组合公式及证明
排列组合公式排列组合公式

推论
• 方程x1+x2+…+xn=r 的非负整数解的个数。 • n≤r时,此方程的正整数解的个数 • n元集合的r-可重组合数,要求每个元素至少
出现一次。 • 正整数r的n-长有序分拆的个数 • 求x1+x2+x3+x4=20的整数解的数目,其中x1 ≥
3, x2 ≥ 1,x3 ≥ 0,x4 ≥ 5。
排列组合公式排列组合公式
有约束条件的排列:引例
• 用两面红旗、三面黄旗依次悬挂在一根旗杆 上,问可以组成多少种不同的标志?
排列组合公式排列组合公式
5、有约束条件的排列
• 设有k个元素a1,a2,…,ak,由它们组成一 个n-长的排列,其中对1≤i≤k,ai出现的次数 为ni,n1+n2 +… +nk=n,求排列的总数。
。
(2x13x25x3)6
x13x2 x32
(x1x2 xr)n
项,其中
n n1 1, nn 22, ,n r为 nrn非负 n1整 n2n 数 nrx1n1x2n2 xrnr
排列组合公式排列组合公式
例题
• 数1400有多少个正因数? • 1400=23 × 52 × 7 • (3+1)(2+1)(1+1)=24
排列组合公式排列组合公式
多边形
排列组合公式排列组合公式
例题
• 对角线的条数为C(10,2)-10=45-10=35 • 任选两条对角线,可能相交在多边形内部,可能
交点为多边形的顶点,可能无交点(交点在多边 形外) • 任选四个顶点,对应一个交点,每个对角线分成 两段 • 每个对角线是一段 • 35+C(10,4) × 2=455
排列组合的数学公式

排列组合的数学公式排列组合的数学公式1. 排列及计算公式从n 个不同元素中,任取m(m≤n) 个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m 个宝鸡博瀚教育元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m) 表示.p(n,m)=n(n-1)(n- 2) ...... (n -m+1)= n!/(n-m)!( 规定0!=1).2. 组合及计算公式从n 个不同元素中,任取m(m≤n) 个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n) 个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3. 其他排列与组合公式从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n 个元素被分成k 类,每类的个数分别是n1,n2,...nk 这n 个元素的全排列数为n!/(n1!*n2!*...*nk!).k 类元素, 每类的个数无限, 从中取出m 个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n×(n-1)(n-m+1);Pnm=n!/(n-m)!(注:是阶乘符号);Pnn(两个n 分别为上标和下标) =n!;0!=1;Pn1(n 为下标1 为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n 分别为上标和下标) =1 ;Cn1(n 为下标 1 为上标)=n;Cnm=Cnn-m 排列组合的数学解题技巧1. 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
组合与组合数公式

解:(1) C83 56 ⑵
⑶
C
3 7
35
C72 21
我们发现:
C83
C72
C
3 7
为什么呢
我们可以这样解释:从口袋内的 8个球中所取出的3个球,可以分为 两类:一类含有1个黑球,一类不含 有黑球.因此根据分类计数原理, 上述等式成立.
从a1, a2 , a3,, an1这n 1个不同元素中, 每次取出m个元素。 (1)可以有多少个不同的组合? (2)在这些组合里有多少个是含有a1的? (3)在这些组合里有多少个是不含有a1的? (4)从上面的结果可以得到一个怎样的公式?
推广:
从 n个不同元素中取出 m个元素的每一个 组合,与剩下的n-m个元素的每一个组合一一 对应,所以从 n个不同元素中取出 m个元素 的组合数,等于从这n 个元素中取出n-m 个元 素的组合数,即
c c m n
nm n
组合数的两个性质
定理1:
Cmn
Cnm n
.
