最新初一数学能力测试题(7)综合
2022-2023学年人教版初中数学七年级上册期末综合能力测试卷(附参考答案)

2022-2023学年人教版初中数学七年级上册期末综合能力测试卷一、选择题(共12小题)1.(2022秋•长沙县校级期中)若|x ﹣1|+x =1,则x 一定满足( ) A .x <1B .x >1C .x ≤1D .x ≥12.(2022秋•雁塔区校级期中)已知|a |=1,b 是﹣2的倒数,则a +b 的值为( ) A .32或−12B .−32C .12D .−32或123.(2022秋•溧水区期中)如图所示,数轴上点A 、B 对应的数分别为a 、b ,下列说法正确的是( )A .a +2b >0B .|a |﹣2|b |<0C .a ﹣2|b |>0D .a +2|b |<04.(2022秋•丹江口市期中)某商品原价为a 元,先提高20%,然后连续两次降价,每次降价10%.则该商品的价格是( ) A .a 元B .0.972a 元C .0.968a 元D .0.96a 元5.(2022秋•东台市期中)根据如图所示的程序计算,若输入的x 值为5时,输出的值为﹣3,则输入值为﹣1时,输出值为( )A .﹣1B .1C .3D .46.(2021秋•石狮市期末)若(2x ﹣1)6=a 6x 6+a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 6﹣a 5+a 4﹣a 3+a 2﹣a 1的值为( ) A .0B .1C .728D .7297.(2022秋•楚雄市期中)某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元. A .160B .140C .120D .1008.(2022秋•怀柔区校级月考)有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m +10=43m ﹣1;②n+1040=n+143;③n−1040=n−143;④40m +10=43m +1.其中正确的是( ) A .①②B .②④C .①③D .③④9.(2022春•商水县月考)我们定义一种运算:|abc d|=ad ﹣bc 例如,|2345|=2×5﹣3×4=﹣2,|x213|=3x ﹣2,按照这种定义的运算,当|x2−12x2|=|x −1−4121|时,x =( ) A .−32B .−12C .32D .1210.(2022秋•尤溪县期中)现有一个长方形,长和宽分别为3cm 和2cm ,绕它的一条边所在的直线旋转一周,得到的几何体的体积为( )A .12πB .27πC .12π或18πD .12π或27π11.(2021秋•青岛期末)如图,C 为线段AB 上一点,点D 为BC 的中点,且AB =30cm ,AC =4CD ,则AC 的长为( )cm .A .18B .18.5C .20D .20.512.(2022秋•海淀区校级期中)如图,在△ABC 中,根据尺规作图痕迹,下列说法不一定正确的是( )A .AF =BFB .∠AFD +∠FBC =90° C .DF ⊥ABD .∠BAF =∠CAF二、填空题(共6小题)13.(2022秋•沈北新区期中)若﹣1<a<0,则a、a2、1的大小关系是.(用“<”a连接)14.(2022秋•义乌市校级期中)如图在一条可以折叠的数轴上,点A,B表示的数分别是﹣8,3,若以点C为折点,将此数轴向右对折,若点A落在点B右边,且A、B 两点相距1单位长,则点C表示的数是.15.(2022秋•宿城区期中)如果多项式x2+5ab+b2+kab﹣1不含ab项,则k的值为.16.(2021秋•孝南区期末)单项式x m﹣1y3与4xy n的和是单项式,则n m的值是.17.(2022秋•南皮县校级月考)定义新运算“※”如下:当a≥b时,a※b=ab+b;当a<b时,a※b=ab﹣a.(1)﹣3※2=;若5※b=12,则b=;(2)若(2x﹣1)※(x+2)=0,则x=.18.(2022秋•鼓楼区校级月考)一束光线经过三块平面镜反射,光路如图所示,当∠β是∠α的一半时,∠α=°.三、解答题(共7小题)19.(2022秋•璧山区校级期中)计算题:);(1)(−12)×(−4)−10×(−32(2)﹣42×(﹣2)+[(﹣2)3﹣(﹣4)].20.(2022秋•宜兴市期中)解方程 (1)5x ﹣3=2(x ﹣12); (2)1−2x−16=2x+13.21.(2022秋•陇县期中)先化简,再求值:(1)3a 2b +2(ab −32a 2b )﹣(2ab 2﹣3ab 2+ab ),其中a =2,b =−12;(2)2(xy 2+5x 2y )﹣3(3xy 2﹣x 2y )﹣xy 2,其中x =﹣1,y =−12.22.(2022秋•张店区期中)【阅读学习】阅读下面的解题过程: 已知:xx 2+1=13,求x 2x 4+1的值. 解:由xx 2+1=13知x ≠0,所以x 2+1x=3,即x +1x =3,所以x 4+1x 2=x 2+1x 2=(x +1x)2−2=32﹣2=7,故x 2x 4+1的值为17.【类比探究】(1)上题的解叫做“倒数法”,请你利用“倒数法”解决下面的题目:已知xx 2−3x+1=−2,求x 2x 4+5x 2+1的值.【拓展延伸】(2)已知1a +1b =12,1b +1c =13,1a +1c =15,求abcab+bc+ac 的值.23.(2022秋•鄂州期中)某电器商店销售一种洗衣机和电磁炉,洗衣机每台定价800元,电磁炉每台定价200元.“十一”假期商店决定开展促销活动,活动期间向客户提供两种优惠方案:方案一:买一台洗衣机送一台电磁炉;方案二:洗衣机和电磁炉都按定价的90%付款.现某客户要在该商店购买洗衣机10台,电磁炉x台(x>10).(1)若该客户按方案一、方案二购买,分别需付款多少元?(用含x的式子表示)(2)若x=35,通过计算说明此时按哪种方案购买较为合算?(3)当x=35时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元.24.