函数的连续性在高等代数中的应用

函数的连续性在高等代数中的应用
函数的连续性在高等代数中的应用

函数的连续性在高等代数中的应用

摘要:数学分析和高等代数是大学数学专业非常重要的基础课程,这两门课程的一些问题如果只是从学科内部出发很难解决,而运用另一门学科的知识解决,问题就变得简单易行.

关键词:连续函数;行列式;矩阵;二次型

Applications of Continuity of Function in Advanced

Algebra

Zhou Yuxia

(College of Mathematics and the Information Science, Northwest Normal University, Lanzhou 730000)

Abstract: The mathematical analysis and advanced algebra are very important foundation courses of university mathematics special ?eld,some of the problems of both courses within the discipline, if only from the start are dif-?cult to resolve but used of the knowledge of other disciplines to solve, the problem becomes very easy.

Key words: continuous function; matrix; determinant; quadratic form

本文记号说明:const: 常数;A T : 矩阵A的转置;A*:矩阵A的伴随矩阵;

f(x) C(a,b):f(x)在(a,b)上连续.

一引言

数学分析和高等代数都是高等教育中非常重要数学基础课,无论是数学专业的学生还是其他理工科专业的学生,都要学好这两门基础课. 稍微有点区别就是非数学专业开设的是等数学或者微积分和线性代数,但这只是课程名称的变化,具体学习内容都是一样的. 因此,学好这两门课程是学好大学数学课程的关键. 学生应该掌握数学分析和高等代数之间深刻的联系,以便更容易了解、学习、掌握这两门基础课,为以后更深入的学习深造打好扎实基础.本文只探究数学分析在高等代数中的应用,包括利用数学分析中的函数连续性解决某些行列式、矩阵、二次型问题.至于高等代数在数学分析中的应用本文暂不探究.

二函数连续性的应用

函数的连续性不仅在数学分析学科内部有很重要的地位,在跨学科比如高等代数中也有很重要的作用. 以下简要说明一下数学分析中函数连续性在高等代数中多个方面的应用.

1 函数连续性在解决行列式问题中的应用

行列式是学生刚接触到大学数学课程后,在高等代数方面遇到的第一个新概念,运用已有知识学习新概念,能使学生更容易理解和掌握. 以下说明函数的连续性在解决行列式问题中的部分应用.

例1 设A, B, C, D 都是n 阶矩阵, AC = CA . 若|A|≠ 0, 则

A B

A D C

B

C

D =-

这个命题是 [8]的P203的补充题6,该命题是正确的[2,5,6,7], 但

A ≠这个条件是可以去掉的,此时结论依然成立. 现证明

如下: 当|A| = 0时,?δ = const > 0,对?ε ∈ (0, δ),矩 阵A ε

=

A + εE 可逆,即

A ε≠.

A ε C = AC + ε C = CA + ε C = CA ε.

从而

A B

A D CB

CD

εε=-

显而上式等号两端都是关于ε之连续函数,故可在两端同时令ε → 0+ ,即得

A B

A D C

B

C

D =- 故结论成立.

命 题 (1)F ε?

∈,其中F 是一个数域,对任何方阵A ε=A + εE ,除有限个 值外均为非奇异矩阵.

(2)?δ = const > 0,对?ε ∈ (0, δ),A ε=A + εE 均为可逆矩阵.

证 (1)A ε 奇异? |A ε

| = |A + εE| = |ε E ? (?A )| =0ε为?A 的特征根. 而矩阵?A 最多有n 个不同的特征根,可见除了有限个ε为

?A 的特征根外,A ε为非奇异阵.

(2)因为?A 其至多有有限个特征根,记其为λ 1 , λ 2 , · · · , λn , 不妨 设λ 1 = 0,今设δ 是?A 的非0特征根的绝对值(或模)之 最 小值,则对?ε ∈ (0, δ),A ε = A + εE 为非奇异阵.