证明: Cmn m(! nn!m)!,
例5、6本不同的书,按下列要求各有多少种不同的分 法:
(1)分给甲、乙、丙三人,每人2本; (2)分为三份,每份2本; (3)分为三份,一份1本,一份2本,一份3本: (4)分给甲、乙、丙三人,一人1本,一人2 本,一人 3本。
例6、某省的福利彩票中,不考虑次序的7个数码组 成一注,7个数码中没有重复,每一个数码都选自 数码1,2,…,36,如果电视直播公开摇奖时只有 一个大奖,计算:
a a a 推广:从
1,
2,
n1这n+1个不同的元素中,
a c a a a a a 取出m个元素的组合数
一类含 ,一1类不含
组合数递推公式应用

组合数递推公式应用一、组合数的定义。
从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C_n^m,其计算公式为:C_n^m=(n!)/(m!(n - m)!)二、组合数递推公式。
1. 递推公式。
- C_n^m = C_n - 1^m+C_n - 1^m - 1- 推导过程:- 考虑从n个元素中选m个元素的组合情况。
我们可以将这n个元素分成两类,一类是特定的一个元素,设为a,另一类是剩下的n - 1个元素。
- 从n个元素中选m个元素的组合可以分成两种情况:- 不包含元素a的组合,其个数就是从n - 1个元素中选m个元素的组合数,即C_n - 1^m。
- 包含元素a的组合,那么我们只需要从剩下的n - 1个元素中再选m - 1个元素就可以了,其个数为C_n - 1^m - 1。
- 所以C_n^m = C_n - 1^m+C_n - 1^m - 1。
2. 应用场景。
- 计算组合数的值。
- 当n和m较大时,直接用组合数的定义公式计算可能会涉及到较大数的阶乘运算,容易造成计算复杂甚至溢出。
而利用递推公式可以逐步计算组合数。
- 例如,计算C_5^3:- 根据递推公式C_5^3 = C_4^3+C_4^2。
- 计算C_4^3=(4!)/(3!(4 - 3)!)=(4!)/(3!1!)=4。
- 计算C_4^2=(4!)/(2!(4 - 2)!)=(4×3)/(2×1)=6。
- 所以C_5^3 = 4 + 6=10。
- 证明组合恒等式。
- 许多组合恒等式可以通过组合数递推公式来证明。
- 例如,证明C_n^m = C_n^ {n - m}。
- 我们可以用数学归纳法,当n=m时,C_n^m = C_n^ {n - m}=1成立。
- 假设当n = k时,C_k^m = C_k^ {k - m}成立。
- 当n=k + 1时,根据递推公式:- C_k+1^m=C_k^m + C_k^m - 1。
组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧前言组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来.1. 利用组合公式证明组合公式:mn C =n!!n m m (-)!例1. 求证:m mn C =n 11m n C --分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式代入,经过简化比较,等号两边相等即可.证:∵ m mn C =m n!!n m m (-)!…11m n C --=n n !1!n m m (-1)(-)(-)!=n n !m 1!n m m m (-1)(-)(-)!=m n!!n m m (-)!∴ m mn C =n --11m n C .技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取.2. 利用组合数性质证明组合数的基本性质:(1)m n C =n mnC -(2)1mn C +=mn C +1m nC -(3)k kn C =n k 11n C --(4)++...+=012n 2nn n n n C C C C?-+-+...+(-1)=00123n nn n n n n C C C C C (5) 例2:求证:-++3...+n =n 123n122n n n n n C C C C分析:等式左边各项组合数的系数与该项组合数上标相等,且各项上标是递增加1的,由此我们联想到组合数的基本性质:kk n C =n k 11n C -- ,利用它可以将各项组合数的系数化为相等,再利用性质++...+=012n 2n n n n n C C C C 可得到证明.证:由k kn C =n k 11n C -- 得123n2n n n n C C C C ++3...+n=012n 11111n n n n n n n C C C C -----++...+n =n (012n 11111n n n n C C C C -----++...+) =nn 12-.、例3.求证:012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=分析: 观察到,等式左边各项的组合数的上标和下标存在联系:上标+m =下标,而且各项下标是递增+1的.