(2022秋•泉州期中)如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣12,点B表示8,点C表示16,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.25.(2022秋•香坊区校级期中)为美化城市环境,现将广场某一区域进行景观设计规划,如图所示,区域的四角放置底座均直径为10米的圆形雕塑,紧贴四角的雕像底座安装一圈封闭围栏,在区域中央建立半径为10米的圆形喷水池,其余部分种植花卉.(π取3)(1)四个雕塑的占地面积之和是多少平方米?(2)安装一圈封闭围栏的长度是多少米?(3)在种植花卉的区域种植小雏菊、兰花、牵牛花三种花卉,其中兰花的种植面积比小雏菊多25%,小雏菊的种植面积是兰花和牵牛花种植面积之和的4,小雏菊每平13,兰花每平方米的价格方米50元,兰花每平方米的价格比小雏菊每平方米的价格少15与牵牛花每平方米的价格的比为4:3,围栏每米20元,修建喷水池和所有雕塑共需32000元,完成这项工程共需多少元?参考答案一、选择题(共12小题)1.C;2.D;3.D;4.B;5.C;6.C;7.C;8.D;9.A;10.C;11.C;12.D;二、填空题(共6小题)13.1a<a<a214.215.﹣516.917.﹣3;2;﹣1或1218.84;三、解答题(共7小题)19.解:(1)原式=48+15=63;(2)原式=﹣16×(﹣2)+(﹣8+4)=32﹣8+4=28.20.解:(1)5x﹣3=2(x﹣12),去括号,得5x﹣3=2x﹣24,移项,得5x﹣2x=3﹣24,合并同类项,得3x=﹣21,系数化为1,得x=﹣7;(2)1−2x−16=2x+13,去分母,得6﹣(2x﹣1)=2(2x+1),去括号,得6﹣2x+1=4x+2,移项,得﹣2x﹣4x=2﹣6﹣1,合并同类项,得﹣6x=﹣5,系数化为1,得x=56.21.解:(1)原式=3a2b+2ab﹣3a2b﹣2ab2+6ab2﹣ab=ab +4ab 2, 当a =2,b =−12时, 原式=﹣1+2=1;(2)原式=2xy 2+10x 2y ﹣9xy 2+3x 2y ﹣xy 2 =﹣8xy 2+13x 2y , 当x =﹣1,y =−12时, 原式=2−132=−92.22.(1)由 xx 2−3x+1=−2知x ≠0,所以x 2−3x+1x=−12,即:x +1x −3=−12. ∴x +1x =52. ∴x 4+5x 2+1x 2=x 2+1x 2+5 =(x +1x )2﹣2+5 =(52)2﹣2+5 =374.故x 2x 4+5x 2+1的值为437.(2)∵1a +1b =12,1b +1c =13,1a +1c =15, ∴2(1a +1b +1c )=12+13+15=3130, ∴1a+1b+1c=3160.∵ab+bc+acabc =1c +1a +1b ,∴abcab+bc+ac =3160.23.解:(1)800×10+200(x ﹣10)=200x +6000(元), (800×10+200x )×90%=180x +7200(元);(2)当x =35时,方案一:200×35+6000=13000(元),方案二:180×35+7200=13500(元),∵13000<13500,所以,按方案一购买较合算.(3)先按方案一购买10台微波炉送10台电磁炉,再按方案二购买2,5台电磁炉,这样更为省钱,共付款:10×800+200×25×90%=12500(元).24.解:(1)点P从点A运动至C点需要的时间为:t=6÷1+8÷0.5+(16﹣8)÷1=30(秒).答:点P从点A运动至C点需要的时间是30秒;(2)由题可知,P,Q两点相遇在线段OB上于M处,设OM=x,则6÷1+x÷0.5=8÷2+(8﹣x)÷4.解得x=0.∴OM=0表示P,Q两点相遇在线段OB上于O处,即相遇点M所对应的数是0.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有2种可能:①动点P在AO上,动点Q在CB上,则:6﹣t=8﹣2t.解得:t=2.②动点P在AO上,动点Q在BO上,则:6﹣t=4(t﹣4).解得:t=4.4.答:t为2s或者4.4s时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.25.解:(1)3×(10)2×4=300(平方米),2∴四个雕塑的占地面积之和是300平方米.(2)10×3+50×4=230(米),∴围栏的长度是230米.(3)种花的面积:50×50+50×5×4+3×52=3×102﹣300=2975(平方米),=700(平方米),兰花700×(1+258)=875(平方米),牵牛花:小雏菊:2975×413+42975﹣700﹣875=1400(平方米),∵兰花50×(1−1)=40(元/平方米),牵牛花:40÷4×3=30 (元/平方米),5∴700×50+875×40+1400×30+230×20+32000=148600(元),答:完成这项工程共需148600元.。
(完整版)初一数学能力测试题

初一数学能力测试题(1)班级______姓名______一. 填空题1、将下列数分别填入相应的集合中:0、0.3、—2、21-、1.5、32、512-、+100 整数集合{ …} 非负数集合{ …}2、早晨的气温是-2℃,中午上升了10℃,半夜又下降了8℃,则半夜的气温是________0C3、—2与—3的和是_________;-4与-6的差是__________4、最小的正整数是________,绝对值最小的数是___________5、_______的相反数是0;_________的绝对值是它身;________平方是它本身6、一个数的平方等于1,则这个数是________7、如果—a =—3,则a=_________;如果|a —3|=0,则a =______8、计算-|-2|=__________;—(—2)2=__________9、绝对值大于2而小于5的所有数是__________________10、比较大小:—2_______—3 31____21-- 11、在数轴上点A 表示—2,点B 离点A 五个单位,则点B 表示___________12、|a|=2,|b|=3,且a>b ,则=ba ___________ 二.