例2 证 明 :(A * ) * = |A|n-2 A , 其 中A 是n × n 矩 阵(n > 2) .

证 当A 为非奇异矩阵时,由A * = |A|A -1 知

(A *) * = |A * |(A * )-1

= ||A|A 1- |(|A|A )1-

()11

11n

A A

A A

-

--=

1

1n

A A A

-=

2

n A

A

-=

当A 为 奇异 矩 阵时 , 对一 切 充分 小 的ε > 0, 矩 阵A ε =

A + εE 为非奇异矩阵,由上述已证结论有,

()()*

2

*n A A A εε

ε

-=.

式矩阵

中的每

个元素

均为ε之连

续函数,

所以令ε0+

()*

2

*n A A A

-=

例3 设

11

11

,

n

n nn

a a a a ?=

A jk 是 a jk 的 代数余子式 ,求证

1111,11

1

.

1

n n

jk j k j k n n n n n a a x A x y a a x y y ==?-∑

()()()()**

??? ? ?

??T

jk1n1nnn111n1

n1nnn

1n-1-1证 设A=a,X=x,,x,Y=y,,y,

a a x A X

则 =.

a a xY 1y y 1

(1)当A为非奇异矩阵时,A X

A X =

Y 10 1-YAX =A1-YAXA =A1-YXA =A-YAX=A-

A∑

jkjk

jk=1

xy.

ε

εεδεδε??∈∑njkjk

jk=1

(2)当A为奇异矩阵时,根据命题1知,=const>0,使得对(0,),有A=A+E为非奇异矩阵,则A X =A-Axy,Y 1故结论得证.

εε→∑+

njkjk

j,k=1

显而上式两端均为的连续函数,故可以在两端同时

令0,得

A X =A-Axy,Y 1故结论得证.

??

?

? ? ???

∑11121n2122 2nn1n2nnjjjkkj例4 设实数域上的矩阵

a a aa a a A= a a a 满足a>a,

则detA>0.

证 (1)先证detA ≠0.

121212=1

=(,,

,),(k=1,2,

,n)A ,,,,,

,,=0.

T k k k nk n n

n k k k l l l l αααααααα∑设为矩阵的列

向量组,假设线性相关,则存在一组不全为零的

数使

{}ααααα≠≠≠≠≠≤

≤≠∈∑∑∑

∑12njjk

kkjjjkkj

kjjj

jjjkjkkj

kj

j12n1112 证(1)先证detA0.

 令l=maxl,l,,

l>0,不妨设l=l,则=ll(-

),特别地对于第j个分量有a=(-)a,lll故a-

aa,与假设矛盾,假设不成l立,即,,,线性无关,故detA0. (2)下证detA>0. 设t[0,1],令

a at W(t)=

≠≠?∈≥

?∈≠?∈∑∑∏1n12222nn1n2nn

jjjkjk

kj

kj

jjj=10 at

at a at at at at[0,1],W(t)都有a>aa

t,由(1)得

到t[0,1],W(t)0.

由行列式定义可知,W(t)是[0,1]上的多项式函数,故W(t)在[0,1]上连续,且W(0)=a>0.

假设W(1)=detA<0,则由闭区间上连续函数的性质,t(00,1)s.t.W(t)=0,矛盾,故假设不成立,

即detA>0.

2 函数连续性在解决普通矩阵问题中的应用

对于某些纯矩阵问题,用代数方法解决很复杂,但利用数学分析中连续

函数的思想和方法,则显得容易许多. B

*

A 例5 *. 若A 与

B 为同阶矩阵,

A *为A 的伴随矩阵,则(A

B )

[2,5]

*

=

当A 与B 均为非奇异阵时,则结论显然成立 .以下

证明当至少有一个为奇异阵时,上述结论依然成立.

由 命 题 1 可 知 ,? δ = const > 0, ? ε ∈ (0,δ), A ε=A+ε E,B ε = B +ε E 为非奇异矩阵,故由上述结论可知

A ?