由此我们想到性质(2),将左边自第二项各项裂项相消,然后整理而得到求证.证:由性质(2)可得im i 1C ++=i m i C ++i 1m i C -+ (i ∈N )即im i C +=i m i 1C ++-i 1m i C -+令i =1,2,…,k -1,并将这k -1个等式相加,得12k 1m 1m 2m k 1C C C -+++-++...+=1021k 1k 2m 2m 1m m m k m k C C C C C C --+++3+2++-1-+-+...+-—=-0m 1C ++k 1m k C -+ =-0m C +k 1m k C -+∴012k 1k 1m m 1m 2m k 1m k C C C C C --+++-++++...+=.技巧:例2和例3的证明分别利用性质(3)(5)、(2)此方法的技巧关键在于观察,分析各项组合数存在的联系,读者应在平时实践做题总结,把它们对号入座,什么样的联系用什么样的性质来解决.3. 利用二项式定理证明我们都知道二项式定理:n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++,对于某些比较特殊的组合恒等式可以用它来证明,下面以两个例子说明3.1.直接代值;例4.求证:(1)-1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C (2)---1--++...+(-1)+(-1)=n n 11n 22n n 1nn n n 22221C C C 分析:以上两题左边的各项组合数都是以 i n i in a b C - 的形式出现,这样自然会联想到二项式定理.证:设 n n 1n 2n 2n 1n n n n n a b a a b a b ab b C C C -1-2--1(+)=+++...++ ① ⑴ 令a =1,b =3,代入①,得 -1-+)=1+3+3+...+3+3n 122n n 1n n n n (13C C C 即, -1-1+3+3+...+3+3=122n n 1n 2n n n n 2C C C(2) 令a =2,b =-1,代入①,得n n n 11n-22n 1n 1n n n n 121C C C ---(2-1)=2-2+2+...+(-)+(-)即,---1--++...+(-1)+(-1)=n n 11n 22n n 1n n n n 22221C C C .技巧:此方法的关键在于代值,在一般情况,a ,b 值都不会很大,一般都是0, 1,-1,2,-2 , 3,—3这些数,而且a ,b 值与恒等式右边也有必然的联系,如上题中1+3=22,2-1=1,在做题的时候要抓住这点.;3. 2.求导代值例5.求证: -+3+...+(-1)=(-1)23n n 2n n n 212nn n n 2C C C (n ≧2) 分析:观察左边各项组合数的系数发现不可以直接运用二项式定理,但系数也有一定的规律,系数都是i(i-1) i=2,3,…n 我们又知道(x i )’’=i(i-1)x i-2 由此我们想到了求导的方法.证:对n 0122n n n n n n x x x x C C C C (1+)=+++...+ 两边求二阶导数,得n 223n n 2n n n n n 1x 212x n n x C C C --(-1)(+)=+3+...+(-1)令x=1得 -+3+...+(-1)=(-1)23n n 2n n n 212n n n n 2C C C (n ≧2) 技巧:此方法证明组合恒等式的步骤是,先对恒等式na x (+)=i 1mnn i i C ax -=∑ 两边对x 求一阶或二阶导数,然后适当选取x 的值代入.4. 比较系数法·比较系数法主要利用二项式定理中两边多项式相等的充要条件为同次幂的系数相等加以证明.例6.求证:2222++)+()+()+...+()=012m m 1m 22(n nn n C C C C C (范德蒙恒等式)分析:本题若考虑上面所讲和方法来证明是比较困难的,注意到等式左边各项恰是二项展开式中各项二项式系数的平方,考虑二项展开式 (1+)n x =+0n C ++...+122n nn n n x x x C C C 和(1+)=+++...+n 012n n n n n 2n 1111x x x xC C C C 这两个展开式乘积中常数项且好式是 2222++)+()+()+...+()012m m 1m 2(n n C C C C证:∵n 0122n n n n n n x x x x C C C C (1+)=+++...+ (1+)=+++...+n 012n n nn n 2n 1111x x x xC C C C ∴n1x (1)n x+(1+)=(+++...+0122n n n nn n x x x C C C C ) (+++...+012n n nn n 2n 111x x xC C C C ) 又有,n1x (1)n x+(1+)=2nn(1+x)x ,比较两边的常数项,左边常数项为2222++)+()+()+...