选择题1、下列说法正确的是( )A 、比负数大是正数B 、数轴上的点表示的数越大,就离开原点越远C 、若a>b ,则a 是正数,b 是负数D 、若a>0,则a 是正数,若a<0,则a 是负数2、下列说法:①正数的绝对值是正数;②两个数比较,绝对值大的反而小;③任何一个数的绝对值都不会是小于0的数;④任何一个整数的绝对值都是自然数 其中说法正确的有( )A 、1个B 、2个C 、3个D 、4个3、下列说法正确的是( )A 、在有理数加法或减法中,和不一定比加数大,被减数不一定比减数大B 、减去一个数等于加上这个数C 、两个数的差一定小于被减数D 、两个数的差一定小于被减数4、一个数的立方等于它本身,这个数是 ( )A 、0B 、1C 、-1,1D 、-1,1,05、下列各式中,不相等的是 ( )A 、(-3)2和-32B 、(-3)2和32C 、(-2)3和-23D 、|-2|3和|-23|6、(-1)200+(-1)201=( )A 、0B 、1C 、2D 、-27、下列说法正确的是( )A 、两数的积是正数,则这个两数都是正数B 、异号两数的积的符号是绝对值较大的那个因数的符号C 、互为相反数的两数积是负数D 、三个有理数的积是正数,则这个有理数中至少有一个正数8、下列说法正确的是( )A 、有理数的绝对值一定是正数B 、如果两个数的绝对值相等,那么这两个数相等C 、如果一个数是负数,那么这个数的绝对值是它的相反数D 、绝对值越大,这个数就越大9、下列说法中错误的是( )A 、零除以任何数都是零。
初一数学整式的加减能力提升专题突破练习题7(化简求值 附答案)

初一数学整式的加减能力提升专题突破练习题7(化简求值 附答案)1.已知A =2x 2+3mx -x ,B =-x 2+mx +1,其中m 为常数,若A +2B 的值与x 的取值无关,则m 的值为( )A .0B .5C .15D .-152.已知代数式 3a ﹣7b 的值为﹣3,则代数式 2(2a +b ﹣1)+5(a ﹣4b +1)﹣3b =( ) A .6 B .-6 C .5 D .-53.已知3,2a b c d -=+=,则()()a c b d +--的值是( )A .-1B .1C .-5D .54.一个多项式与3231x x --+的和是32x -,则这个多项式是( )A .323x -B .3263x x +-C .2261x x +-D .223x -- 5.已知:2x 2﹣4y 3+6的值为1,那么代数式x 2﹣2y 3+2的值为( )A .3B .﹣3C .12D .﹣126.若x ≠0,y≠ 0,且 41x 2y 3+ky 3x 2=0则k 的值为( ) 7.若224x x -=,则代数式2642x x +-的值为( )A .-2B .2C .10D .148.若代数式3x 2+5x 的值为5,则代数式10x ﹣9+6x 2的值是( )A .﹣1B .1C .5D .109.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 2b +的值为( )A .0B .1-C .2或2-D .6 10.已知212a a -+=,那么21a a -+的值是______________.11.有理数a ,b ,c 在数轴上的对应点如图所示,化简|a ﹣b |﹣|a +c |+|b ﹣c |=_____.12.已知a b 3-=-,则()3a b 5a 5b 5--++的值为______.13.若x 2+3x =0,则2019﹣2x 2﹣6x 的值为_____.14.当k=_____时,多项式x 2﹣(3kxy +3y 2)+13xy ﹣8中不含xy 项.15.若代数式225x x --的值为3,则2241x x -+的值______.16.有理数a 、b 、c 在数轴上的位置如图所示,则化简11a b b a c c +------得到的结果是____ 。
海淀区2024-4025学年第一学期期中七年级数学试题及答案

海淀区2024年七年级增值评价基线调研数 学注意事项1. 本调研卷共 6 页,共3道大题,26道小题。
满分100分。
调研时间 90 分钟。
2. 在答题纸上准确填写姓名、学校名称和准考证号,并将条形码贴在指定区域。
3. 答案一律填涂或书写在答题纸上,在调研卷上作答无效。
4. 在答题纸上,选择题用2B铅笔作答,其他题目用黑色字迹的签字笔作答。
5. 调研结束,请将答题纸交回。
一、选择题(本题共30分,每小题3分)1.−12的相反数是A.12B.−12C.2 D.-22. 稀土是钪、钇、镧系17种元素的总称,素有“工业味精”之美誉,是我国重要的战略矿产资源.2024年我国稀土勘探在四川凉山取得新突破,预期新增稀土资源量496万吨.将4 960 000用科学记数法表示为A.0.49610×7B.49.610×5C.4.9610×7D.4.9610×63.下列计算正确的是A.(-5) + (-2)=7 B.(-5) - (-2)=3C.(-5)×(-2)=-10 D.(-5)÷(-2)=5 24.若x和y成反比例关系,当x的值分别为2,3时,y的值如下表所示,则表中a的值是x23y a4A.2 B.4 C.6 D.85.将下列各数在数轴上表示,其中与原点距离最近的点表示的数是A.-3 B.-0.8 C.1 D.26.对于多项式2x xy−,下列说法正确的是A.次数是2 B.一次项是2C.二次项系数是1 D.其值不可能等于22024. 117. 某文具原价为每件m 元,为迎接开学季,每件降5元,在此基础上新生还可以享受九折优惠. 一名新生购买一件该文具付款n 元,则n =A.0.9 (m -5) B.0.9m -5C.0.9mD.0.1 (m -5)8.若2s -4t =9,则s t −+212的值为A.10B.9.5C.5D.-49.若有理数a ,b 在数轴上的对应点的位置如图所示.下列结论中正确的是A.-a <b B.ab >1C.a b −=b -aD.|2|a +>|2|b −10. 关于x ,y 的单项式,若x 的指数与y 的指数是相等的正整数,则称该单项式是“等次单项式”,如x 2y 2,-3xy .