B B A

=

由上述等式两边均为ε之连续函数,故可对上式两边同时

令ε→0 ,即得到

(AB)* = B *A *.

故命题得证.

3 函数连续性在解决特征多项式问题中的应用

函数的连续性在求解矩阵的特征多项式的过程中也有简化计算过程等的长处.

例6 若A, B均为同阶方阵,则AB 与B A特征多项式相同.

证当A为非奇异矩阵时,AB~ BA,故其特征多项式相同[2,5,8] .

当A为奇异阵时,根据命题 1 知?δ = const > 0, s.t.?ε∈(0, δ),矩阵Aε = A + ε E 为非奇异阵,从而由上述结论可知

|λE ? AεB| = |λE ? B Aε|.

由于上式等号两边均为ε之连续函数,故可对上式两边同时

令ε→0 ,即得到 |λE ? AB| = |λE ? B A| 故命题得证.

n?m

本例结果实际上还可以推广到“若A, B 分别是n×m和m×n矩阵,λ 0,则|λEn? AB| = λ|λEm? BA|[2,5,8] ”.此处暂不探究.

4 函数连续型在解决二次型问题中的应用

二次型的判定和计算是大学期间数学学习的重点和难点,很多的问题光

用代数方法解决是很难解决的,但反过来用数学分析的知识和观点解决之,能

使学生更容易理解和掌握.

1111111

0-7.(x ,,x )=

-.

n n

n n n nn

x x x a a f x a a 例是一个二次型

10(),=(x ,,x ),f(X)=

.T T

jk n n n X A a X XA

?=-证:设则

11(1)0(X)=()*T T T A X A X A X A X X A X

XA

--==-当为非奇异矩阵时,由

f

*

(2)A 1=>,.t.(0,),A 0(X)=,

T T A E X X A X XA εεε

δεδε??∈=+=-当为奇异矩阵时,根据命题可知,const 0s 有为非奇异矩阵,根据上述结论,得到

f

+*0(X)=X .

T f A X εε→而上式等号两端均为之连续函数,故可以在上式两端同时

令,则得到

故命题得证.

例8 若A 为m 阶半正定矩阵,则A 的伴随矩阵A *也半正定.

1*1**0+0=,.,()=x n T A A E A A A A A A f A X

εεεεεεεεεεε--?∈∞=+

>?∈?证:由于为半正定矩阵,故(,),A 均为正定矩阵,从而,为正定矩阵,故也为正定矩阵x 令

+

*0

[0,+),(0,+),f()>0.(0)=lim ()0,x 0,x 0,A .

T f f A x εεεε→∈∞?∈∞≥?≠≥则且由连续函数的保

号性定理可知f 即有即半正定

三结束语

由以上讨论可知高等代数与数学分析虽然是数学的不同分支,但是二者之间在解决问题上往往相互渗透,彼此相通.用数学分析的思想方法解决某些高等代数问题,解决得非常巧妙简洁明了.高等代数的思想方法在用于解决数学分析问题的时候,同样能得到类似的效果,此处不再一一叙述. 故在学习过程中把握好高等代数与数学分析之间的联系,留心不同分支之间的交融性,有助于培养融合知识的能力,进而达到培养学生创新思维能力的效果.

参考文献

[1] 王莲花, 鞠红梅, 李战国. 数学分析在高等代数中的某些应用[J]. 河

南教育学院学报(自然科学版), 2008, 17(3):15-18

[2] 唐亚楠. 高等代数同步辅导及习题全解[M]. 徐州:中国矿业大学出版社,

2006

[3] 姚云飞, 姚磊. 关于数学分析在线性代数中某些应用的札记[J]. 大学

数学, 2005, 21(6):108-112

[4] 刘敏, 储亚伟. 分析与代数内通性的几个简单应用[J]. 阜阳师范学院

学报(自然科学版), 2005, 22(1):77-79

[5] 徐仲, 陆全, 张凯院, 吕全义, 陈芳, 袁志杰. 高等代数(北大·第三

版)导教·导学·导考[M]. 西安:西北工业大学出版社, 2004

[6] 李师正, 张玉芳, 李桂荣, 高玉玲. 高等代数问题解决方法与技巧[M].