+()012m m 1m 2(n n C C C C右边的常数项为2nn C ,根据二项展开式中对应项的唯一性得 2222++)+()+()+...+()=012m m 1m 22(n n n n C C C C C技巧:此方法关键是适当地选择一个已知的恒等式,然后比较两边x 同次幂的系数.当然,已知恒等式的选择不是唯一的,例5也可以选择已知恒等式 n 2x (1)(1)n nx x +=+(1+) ,只须比较恒等式中两边含有n x 的系数即可得证,证明留给读者.5. 利用数列求和方法证明回到例2,除了利用组合数的性质,我们还可以有其他方法.观察,恒等式左边的各项组合数的系数为等差数列,现在我们仿照求和公式(1)12 (2)n n n -+++=的证明来证明例2 证:设123nn n n n s=C 2C 3C ...n C +++ ① 则n n-121n n n n s=n C n-1)C ...2C C +(++ 01n-2n-1n n n n =n C n-1)C ...2C C +(++ ②:①+②得01n-1nn n n n 2s=n C C ...n C C n +++n 01n-1nn n n n =n(C C ...C C )+++=n 2n∴ 12n s n -=技巧:此方法的证明有一定的特殊性,分析等式中组合数系数的变化规律尤其重要,知识的迁移在此方法是一个很好的见证.6. 利用数学归纳法证明我们都知道数学归纳法,在证明数列的题目中,我们就体会了数学归纳法的好处,只要按照数学归纳法的两个步骤进行就可以了.那么,组合恒等式的证明可不可以用数学归纳法来证明呢看下面的一个例题(例7.已知{n a }是任意的等差数列,且n ≧2,求证:123n n+1a -a +a -...+(-1)a +(-1)a =0012n-1n-1nn n n n n n C C C C C分析:由于本题恒等式左边的各项组合数系数是一个不确定的等差数列,用上面的方法处理就比较困难,又因为等式含有数列,我们不妨用数学归纳法试试.证:i) 当n =2时,因为2132a a a a -=-所以12320a a a -+=,故等式成立,ii) 假设,当n =k (k ≧2)时等式成立,即对任何等差数列{n a },有,123k k+1a -a +a -...+(-1)a +(-1)a =0012k-1k-1kk k k k k k C C C C C ① 则当n =k +1时,利用组合数性质,有+1+1+2+13+1k +1k+2a -a +a -...+(-1)a +(-1)a 012k k k k +111+1k k k k k C C C C C123-+1k +1k+2=a -(+)a +(+)a -... +(-1)(+)a +(-1)a 01021k k k 1k k k k k k k k k k C C C C C C C C 123k +1--234k +1k +2=a -a +a -...+(1)a -a -a +a -...+(1)a +(1)a 012k k 012k 1k 1k k[-][--]k k k k k k k k k C C C C C C C C C[因为根据归纳假设,当n =k 时,对任意等差数列12k 123k 2a a a a a a ++,,...,与,,①式都成立,所以上式右端的两个方括号都等于零.于是我们证明了当n =k +1时等式也成立,根据(1)和(2)可知,等式对n ≧2的任何自然数都成立.技巧:用本方法证明的思路清晰,只须分两步进行即可,但归纳法的关键是由“假设n =k 成立,推导到n =k +1也成立”这一步中间的变换过程比较复杂,在“无路可走”的情况之下,归纳法也是一个好的选择.7. 利用组合分析方法证明所谓组合分析法就是通过构造具体的组合计数模型,采用了“算两次”的方法,再根据组合数的加法原理和乘法原理得到恒等式两边相等.例8.证明:--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)证明:算右边,假设有2n 个球,现要在2n 个球中任取出(n -1个,取法有 -n 12n C 种,算左边,把2n 个球分成两堆,每堆个n 个,现要 在2n 个球在中取出(n -1)个,取法是,在第一堆取0个,第二堆取(n -1)个,或第一堆取1个,第二堆 取(n -2)个,或…或第一堆取(n -1)个,第二堆 取0.再根据加法原理总的取法有 ---++...+0n 11n 2n 10n n n n n n C C C C C C)又因为---++...+0n 11n 2n 10n n n n n n C C C C C C =-++...+0112n 1nn n n n n n C C C C C C所以,左右两边都是在2n 个球中取出(n -1)个球,因此有,--++...+=0112n 1n n 12n n n n n n n C C C C C C C (n ≧2)技巧:用组合分析法证明组合恒等式的步骤是:选指出式子的一边是某个问题的解,然后应用加法原理和乘法原理等去证明式子的另一边也是该组合问题的解.