给出下面四个结论:①-2x 3y 3是“等次单项式”;②“等次单项式”的次数可能是奇数;③两个次数相等的“等次单项式”的和一定是“等次单项式”;④若五个“等次单项式”的次数均不高于8,则它们中必有同类项.上述结论中,所有正确结论的序号是A.①③ B.①④C.②③D.②④二、填空题(本大题共18分,每小题3分)11. 在游乐场的“旋转茶杯”项目中,游客可以通过转动茶杯的方向盘自主控制茶杯的旋转方向.如果把逆时针旋转两圈记作+2,那么顺时针旋转三圈可以记作 .12.比较大小:-1 −23.(填“<”“=”或“>”)13. 约1500年前, 我国古代伟大的数学家和天文学家祖冲之计算出圆周率应在3.1415926和3.1415927之间,成为世界上第一个把圆周率的值精确到小数点后7位的人. 用四舍五入法将圆周率精确到千分位,所得到的近似数为 .14. 多项式x y xy 2+2与一个整式的和是单项式,则这个整式可以是 .(写出一个整式即可)15.若有理数m ,n 满足||m +(2-n )4= 0,则m -n = .16.A ,B ,C ,D ,E 是圆上的5个点,在这些点之间连接线段,规则如下:ABC DE如图,已连接线段AB ,BC ,CD ,DE .(1)若想增加一条新的线段,共有 种连线方式;(2)至多可以增加 条线段.三、 解答题(本大题共52分,第17题3分,第18题12分,第19题6分,第20-24题,每小题4分,第25题5分,第26题6分) 解答应写出文字说明、演算步骤或证明过程.17.如图,数轴上点A 表示的数是-4,点B 表示的数是3.(1)在图中所示的数轴上标出原点O ;(2)在图中所示的数轴上表示下列各数,并将它们按从小到大的顺序用“<”连接起来.-3,0,-1,2.5.18.计算:(1)2 - (-1)+(-6); (2)-12×4÷(-2);(3)(-103)×(2.5 -52);(4)(-2)3−−+÷|2|94(−23)2.19.化简:(1)−+−23m n nm m n 222; (2)5[52()]a a a a 22−+−.20.先化简,再求值:11312323x x y x y −−+−+2()()22,其中x =13,y =-1.21.如图,正方形ABCD 的边长为a .(1)根据图中数据,用含a ,b 的代数式表示阴影部分的面积S ;(2)当a =6,b =2时,求阴影部分的面积.22. A I(人工智能)技术有望为传统的教学方式带来新变化,如AI 解题. 某公司为测验其AI 产品的解题能力,尝试利用最新考试题进行全科目测试. 分数记录以60分为基准,超过基准的分数记为正数,少于基准的分数记为负数. 将测试的相对分数记录如下:科目语文数学英语道法地理历史物理化学生物相对分数+20-16+30+28+8-9-18-9已知该AI 产品的地理测试分数为81分.(1)请补全上表;(2)在本次测试的各科目中,该产品所得最高分为 分,最低分为 分;(3)求该产品在本次测试中全科目的总分.23. “圆楼之王”承启楼位于福建省龙岩市,始建于明崇祯年间,是永定客家土楼群的组成部分.整座楼造型奇特,三环主楼环环叠套. 如图,中心位置耸立着一座祠堂.第三环楼为单层,有m 间房间;第二环楼为两层,每层的房间数均比第三环楼的房间数多8间;外环楼为四层,每层的房间数均等于第二环楼每层的房间数与第三环楼的房间数之和.(1) 第二环楼每层有 间房间,外环楼共有 间房间;(用含m 的式子表示)(2) 民间流传一首顺口溜:“高四层,楼四圈,上上下下间;圈套圈,圆中圆,历经沧桑数百年”.“”处所填内容是三环主楼所有房间数之和,已知m =32,求“”处所填的数.24. 小云和小明参加了数学节活动的某游戏,一次玩法如下:若S 1<S 2,则小云获胜;若S 1>S 2,则小明获胜;若S 1=S 2,则双方平局. (1)若给定的有理数是2,小云为了确保自己获胜,则a 的值应该是 ;(2)若给定的有理数是2,4,则小云 确保自己获胜;(填“能”或“不能”)(3) 若给定的有理数是-2,0,2,4.当a 是负数,且双方平局时,则b = .(用含a的式子表示)25. 对有理数a ,b 进行如下操作:第一次,将a ,b 中的一个数加1或者减1,另一个数加2或者减2,得到数a 1和b 1;第二次,将a 1和b 1中的一个数加1或者减1,另一个数加2或者减2,得到数a 2和b 2;…;第n 次,将a n -1和b n -1中的一个数加1或者减1,另一个数加2或者减2,得到数a n 和b n .(1)a =1,b =3.① 若a 1=0,则b 1的值可以是 ; ② a b 22+所有可能的取值为 ;(2)若a n =a ,b n =b ,则n 的值是否可以是5?请说明理由.26. 给定有理数a ,b ,对整式A ,B ,定义新运算“⊕”:A B ⊕=aA + bB ;对正整数n (n ≥2)和整式A ,定义新运算“⊗”:n ⊗A = A A A ⊕⊕⊕n A个 (按从左到右的顺序依次做“⊕”运算),特别地,1⊗A =A .例如,当a =1,b =2时,若A =x ,B =-y ,则A B ⊕=A + 2B =x - 2y ,2⊗A =A A ⊕=3x .(1)当a =2,b =1时,若A =x + y ,B =x - 2y ,则A B ⊕= ,3⊗A = ;(2)写出一组a ,b 的值,使得对每一个正整数n 和整式A ,均有n A ⊗=A , 并说明理由;(3) 当a =2,b =1时,若A =3x 2 + 7xy ,B =2x 2 - 30xy - y 2,p ,q 是正整数,令P =p A ⊗,Q =q B ⊗,且P Q ⊕不含xy 项,直接写出p 和q 的值.海淀区2024年七年级增值评价基线调研数学试题参考答案一、选择题(本题共30分,每小题3分)二、填空题(本大题共18分,每小题3分)11. 3− 12.<13. 3.14214.2xy −(答案不唯一)15. 2−16. 3; 2注:16题第一空1分,第二空2分三、解答题(本大题共52分,第17题3分,第18题12分,第19题6分,第20-24题,每小题4分,第25题5分,第26题6分) 17. 解:…………2分310 2.5−<−<< …………3分18. 