北京:高等教育出版社, 2004

[7] 刘丁西. 高等代数习题精解[M]. 合肥:中国科学技术大学出版社, 2004

[8] 北京大学数学系几何与代数教研室前代数小组编, 王萼芳, 石生明修订.

高等代数(第三版)[M]. 北京:高等教育出版社, 2003

(整理)函数的一致连续性63604

§2.9 函数的一致连续性 定义 2.21 设f 是X 上的单变量函数.若0,0εδ?>?>,使得当 12,x x X ∈,12x x δ-<时总成立12()()f x x ε-<,则称f 是X 上的一 致连续函数.显然,若f 是X 上的一致连续函数,则f 一定是X 上的连续函数(反之通常不正确). 命题1 (不一致连续的充要条件) X 上的单变量函数f 不一致连续 0ε??>和{},{}n n x y X ?,使得lim()0n n n x y →∞ -=,并且()()n n f x f y - ,n ε* ≥?∈ . 证: “?”.假定f 不是X 上的一致连续函数,则0ε?>,n * ?∈ , n x ?,n y X ∈满足1 n n x y n -< 和()(),n n f x f y n ε* -≥?∈.这说明右 边成立. “?”.假定0ε?>和{}n x ,{}n y X ?,使得l i m ()0 n n n x y →∞ -=,并且()(),n n f x f y n ε* -≥?∈ .这时,0δ?>,,,N N N N x y X x y δ ?∈-<使得()()N N f x f y ε-≥.这说明f 不是X 上的一致连续函数.□ 命题 2 若f 是区间..I 上的一致连续函数,00δ>是常数,则必存在 0M >使得当,x y I ∈,0x y δ-≤时总成立()()f x y M -≤. 证:对于固定的0,0εδ>>取,使得当12,x x I ∈,12x x δ-<时总成立 12()()f x x ε-<.再取n * ∈ 使得 ,M n n δδε<=令.当,,x y I ∈x y - 0δ≤时,()()f x f y -1 1(())(())n k k k f x y x f x y x n n =-≤+ --+-∑n ε< M =.□ 命题 3 有限开区间(,)a b 上的连续函数f 一致连续?存在有限单侧

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

函数一致连续性的判定及应用论文

数学建模论文(设计)题目函数一致连续性的判定及应用 学院 专业 年级 学号 姓名xx 指导教师xx 成绩 2007 年4 月19 日

函数一致连续性的判定及应用 摘要:本文从函数连续与一致连续的概念和关系出发,主要对一元函数在不同类型区间上函数一致连续的判定方法进行了讨论,总结和应用,并且将部分判定一元函数一致连续的方法推广到了多元函数,使大家对函数一致连续的内涵有更全面的理解和认识。 关键词:函数;连续;一致连续函数 Decisions of uniformly continuous function and application TANG Yong The School of Mathmatics and Statistics, Southwest University, Chongqing 400715, China Abstract: From the concept and the relation of continuity and uniformly continuity of the function, we research the methods of decisions of uniformly continuous function in different kinds of intervals. Moreover, we extend some of the results to function with many variables in different region. Key words: function; continuity; uniformly continuity 1. 引言 我们知道,函数的一致连续性是数学分析课程中的一个重要内容。函数() f x在某区间内连续,是指函数() f x在该区间上一点 f x在该区间内每一点都连续,它反映函数() 附近的局部性质,但函数的一致连续性则反映的是函数() f x在给定区间上的整体性质,它有助于研究函数() f x的变化趋势及性质。因此,本文对函数一致连续性的概念、判定条件进行了深入的分析和总结,目的是帮助大家掌握运用不同的方法证明函数一致连续,使大家对函数一致连续性的内涵有更全面的理解和认识。 现有的数学分析教材中,一般只给出函数一致连续的概念和判定函数在闭区间上一致连续的G.康托定理,内容篇幅少,为了对函数一致连续性的理论有正确的理解和全面的掌握,作为教材内容的适当扩展和补充,本文做了以下几点讨论: 2. 函数连续与一致连续的关系 2.1 函数连续与一致连续的区别 2.1.1 函数连续的局部性