用此方法也可以证明例6,证明过程非常简洁.8概率法证排列组合基本理论是古典概型计算的基石.能否用古典概型来解决某些排列组合问题我们来看下面的例子 例9证明组合数加法题推公式:.21111C C C C k n k n k n k n ----+++=分析:把特征等式经过适当变形,使之右端变为1,而左端为若干项之和,根据左端和式中各项的特点,构造以概率模型,并找到样本空间的一个特殊分化,使之相应概率等于左端和式的各项,从而得证. 证明:我们将公示变形为.11211111=+++--+--+CC CC CC kn k n k n k n k n k n、下面利用超几何分布概率公式构建摸球模型来证明:设袋中有1+n 只球,其中有1只黑球,1只白球,现随机地抽取k 只球()11+≤≤n k .设事件A :“抽取的k 只球中含有黑球”,B :“抽取的k 只球中含有白球”,则()CC C kn knA P 101+= 由全概率公式得()()()()()B A P B P B A P B P A P +==CC C CC C CC C CC C knk n k n k n k nk n k n k n 1111101121111111--+---+-•+• =CC CCkn k n k n k n 111121+--+--+ 由()()1=+A P A P ,立即得证该公式技巧:利用概率对立事件发生的概率和为1,或是在某种情况下必然事件的概率也为1.可以与实际相结合,容易理解.…9 几何法例10 证明nnn n n C C C 21=+++ 分析:主要是利用组合的几何意义来证明.无重组合Cn 1n +的几何意义表示平面坐标上的(0,0)点到整点(n,m )(这里n,m 都是整数) 的递增路径的总和.一条从点(0,0)到点(n,m )的递增路径是 指一个有长度为1的端点为整点的线段首尾连接所组成的折线, 并且每一条线段的后一个端点的坐标或者在x 上或者在y 上,比 前一个端点增加一的单位长,水平走一步为x,垂直走一步为y,图…1中的递增路径可表示为:x,y,x,x,y,y,x,x,y,y证明:由图2可知等式的左边,Cn0表示从(0,0)到(0,n )点的增路径,Cn1表示从(0,0)到(1,n-1)点的增路径数,┄,Cn n1-表示从(0,0)到(n-1,1)点的的增路径数,Cn n表示从(0,0)到(n,0)点的的增路径数1,而这所有的地 增路径之和就是从(0,0)点到斜边上的整点的递增路径. 另一方面,从(0,0)点到斜边上任何一整点的递增路径是 n 步步长,每一步是x 或者y ,有两种选择,由乘法法则,<n 步的不同方法的总数为2n,所以等式成立.10 用幂级数法我们知道,()1-1--n x 可展成如下幂级数: ()=---11n x k k kkn x C∑∞=+01<x 现在我们用次展开式证明下列等式 例11 证明C C C C n m n n m n n n n n 111+++++=+++证明:因为 ()()()111-1-+--x x n =()21---n x左边应为:()()()1111-+---x x n =∑∑∞=∞=+•0i i kk n k n x x C右边应为:()=---21n x k k n k n x C ∑∞=+++011%比较两边nx 的系数可知,原等式成立.技巧:对组合求和,当组合下标变动时,常用幂级数方法.11微积分法例11 求证:()∑∑==-=-nk kn nk k kkC 11111分析:利用微分与积分的相互转化是问题得以解决,求导后再积回去,不改变原等式的性质. 证明:令 ()()k k nnk k x kx f C∑=--=111则 ()00=f ,()()Ck nnk k kf ∑=--=1111()()1111-=-∑-='k nk kn k x x f C =()k n k k nk x x C ∑=--111=()x x n---11=()()x x n----1111 ;=()()()121111--++-+-+n x x x即()()∑-=-='11n j jx x f上式两边同时求积分得 ()()C x j x f n j j +-+-=∑-=+11111所以 ()C j f n j ++-==∑-=11100 ⇒ ∑∑-===+=101111n j nk kj C 从而 ()()∑∑=-=++-+-=n k n j j kx j x f 1111111()()∑∑==-==-nk knnk k kf kC 111111 12 递推公式法上述例12是否还可以用递推公式的方法解决,我们来看一下··证明:令()∑=--=nk k nk n Ckf 111 ( ,3,2,1=n )则 ,11=f 当2≥n 时,n f =()()C C k n k n nk k11111-k 1----=+∑=()()∑∑=-----=--+-nk k n k kn n k k CC kk1111111111=()∑=---n k k n k n C n f 1111=()⎥⎦⎤⎢⎣⎡---∑=-11101n k k n kn C n f=()1011---n f n =n f n 11+- 所以 n f f n n 11+=-=n n f n 1112+-+-=nf 131211++++==∑==++++n k kn 1113121113 生成函数法}首先介绍生成函数相关定义和定理.