解:(1)2(1)(6)−−+−21(6)=++− 3(6)=+−3=− …………3分(2)124(2)−⨯÷−48(2)=−÷−24=…………3分(3)法1:102()(2.5)35−⨯− 1052()()325=−⨯−105102()()()3235=−⨯+−⨯−25433=−+ 7=− …………3分法2:102()(2.5)35−⨯− 10()(2.50.4)3=−⨯− 10() 2.13=−⨯7=− …………3分(4)3242(2)|2|()93−−−+÷− 498294=−−+⨯821=−−+9=− …………3分19. 解:(1)n m nm n m 22232−+−n m 2132)(−+−=0= …………3分(2)225[52()]a a a a −+−)225522a a a a −+−=()27522a a a −−=(22275a a a +−=a a 772−= …………3分20. 解:)3123()31(22122y x y x x +−+−− 22312332221y x y x x +−+−= )()(22313223221y y x x x ++−−= 23x y =−+ …………3分当13x =,1y =−时, 原式21(3)(1)1103=−⨯+−=−+=. …………4分21. 解:(1)21143()22S a b a b =−⋅−⨯−=233222a b a b −−+=23122a ab −− …………3分(2)当6a =,2b =时, 23166222S =−⨯−⨯=3691−−=26 …………4分 答:阴影部分的面积为26.22.解:(1)21+; …………1分(2)90;42; …………3分 (3)609(20)(16)(30)(28)(21)(8)(9)(18)(9)595⨯+++−+++++++++−+−+−=. 答:全科目的总分为595分. …………4分23. 解:(1)(8)m +;(832)m +; …………2分(2)2(8)4(28)1148m m m m ++++=+,当32m =时,原式=113248400⨯+=. …………4分 答:“*”处所填的数为400.24. 解:(1)2; …………1分(2)不能; …………2分 (3)2a −. …………4分25.解:(1)①1或5; ②2−,0,2,4,6,8,10; …………2分(2)n 不可能是5. 理由如下: …………3分由(1)②的分析知, 每次操作,两个数的和的变化量只能是1±或3±,都是奇数. 5次操作后,和的变化量依然是奇数.若5a a =,5b b =,两个数的和不变,变化量为0,是偶数,矛盾. …………5分 所以n 不可能是5.26. 解:(1)3x ,77x y +; …………2分(2)1a =,0b =(答案不唯一,满足a ,b 都是有理数,且1a b +=即可). …………3分理由如下:首先1A A ⊗=成立. 因为1a =,0b =,所以10A A A A A ⊕=⋅+⋅=,即2A A ⊗=. 对每一个大于2的正整数n ,()1n An An A A A A A A AA A A−⊗=⊕⊕⊕=⊕⊕⊕==⊕=个个所以对每一个正整数n ,均有n A A ⊗=. …………4分 (3)4p =,3q =. …………6分。
2023 年第四届超常(数学)思维与创新能力测评 初一年级 数学真题

2023年第四届超常(数学)思维与创新能力测评 初一年级考试时间:100分钟满分:150分考试说明:(1)本试卷包括30道不定项选择题(可能有几个选项正确),每小题5分.(2)每道题的分值按正确选项的个数平均分配,但是如有错选,则该题不得分.1.将所给木块旋转,能得到下列哪个选项().A. B. C. D. E.2.循环小数1.451(即1.451 515 151…)等于(). A. 459290B.463310C.469320D. 479330E.4873403.已知a =2023x +2022,b =2023x +2021,c =2023x +2020,则a 2+b 2+c 2−ab −bc −ca 的值为( ).A.3 B.59 C.2020 D.2023 E.40394.在下图中,每一个正三角形的边长都是中间那个正六边形边长的两倍,那么正六边形的面积占六个正三角形面积总和的( ).A.16B.112C.14D.34E.235.以下不能沿着虚线折成一个立方体是().A. B. C. D. E.6.在下图中填入数,使得任意3个连续方框中的数之和为2023.则最左边方框中填入的数是应该是( ).A.1187.已知202009=102000∙409∙2n,则n的值为().A.1991B.2000C.2009D.4018E.50008.如图,某城有一组十分奇怪的限速规定:在离城1km处有一个120km/h的标牌,在离城12km处有一个60km/h的标牌,在离城13km处有一个40km/h的标牌,在离城14km处有一个30km/h的标牌,在离城15km处有一个24km/h的标牌,在离城16km处有一个20km/h的标牌,如果你从120km/h的标牌处出发一直以限定时速行驶,那么需要()才能到达该城.A.30sB.1min13.5sC.1min42sD.2min27sE.3min9.如图所示,三个正方形以顶点相连接在一起,图中已给出若干角的度数,则x的值是().A.41B.42C.43D.44E.4610.一辆自行车的链条在具有48个齿的前链齿轮上运行,通常经过具有18个齿的后轮轴的链齿轮.当后链齿轮每旋转一整圈时,踏板转过的角度是().A.135°B.360°C.960°D.120°E.6712°11.如图,一个立方体的八个角都被切去,形成一些三角形面.将该图形的所有24个角都用对角线连起来,这些对角线中穿过图形内部的共有()条.A.84B.108C.120D.142E.24012.把一个三位数首位前和末位后添写上1,这样得到的五位数比原来的三位数增加14789.则原来三位数的三个数字之和是().A.10B.9C.8D.7E.613. Ⅰ号混合液由柠檬汁、油和醋以1:2:3的比例配成,Ⅱ号混合液由同样三种液体以3:4:5的比例配成,将两种混合液倒在一起后,新的混合液的比例不可能是().A.2:5:8B.4:5:6C.3:5:7D.5:6:7E.7:9:1114.如图所示的网球场中有()个长方形.A.19B.29C.23D.30E.3115.