对根据实际问题中的数量关系,设未知数,列出一元一次方程的分析问题过程进行了归纳。

以方程为工具分析问题、解决问题,即建立方程模型是全章的重点,同时也是难点。

分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章主线,而对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的。

列方程中蕴涵的数学建模思想是本课始终渗透的主要数学思想。

在小学阶段,已学习了用算术方法解应用题,还学习了最简单的方程。

本小节先通过一个具体行程问题,引导学生尝试如何用算术方法解决它,然后再一步一步引导学生列出含有未知数的式子表示有关的量,并进一步依据相等关系列出含有未知数的等式方程。

这样安排目的在于突出方程的根本特征,引出方程的定义,并使学生认识到方程是最方便、更有力的数学工具,从算术方法到代数方法是数学的进步。

算术表示用算术方法进行计算的程序,列算式是依据问题中的数量关系,算术中只能含已知数而不能含未知数。

列方程也是依据问题中的数量关系(特别是相等关系),它打破了列算式时只能用已知数的限制,方程中可以根据需要含有相关的已知数和未知数,未知数进入式子是新的`突破。

正因如此,一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性。

二、学习与导学目标1、知识积累与疏导:通过现实生活中的例子,体会到方程的意义,领悟一元一次方程的定义,会进行简单的辨别。

2、技能掌握与指导:能根据具体问题中的数量关系,列出方程,感悟到方程是刻画现实世界的一个有效模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环节 二: 学习 新知
如果设王家庄到翠湖的路程为 x 千米,那么王家庄距青山 千米,王
家庄距秀水 千米.
2、教师引导学生寻找相等关系,列出方程.
问题 1:题目中的“汽车匀速行驶”是什么意思?
问题 2:汽车在王家庄至青山这段路上行驶的速度该怎样表示:根据车速相等,你能列出方程吗?
这样安排 的目的是所 有的学生都 有独立思考 的时间和合 作交流的时 间。
环节 四: 初步 应用 课堂 练习
环节 五: 课堂 小结
后几节课中再来学习. 2、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,
可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨 论两种方法的优缺点,然后向全班汇报.
设计意图
培养学生读 图的能力和 思维的广阔 性。
问题 2:你会用算术方法求出王家庄到翠湖的距离吗?不妨试试列算 式.(当学生列出不同算式时,应让他们说明每个式子的含义)
这样既可以
教师可以在学生回答的基础上做回顾小结:
复习小学的
1、行程问题:路程=速度×时间;
算术方法,
2、从已知的信息中可以求出汽车的速度;
又为后面与
3、从路程的角度可以列出不同的算式:
方程的比较
50 70 15 10 70 230
15 13
50 70 13 10 50 230
15 13
打下伏笔。 提出问题:
问题 3:能否用方程的知识来解决这个问题呢?
引出新课
1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.
教师根据学生的回答情况进行分析,如:
依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方
程:
x 50 x 70 ,
3
5
依据“王家庄至青山路段的车速=青山至秀水路段的车速”
可列方程: x 50 50 70
3
2
渗透列方程 解决实际问 题的思考程 序。 理解题意是 寻找相等的 关系的前 提。 考虑到学生 寻找关系的 难度,教师 在此处有意 加以引导。
用算术方法列算式:只用已知数,表示计算程序,依据是问题中的数量 关系,要先找到切入点,多采用逆向思维,对于较复杂的问题,往往会让人 无从下手。
用代数方法列方程:既含有已知数,又含有用字母表示的未知数,有了 这个未知数,问题中的已知量与未知量之间的关系就很容易用含有这个未知 数的式子表示,再用两种不同方法表示同一个量,用等号连接,便得到了方 程,这是一种顺向思维,解决问题轻松自然. 3、让学生用列算式方法及列方程方法解下列问题,后小组内交流。
教学 环节
环节 一: 情境 引入
教学活动
让学生观察章前图,提出教科收第 79 页的问题。引导学生思考: 问题 1:从图中你能获得哪些信息?(必要时可以提示学生从时间、路 程、速度、四地的排列顺序等方面去考虑。) 让学生回答:(1)根据图中的时间表,汽车从王家庄行驶到青山用了 多少时间?青山到秀水呢? (2)青山与翠湖、秀水到翠湖的距离分别是多少? (3)本问题要求什么? 同进出现下图:
x 60; x x 120 3 35
依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:
5
2

5
,再列出方程
x
=60
12 6
3 5
6
说明 1:用两个不同方法表示车速,便得到方程.
说明 2:要求出王家庄到翠湖的路程,只要解出方程中的 x 即可,我们在以
问题的开放 性,一题多 解,有利于 学生获得更 多体验,培 养学生思维 的发散性。
§3.1.1 一元一次方程第一课时
【课题】: 一元一次方程 【设计与执教者】:开发区中学,罗树淼,邮箱:Luoshumiao@ 【学情分析】:方程是刻画现实生活的有效数学模型,方程是应用广泛的数学工具,一元 一次方程是学生最先接触的最简单的整式方程,是所有代数方程的基础,一般地,解任何 一个代数方程(组)时最终都要化归为一元一次方程来解,所以一开始就让学生学习好一 元一次方程具有重要意义.学生已经在小学学习了简易方程及解法,学习了用字母表示运算 律、表示几何图形的周长、面积、体积,还学习了用字母表示简单的等量关系,有部分学 生还学习过列方程解应用题,这为学习好一元一次方程赋予了准备,这对学习这节课有很 大的帮助。这班学生大部分已能熟练准确地解简易方程,并对列算式解答各类应用题的能 力较强,有超过 30%的学生有用算术解应用题很方便很便捷的体会,但用字母表示等量关 系还是模糊的,不够明晰的,对列方程解应用题是否方便是不明确的,所以必须要让学生 体会到通过列方程解决实际问题是一种更为简捷的方法。 【教学目标】: (1)知识目标:会列代数式并理解所列式子的意义,理解问题中的相等关系,了解等式、 方程的概念,学生会设未知数并正确列出方程. (2)过程与方法目标:通过处理实际问题,初步学会如何寻找问题中的相等关系,通过如 何用两种不同方法表示同一个量,掌握列方程的方法. (3)情感与能力目标:让学生体验从算术方法到代数方法是一种进步,感受方程作为刻画 现实世界有效模型的意义,体验到列方程并不困难,鼓励学生进行观察思考,发展合作交流 的意识和能力,培养学生获取信息,分析问题,处理问题的能力. 【教学重点】:正确列出方程. 【教学难点】: 让学生体验到列方程不困难,从而建立解决实际问题由从算术方法转变为 代数方法的意识. 【教学突破点】: 通过举一反三,一题多解,比较对比,交流总结,取得突破。 【教法、学法设计】:合作探究,获得体验,讲授、练习相结合。 【课前准备】:幻灯片,练习卷 【教学过程设计】:
问题:某班 48 名同学去湖上划船,一共乘坐 10 条船,大船坐 5 人, 小船 坐 3 人,正好全部坐满,问大船、小船各有几条?
环节 三: 举一 反三 讨论 交流
1、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是
哪个相等关系?、
建议按以下的顺序进行:!
(1)学生独立思考;
(2)小组合作交流;
(3)全班交流.
如果直接设元,还可列方程: x 70 60 5
如果间接设元,设王家庄到青山的路程为 x 千米,那么可以列方程:
相关文档
最新文档