定义1 设{}n a 是一个数列,做形式幂级数() +++++=nn x a x a x a a x f 2210称()x f 为数列{}n a 的生成函数. 定义2 对任何实数r 和整数k 有=Ck r()()!111k k r r r +-- 000>=<k k k定理1 设数列{}{}n n b a ,的生成函数为()()x B x A ,,若∑==ni i n a b 0,则()()xx A x B -=1 定理2 设m 是一个有理数,R a ∈,有()∑∞==+01k k k k mmx a ax C例13 设n ∈N,有())3)(2(11123+++++n n n n Cn n;证明:设数列Ck kkn +2的生成函数A(x),即A(x)=xC k kk kn k +∞=∑02设∑==n i i n a b 1,先求A(x),由()x n --11-=xC kk kkn ∑∞=+1对上式两边求导得:()()xC k k kk n n k x n 11211-∞=+--∑=-+两边同乘x 得:()()x C kkk n k n k x n +∞=--∑=-+1211对上式两边求导得:()()()()()2311121-----++-++n n x n x x n n =x C k k k k n k 112-+∞=∑两边同乘x 得: ()()()()()x x n x x n n n n 22311121-----++-++=x C k k k k n k +∞=∑12=A(x) 由定理1。
组合数定理

组合数定理组合数定理是组合数学中的重要定理之一。
在数学中,组合数是从给定集合中选择出特定个数的元素组成的集合的个数,通常用C(n, k)表示。
组合数定理主要研究的是这些组合数的性质和计算方法。
首先,我们需要了解一下组合数的定义。
给定一个n 元素的集合,从中选取k个元素,组成一个无序的集合,这样的集合个数即为组合数。
组合数的计算方法可以通过以下公式进行计算:C(n, k) = n! / (k! * (n - k)!)其中n!表示n的阶乘,即n * (n - 1) * (n - 2) * ... * 1,0的阶乘定义为1。
组合数的计算方法还可以通过递推公式进行计算:C(n, k) = C(n-1, k-1) + C(n-1, k)这个递推公式的意思是,要么选择n作为组合的一部分,那么剩下的k-1个元素就要从剩下的n-1个元素中选择;要么不选择n,那么k个元素就要从剩下的n-1个元素中选择。
通过递推公式,我们可以通过计算相对较小的组合数,迭代地计算出较大的组合数。
组合数定理具有以下几个重要的性质:1. 对任意整数n和k,组合数C(n, k)满足对称性质:C(n, k) = C(n, n-k)。
这是由组合数的定义以及递推公式可以得到的结论。
2. 组合数满足递推关系:C(n, k) = C(n-1, k-1) + C(n-1, k)。
这个递推关系可以用来计算较大的组合数,通过计算较小的组合数,不断迭代得到结果。
3. 组合数的性质可以帮助我们解决很多实际问题。
比如,在排列组合数的计算中,组合数可以用来解决从n个元素中选择k个元素的问题;在概率论中,组合数可以用来计算事件的发生概率。
除了上述性质外,组合数定理还有一些重要的应用:1. 组合公式的应用:组合数定理可以用来简化复杂的组合公式,使得计算更加方便。
比如,通过组合数定理,我们可以证明等式(1+x)^n = C(n, 0)*x^0 + C(n, 1)*x^1 + ... + C(n, n)*x^n。
组合与组合数公式

步骤2
假设n=k时公式成立,推导n=k+1时的公式。
步骤3
由数学归纳法,得出结论对于所有正整数n, 组合数公式成立。
利用二项式定理的证明
步骤1
将组合数公式重写为与二项式定理形式相似的形式。
步骤2
利用二项式定理展开式中的系数与组合数公式中的系 数进行比较。
02
加密算法
组合数公式可以用于设计加密算法,通过计算不同字符或符号的组合数
量,增强信息的安全性。
03
信息传输
在无线通信和网络传输中,利用组合数公式可以优化信息的传输效率和
可靠性。通过对信号的不同组合方式进行编码和解码,可以提高通信系
统的性能。
感谢您的观看
THANKS
组合数表示从n个不同元素中取出m个 元素的组合的个数,记作C(n, m)或C(n, m),其中C(n, m) = n! / (m!(n-m)!)。
组合的特性
无序性
组合只考虑元素的排列顺序,不考虑元素的具体 位置。
可重复性
在组合中,可以重复选取同一个元素。
独立性
组合数不受元素数量的影响,只与选取的元素个 数有关。
01
概率分析
利用组合数公式,可以对彩票的概率进 行分析,帮助彩民更好地理解彩票的随 机性和公平性。
02
03
优化投注
通过计算不同组合下的中奖概率,彩 民可以优化自己的投注策略,提高中 奖的可能性。
在遗传学中的应用
基因组合