已知|x−1|+|x−2|=1,则x的值().A.只能为1B.只能为2C.可能为任何实数 D.为满足1≤x≤2的一切实数E.以上都不对16.下图是一张城市的道路平面图,除了一条短对角线外,道路全是东西向或南北向的.由于一条路的修补而不可能从点X通过.从P到Q的所有可能走的路线中,有些路线是最短的.则这样的最短路线有()条.A.4B.7C.9D.14E.1617.甲、乙一起工作,甲每工作1天休息2天,乙每工作1天休息3天.已知第一天他们都在工作,最后一天乙肯定在工作.甲、乙同时休息时间比同时工作时间多128天.则他们从第一天到最后一天经过了()天.A.180B.308C.309D.312E.50018.要使关于x的方程ax−1=x+a无解,则a=().A.-1B.0C.1D.2E.以上都不对19.小刚和月月搭乘某航空公司的飞机从A地飞往B地,但因为他们的行李超出了航空公司规定的重量,所以要求他们支付附加费.航空公司收费方法是对超出规定的重量每千克收取相同的费用.小刚付了60元,月月付了100元.他们一共有52kg的行李,如果小刚自己带着两人的全部行李走,他将必须付340元.每人最多可带(不需要付附加费的)行李()kg.A.20B.15C.12D.18E.3020.一个4×4的反幻方是指将数1~16填入4×4方格表内,使得每行、每列、每条对角线上的数之和,经排序后恰好形成十个连续的正整数.如图是一个尚未完成的反幻方,则星号“*”所在方格内应填入().A.1B.2C.15D.16E.以上都不对21.某学校新建5个教室,平均每班减少6人.如果再建5个教室,那么平均每班又减少4人.假设学生总数保持不变,这个学校可能有()名学生.A.560B.600C.650D.720E.80022.在一个2023边形(可以是凹多边形)的内角中,锐角至多有()个.A.2023B.672C.944D.1345E.134923.在一列数1,2,3,…,10000中,有()个数恰好包含两个相邻的数字9.例如:993,1992和9929就是这样的数,而9295或1999则不是.A.270B.271C.280D.123E.26124.从1970年起小红开始收集日历且以后每年都这样做,直到以后每一年至少可用一本已经收集到的日历来代用时为止.则必须收集日历的最后年份是()年.A.1983B.1984C.1997D.2023E.以上都不对25.100个正整数之和为101101,则它们的最大公约数的最大可能值是().A.101B.1100C.1001D.2002E.1001026.如图所示,你有一些白色的1×12×1瓦片.当用这些瓦片以紧贴邻边的方式来覆盖一个3×1的矩形时,共可以设计出4种颜色方案(WWW,BWW,WBW,WWB).那么如果用这些瓦片来覆盖一个10×1的矩形,将可以设计出()种颜色方案.A.47B.89C.155D.286E.30027.已知A,B,C,D,E,F,G,H,I是9个互不相同的非零数字,满足:A除以B余C,D除以E余F,G除以H余I,那么ABC+DEF+GHI的结果是().A.1368B.1458C.1188D.2547E.195328.令s为真分数,即s<t,且为最简分数.若t的值为2到9,s,t为正整数,则符合条件的不同的真t分数有().A.26B.27C.28D.30E.3629.有27个同样大小的小正方体,每个小正方体的六个面上写着一个相同的数,且恰为1~27,用这27个小正方体拼成如图所示的大正方体.请根据如图所示的数据以及下面所给出的条件推断,从六个方向都看不见的小正方体的面上所写的数是().①数9,13和16在同一条直线上.②数22在9和6之间.③17紧挨着5和13,但与9不相邻.④14紧挨着24和27.⑤数20在14的上面.A.22B.20C.17D.9E.530.一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的10倍,则切割成的小正方体中,棱长为1的小正方体的个数可能为3().A.15B.24C.42D.56E.60。
初一数学能力测试试卷(苏科版)

初一数学能力测试(考试时间:120分钟 试卷总分100分)一、精心选一选(6×3)1.现有纸片:l 张边长为a 的正方形,2张边长为b 的正方形,3张宽为a 、长为b 的长方形, 用这6张纸片重新拼出一个长方形,那么该长方形的长为( )A .a+bB .a-+2bC .2a+bD .无法确定2.为了解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路,现已知这四个村庄之间的距离如图所示(距离单位:千米),则能把电力输送到四个村庄电线路的最短总长度应该是( )A .19.5B .20.5C .21.5D .25.53.如图,AD ⊥BD ,AE 平分∠BAC ,∠ACD =70°,∠B =30°,则∠DAE 的度数为( )A.40°B.50°C.60°D.45°4.若16x =x 8,y 7=-92·33,则x 2-15xy -16y 2等于( )A .16或-15B .-15或-50C .-50或52D .52或165.若a -b=4,ab+m 2-6m+13=0,则b a m m +等于( )A .83B .103C .829D .8096.下面是按一定规律排列的一列数:第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭. 那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数 A D B C E二、细心填一填(8×3)7.小红的邮箱密码是一个六位数,每位上的数字都是0~9中的任一个,她忘了密码的最后一个数字,如果随意输入最后一位数字,则她正好能打开邮箱的概率是 .8.为了估计湖里有多少条鱼,先捕上100条鱼做上标记,然后放回湖里,过一段时间,等待带标记的鱼完全混合于鱼群后,再捕上200条,发现其中带标记的鱼有20条,湖里大约有鱼 .9.现有纸片:l 张边长为a 的正方形,2张边长为b 的正方形,3张宽为a 、长为b 的长方形,用这6张纸片重新拼出一个长方形,那么该长方形的长为 .10.如果三角形三边长分别是正整数a,b,c ,且a>b>c ,b=5,则满足条件且周长彼此不同的三角形共有 个.11.要使4x 2+25是一个完全平方式,则应加入的一个整式是 .12.在日常生活中如取款、上网等都需要密码。