大学高等数学上考试题库(附答案)

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()() 2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

浅谈函数的一致连续性的性质

浅谈函数的一致连续性的性质 张亚男,数学计算机科学学院 摘要: 本文探讨了具有一致连续性函数的基本性质,对函数一致连续性的性 质进行深入分析,旨在读者能更好的掌握函数的一直连续性.首先介绍了一致连续的概念,并给出了非一致连续的定义。其次给出了一致连续函数的有界性质。再次给出了两个一致连续函数和商积差,具有一致连续性的条件。最后探讨了同一函数在两个区间上一致连续性的叠加。在每个性质后面都附有例题,使读者可也更好的理解所给出的性质。 关键词:函数;一致连续;非一致连续;有限区间; 有界; Discusses the properties of the uniform continuity function Name:zhang ya nan Number:0707216 College:College of Mathematics and Computer Science Abstract: In this paper, we discuss the properties of function of uniform continuity. We analyze the properties of uniform continuity of functions deeply, aiming to readers can better control uniform continuity of function. Firstly, we introduce the function uniform continuity concept and give the definition of non- uniform continuity of function. Then, we give the bound of uniform continuity of functions. Once again, we give the condictions, to be uniform continuity of function,of function four fundamental operations. Finally discusses the same function in the two identical continuity on the interval of superposition. In each propertyes we give examples, behind that readers can better understanding of the nature of given. Key Word: function; uniform continuity; non- uniform continuity; limited interval; bounded;

浅析数学分析一致连续性

一引入“一致性”的意义 数学分析教材中有不少概念,如函数的连续性与一直连续性、函数列的收敛性与一致收敛性,初学者很容易混淆,因而成为“数学分析”中学习的一个难点所在。数学分析中的三个“一致性”(即一致有界, 一致连续, 一致收敛) 的概念对数学基础知识的学习很重要。 弄清函数的一致连续性的概念和掌握判断函数一致连续的方法无疑是学好函数一致连续性理论的关键。数学分析教材只给出一致连续的概念和判断函数在闭区间上一致连续的G·康托定理,内容篇幅少,为了使初学者对函数一致连续性的理论有正确的理解和全面的掌握,作为教材内容的适当扩展和补充显然,一致连续要比连续条件强。但在数学分析教科书中,仅给出一致连续的定义以及利用定义证明函数f(x)在某区间上一致连续的数学方法,呈现了函数一致连续完美的逻辑结果,但学生对定义特别是其中δ的很难理解。 一致连续是一个很重要的概念,在微积分学以及其他学科中常常用到,而且函数列的一致连续性和一致收敛又有着密切关系。在研究函数列的收敛问题中,常常要用到函数列与函数之间的收敛、一致连续性、一致收敛的关系。 数学分析中的函数一致连续性、函数列一致有界性、函数列一致收敛性、函数项级数一致收敛性、含参变量无穷积分一致收敛性等“一致性”概念是学习上的难点,因此,牢固掌握这些概念及与之有关的理论,对打好分析基础,培养良好的数学素养和创新能力都有着重要的意义。 对函数列的极限函数、函数项级数的和函数以及含参变量积分性质的讨论,常常需要讨论其一致收敛性,而函数项级数的一致收敛性可归结成部分和函数列的一致收敛性的研究,含参变量无穷积分的一致收敛性,又可归结成函数项级数的一致收敛性的研究,故本文着重讨论函数一致连续性和函数列一致收敛性重要概念。 函数一致连续的概念是学生学习高等数学的一个难点,证明某一个函数是否具有一致连续性让许多同学更是无从下手。为了解决这一难点,化抽象为简单,给出一致连续性的几种等价形式,能帮助同学易于接受。 函数一致连续的几何意义数学分析是一门非常抽象的学科,有极强的逻辑性和严密性,体现在:能用简明的数学语言准确的表述用冗长的文学语言也不一定