在遗传学中,基因的组合方式可以用组合数公式来表示。通过计算 基因组合的数量,可以了解生物体的遗传多样性。
组合数的上标和下标规则
上标和下标规则
常用组合数公式及证明

常⽤组合数公式及证明n m =n n −m 选出补集的⽅案数等于选出原集合的⽅案数,即把补集去掉就是原集合n m =n m n −1m −1⽤通项式直接代⼊可得,吸收恒等式n ∑i =0n i =2n等号左⾯可以看做枚举⼦集的⼤⼩再枚举这个⼤⼩的⼦集个数,等号的右⾯则是直接枚举⼦集,故相等当然可以看成⼆项式定理的特殊情况m +nm =m∑i =0n i mm −i (n ≥m )看作有两个集合 A 和 B ,A 有 n 个元素,B 有 m 个元素左⾯即从 A ,B 中共选出 m 个元素的⽅案数,右⾯即枚举 A 集合中选多少个数,剩下的数在 B 集合中选2n n=n∑i =0ni 2上式的特殊情况n ∑i =0i m =n +1m +1这⾥给出⼀种有趣的组合解释:从 0,1,⋯,n 中选出 m +1 个数,选出的数中最⼤为 i 的⽅案数为 i mn m m k =n k n −km −k 左侧为从 n 个数选出 m 个数字,再从 m 个数字中选出 k 个我们可以直接从 n 个数中选出 k 个,再从剩下 n −k 个数中选出 m −k 个在第⼆轮淘汰的数n ∑i =0n −i i =F n +1F 表⽰斐波那契数列,展⽰出了斐波那契数列和组合数之间的关系,真奇妙设 G n =n∑i =0n −i i ,显然有 G 0=F 1=1,G 0=F 2=1我们只需要证明 G 满⾜斐波那契的递推式即可,即证明:G n +2=G n +1+G n()()()()()()()()()()()()()()()()()()()G n+G n+1=n∑i=0n−ii+n+1∑i=0n−i+1i=n∑i=0n−ii+n∑i=−1n−ii+1=n∑i=0n−ii+n∑i=0n−ii+1+1=n∑i=0n−ii+n−ii+1+1=n∑i=0n−i+1i+1+1=n+1∑i=1n−i+2i+1=n+1∑i=0n−i+2i=n+2∑i=0n−i+2i=Gn+2 ()() ()()()() (()())()() ()()Processing math: 100%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十讲 组合恒等式
、 知 识概要
数学竞赛中组合数计算和组合恒等式的证明,是以高中排列、组合、二项式定理为基础,
并加以推广和补充而形成的一类习题,它往往会具有一定的难度且灵活性较强。
解决这类问 题常常对学生良好的运算能力和思维的灵活性都有较高的要求。
同时,此类问题的解决也有 着自身特殊的解题技巧。
因此,在各类数学竞赛中经常被采用。
1,基本的组合恒等式
简单的组合恒等式的化简和证明,可以直接运用课本所学的基本组合恒等式。
事实上, 许多竞赛中出现的较复杂的组合数记算或恒等式证明,也往往运用这些基本组合恒等式,通 分解为若干个简单的组合恒等式而加以解决。
课本中的组合恒等式有:
n
n
n
C n n 0.
2,解题中常用方法
① 运用基本组合恒等式进行变换;
② 运用二项展开式作为辅助函数,通过比较某项的系数进行计算或证明; ③ 运用数学归纳法; ④ 变换求和指标; ⑤ 运用赋值法进行证明;
⑥ 建立递推公式,由初始条件及递推关系进行计算和证明; ⑦ 构造合理的模型。
① C n r
nr
C n
;
②c ni C n r 1 C n r ;
③ kC n k
k1
nC
n 1 ;
④ C n r C r m C n m C n r m m ; ⑤ C n 0 C 1n
C n 2
C n n
2n ;
过转化,
⑥ C n
C n 1
C n 2
、运用举例
12 3 n
例1,求证:C n 2C n 3C n L nC n n
2n1
证明:根据前面提到的基本的组合恒等式第三条, 可得:
左边nC; 1 1 2
nC n 1 nC n 1
n 1
nC n 1
—n 1 , f
n 2 右边
例2,求和式n
k2C n k的值。
k 1
基本思路:将k2C^改写为k kCn
k
先将kC n用恒等式3提取公因式
k
n,然后再将kC n 1变形
成为k 1 C: 1 V;,而
k 1
C n 1又可以继续运用上述恒等变形, 这样就使得各项系数
中均不含有变动指标k 了。
n
解:k2c n;
k 1
2004 例3,求
2004
解:
例4,设
n2n
k
2005
k
2005
的
值。
C;004 C;004 C;
004 C;004
m,n N,求证:
n
Cn
k 2
n
C k 1
C n 1
1
2n
2004
C 2004
2005
2004
2003
C2004 2004
C2004
3mn n2 1。
基本思路:由两个连续自然数m k与m k 1的积,联想到可化为2C;k1,进一步运用
说明:变换求和指标是解决较复杂的组合记数的一种常见技巧,它可以起到简化计算的目的。
变换求和指标时,要注意求和指标的上、下限需要同时变换。
例6,
n
求证:
k
Un
22n 12n!。
n!