七年级数学第七章《三角形》综合检测题A

三角形综合检测题A一、选择题(每小题4分,共24分)1.如果在一个顶点周围用两个正方形和n 个正三角形恰好可以进行平面镶嵌,则n 的值是( ).A .3B .4C .5D .62.下面四个图形中,线段BE 是⊿ABC 的高的图是( )A .B .C .D .3.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( )A .13cmB .6cmC .5cmD .4cm4.在∆ABC 中,C B ∠∠,的平分线相交于点P ,设,︒=∠x A 用x 的代数式表示BPC ∠的度数,正确的是( )A 、x 2190+B 、x 2190- C 、x 290+ D 、x +90 5.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18006.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )(A)1个 (B)2个 (C)3个 (D)4个二、填空题(每空3分,共33分)7.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
8.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_____________.9.把一副常用的三角板如图所示拼在一起,那么图中∠ADE 是 度。
10.如图,∠1=_____.11.若三角形三个内角度数的比为2:3:4,则相应的外角比是 .12.如图,△ABC 中,∠A=40°,∠B=72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度。
13.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a 的取值范围是14.如果三角形的一个外角等于和它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形各内角的度数是_____________。
初一数学能力测试题综合

初一数学能力测试题(7)班级_________姓名________一.填空题1.正方形是一个立体图形,它是由________个面,_______条棱,________个顶点组成的2.圆柱是由___________个面组成的,圆锥由____________面组成的,圆锥的侧面展开图是__________3.用一个平面去截一个几何体,得到的截面是一个三角形,这个几何体可能是__________(写出一个即可)4.某人上山的速度为a 千米/时,下山的速度为b 千米/时,则此人上山下山的整个路程的平均速度是_______________千米/时5.按要求把下列数填入相应的括号内:2.5,—0.5,—100,—5,0,31,25,3.15 (1)分数{ }(2)负整数{ }(3)非负数{ }(4)非负整数{ }6.比—4大但比3小的整数是__________,绝对值比4小的整数是______________7.当x —y=3时,代数式(y —x)2+2y —2x+1=___________8.在数轴上,与—5表示的点距离为8个单位的点所表示的数是________________9.如果a>0,b<0,b a <,则a ,b ,—a ,—b 这4个数从小到大的顺序是______________________(用大于号连接起来)10.311-的相反数是_______,它的倒数是_______,它的绝对值是______.11.在274⎪⎭⎫ ⎝⎛-中的底数是__________,指数是_____________. 12.观察下列数据,按某种规律在横线上填上适当的数: 1,43-,95,167-,259, ,… 13.右上图是一数值转换机,若输入的x 为-5,则输出的结果为________二、选择题(共20分)1、在211-,12,—20,0 ,()5--中,负数的个数有( )A.2个B.3个C.4个D.5个2、一个数加上15-等于5-,则这个数是( )A 、20B 、10C 、5D 、—203、下列算式正确的是( )A. (-14)-5=-9B. 0-(-3)=3C. (-3)-(-3)=-6D. |5-3|=-(5-3)4、比较4.2-, 5.0-, ()2-- ,3-的大小,下列正确的( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学能力测试题(7)
班级_________姓名________
一.填空题
1.正方形是一个立体图形,它是由________个面,_______条棱,________个顶点组成的 2.圆柱是由___________个面组成的,圆锥由____________面组成的,圆锥的侧面展开图是__________
3.用一个平面去截一个几何体,得到的截面是一个三角形,这个几何体可能是__________(写出一个即可)
4.某人上山的速度为a 千米/时,下山的速度为b 千米/时,则此人上山下山的整个路程的平均速度是_______________千米/时 5.按要求把下列数填入相应的括号内: 2.5,—0.5,—100,—5,0,
3
1
,25,3.15 (1)分数{ } (2)负整数{ } (3)非负数{ } (4)非负整数{ }
6.比—4大但比3小的整数是__________,绝对值比4小的整数是______________
7.当x —y=3时,代数式(y —x)2
+2y —2x+1=___________
8.在数轴上,与—5表示的点距离为8个单位的点所表示的数是________________ 9.如果a>0,b<0,b a <,则a ,b ,—a ,—b 这4个数从小到大的顺序是______________________(用大于号连接起来)
10.3
11-的相反数是_______,它的倒数是_______,它的绝对值是______.