2 n!
n2n2n2n
证明:C k
C2n C k
C2n
C k
C2n
22n C k
C2n
22n C n 1
C2n C2n
2L C2n
C2n
k 0k 0k n
1
k n 1
n 1n
22n C n 1
C2n C2n n2L C0
C2n
22n C k
C2n
22n C k C n
C2n C2n
C f C;
1 L
C r r k C r r1
n1
证明: m k m k1
k
2
C2
2
' 2
C3L
C2
C m
2c m C3
n 1 m 1
n
3
n 例5, 当m n时,求证
r m
c;
2
1 L
C2
m 1
c;k
C m 2
,反复运用基本的组合恒等式2即可化简。
L C m n
C;1 L C2
C m n C l C3L C m
3m
2
3mn 2 n1
r r m
C n C r
m
1m n
1
0m n
基本思路:利用基本组合恒等式4化简原式左边各项,使得化简后仅有c n m中含有变动指标
证明: 显然,当m n时,原式左边
n时,利用基本组合恒等式4可得:
左边
r C m C r m
C n C n m
n
C
m
C n
r i
1 r C;。
只要令原式即可变为: n
c m
r m
n
C n m
k
n
m m
1 C m k k
1 Vm 0。
即原式成立。
建立适当的组合记数模型来加以证明。
证明:设袋子中有n 个白球,n 个红球,现从这2n 个小球中随机抽取n 个小球,其方法种数
2n !
为:C 2n n。
另一方面,可以看成 n 1次如下的取球活动:从 n 个白球中取出r 个,再
n! n!
r nr
r
2
从n 个红球中取出n r 个,其取法种数为:C n C n
C n ,r 0,1,2,L , n ,所以符合题意
0 2 1 2 2
的取球方法种数是:
c :
C : L C :。
因此原式成立。
n n
所以,2 C ;n 2
2n
C 2n , C ;n
k 0
k 0
?2n
?2n 1
2n ! 2 n! n!
右边。
0 2 i 2
例7,求证:C° C 1 L
2n ! n! n!
基本思路1:此题若考虑用基本组合恒等式来证明是比较困难的, 展开式中各项系数的平方,考虑构造两个二项展开式。
注意到左端各项恰好是二项
证明:因为:
C C :x L
C :x n
, 1
x
n
1
C n 0
Cn- L
x
显然,1
n
的展开式中,常数项即为所求证等式的左端。
不妨设
x 0,将原式
变形为:
2n
将上式展开,其中常数项为
C 2n
,由此可知,原式成立。
基本思路2:注意到恒等式c n
n r
C n ,要证的等式的左边可变形为:
W C :C n n1
L
c :c n° ;而等式右边即为:
2n ! 2n !
n!n! n! 2n n !
c ;n ,因此可以考虑
说明:本题的两种证明方法均采用了构造思想。
构造法是解决竞赛问题的一种常用方法。
三、巩固练习
1,求证:c m L^c m 1。
m
n 1
4,求
C n 1 的值。
(22n 2 )
k 0
n
6,求证:
d c^1.(利用 1 x 2n 1 x n 1 x n )
k 1
2,求证:当n 是偶数时,1 2C n C : 2C : C : L 2c n 1 c :
1 J 1—
2 1^3
.
3,求证:C n
C n C n C n L 2 3 4
_X C n C n
n 1
1
(利用——Cn
k 1
1 k 1
C n 1 n
1
2n k
7,求证:
1 c m c m n k
1n c m .(利用 1
5, 求证:
C n'x 。
(利用
c j c n
8,求证: c m c m C k c m c;c m C k 2CmCn。
9,求证:
k
C2m 曰吞
1是奇
其中k 2n 1
10, 计算:
C
;n
11, 求证: C
;
n 1 C2n 1
12, 求证: Cn Cn n 1C;n。
13, 求证: 2k C k
C n。