11.在2
74⎪⎭
⎫
⎝⎛-中的底数是__________,指数是_____________.
12.观察下列数据,按某种规律在横线上填上适当的数:
1,43-
,95,167
-,25
9, ,… 13.右上图是一数值转换机,若输入的x 为-5,则输出的结果为________
二、选择题(共20分)
1、在2
1
1-,12,—20,0 ,()5--中,负数的个数有( )
A.2个
B.3个
C.4个
D.5个 2、一个数加上15-等于5-,则这个数是( )
A 、20
B 、10
C 、5
D 、—20 3、下列算式正确的是( )
A. (-14)-5=-9
B. 0-(-3)=3
C. (-3)-(-3)=-6
D. |5-3|=-(5-3)
4、比较4.2-, 5.0-, ()2-- ,3-的大小,下列正确的( )。
A.3- >4.2- > ()2--> 5.0- B.()2-- > 3->4.2-> 5.0- C.()2-- > 5.0- > 4.2-> 3- D. 3-> ()2-->4.2-> 5.0-
5、乘积为1-的两个数叫做互为负倒数,则2-的负倒数是( ) A.2- B.2
1
-
C.21
D.2
6、已知字母a 、b 表示有理数,如果a +b =0,则下列说法正确的是( ) A . a 、b 中一定有一个是负数 B. a 、b 都为0 C. a 与b 不可能相等 D. a 与b 的绝对值相等
7、一个数的平方为25,则这个数是( )
A.5或—5
B.—5
C.4
D.8或—8
8、绝对值大于3且小于5的所有整数的和是 ( ) A. 7 B. -7 C. 0 D. 5 9、一个数的绝对值是3,则这个数可以是( ) A.3 B.3- C.3或者3- D.3
1
10、()3
4--等于( )
A .12- B. 12 C.64- D.64
三、计算题
1、12+()18-+()28-+10
2、()5.5-+()2.3-()5.2---4.8
3、()8-)02.0()55(-⨯-⨯
4、 ⎪⎭⎫
⎝
⎛-+-127619421()36-⨯
6、21+()23-⎪⎭
⎫
⎝⎛-⨯21 7、
8、100()()222
---÷⎪⎭
⎫
⎝⎛-
÷21
四.化简题
1.3x+5x —7x+10x 2、5x —(2x —5)—(2x —6)
3.—3(x —2)—2(3x —5) 4、34
3
)6(21)4(41-++---x x x
5、已知x=2
1-,求代数式x 2—(2x 2—5)—(x 2
+3)的值
33182(4)8
-÷--
6、已知0213=⎪⎭⎫ ⎝⎛
-
++y x ,
求代数式2
22323471233
1291xy xy y x x y x x -++++-的值。
五.某地出租车的收费标准是:起步价5元,超过3千米,则超过部分每千米1.8元,若某人乘坐x (x>3)千米的路程
(1)请你写出他应该支付的费用(用含x 的代数式表示); (2)若他乘坐了15千米的路程,则他应付多少元钱? (3)若他支付了23元钱,则他乘坐了多少千米?
六.某地有两家通讯公司,移动通讯收费标准如下: 第一家规定不收月租费,每分钟收费是0.6元;
第二家规定要收月租费,每月收50元,另外每分钟收费0.4元
(1)某用户每月打电话的时间为x 分钟,请你写出这两种收费方式下应该支付的费用; (2)某用户每月打电话的时间为200分钟,你认为应该采用哪一家通讯公司合算; (3)你认为每月打电话时间超过多少分钟,第二家通讯公司比较合算? 用基本不
等式解决应用题
例1.某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用p (万元)和宿舍与工厂的距离()x km 的关系为:(08)35
k
p x x =
≤≤+,若距离为1km 时,测算宿舍建造费用为100万元.为了交通方便,工厂与宿舍之间还要修一条道路,已知购置修路设备需5万元,铺设路面每公里成本为6万元,设()f x 为建造宿舍与修路费用之
和.
f x的表达式;
(1)求()
f x最小,并求最小值.
(2)宿舍应建在离工厂多远处,可使总费用()
变式:某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3m 宽的通道,如图.设矩形温室的室内长为x
(m),三块种植植物的矩形区域的总面积
...为S(m2).
(1)求S关于x的函数关系式;
(2)求S的最大值.
17.解:(1)由题设,得。