函数的单调性知识点总结与经典题型归纳

函数的单调性 知识梳理 1. 单调性概念 一般地,设函数()f x 的定义域为I : (1)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; (2)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. 2. 单调性的判定方法 (1)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (2)定义法步骤; ①取值:设12,x x 是给定区间内的两个任意值,且12x x < (或12x x >); ②作差:作差12()()f x f x -,并将此差式变形(注意变形到能判断整个差式符号为止); ③定号:判断12()()f x f x -的正负(要注意说理的充分性),必要时要讨论; ④下结论:根据定义得出其单调性. (3)复合函数的单调性: 当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为减函数。也就是说:同增异减(类似于“负负得正”) 3. 单调区间的定义 如果函数()y f x =,在区间D 上是增函数或减函数,那么就说函数在这个区间上具有单调性,区间D 叫做()y f x =的单调区间. 例题精讲 【例1】下图为某地区24小时内的气温变化图. (1)从左向右看,图形是如何变化的? (2)在哪些区间上升?哪些区间下降?

解:(1)从左向右看,图形先下降,后上升,再下降; (2)在区间[0,4]和[14,24]下降,在区间[4,14]下降。 【例2】画出下列函数的图象,观察其变化规律: (1)f (x )=x ; ①从左至右图象上升还是下降? ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着怎么变化? (2)f (x )=x 2. ①在区间(-∞,0)上,随着x 的增大,f (x )的值随着怎么变化? ②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着怎么变化? 解:(1)①从左至右图象是上升的; ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着增大. (2)①在区间(-∞,0)上,随着x 的增大,f (x )的值随着减小; ②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着增大. 【例3】函数()y f x =在定义域的某区间D 上存在12,x x ,满足12x x <且12()()f x f x <,那么函 数()y f x =在该区间上一定是增函数吗? 解:不一定,例如下图: 【例4】下图是定义在闭区间[5,5]-上的函数()y f x =的图象,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数. 解:函数()y f x =的单调区间有[5,2),[2,1),[1,3),[3,5)---; 其中在区间[5,2),[1,3)--上是减函数,在区间[2,1),[3,5)-上是增函数. 【例5】证明函数()32f x x =+在R 上是增函数.

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

§6+函数的一致连续性概念与应用练习参考解答

§6 函数的一致连续性概念与应用部分练习参考解答 1. 若对任何0,f ε>在[,]a b εε+-上连续,是否可推出f 在(),a b 上连续。 2. 试用一致连续的定义证明:若函数f 在[],a c 和[],c d 上都一致连续,则f 在 [],a b 上也一致连续。 3. 证明:若f 在[],a b 上连续,且不存在任何[],x a b ∈使得()0f x =,则f 在[],a b 上恒正或恒负。 4. 证明:(1) 函数x x f =)(在),0[+∞上一致连续。 (2) 函数2 )(x x f =在],[b a 上一致连续,但在),(+∞-∞上不一致连续。 5. 证明 ()f x ax b =+(0)a ≠在(,)-∞+∞上一致连续。 6. 求证下列函数在指定区间上一致连续: (1) ()1 f x x =, ()0a x <≤<+∞; 2) ()3f x x =, ()0x ≥。 证 (1) 0ε?>,取2a δε=, 则当212x x a ε-<时, 有 12122121211 x x x x x x x x a ε---=≤<, ()12,x x a ?≥。 即得()1 f x x =在[),a +∞上一致连续。 (2) 设210x x >≥, 则有 ()3 333 221 1211x x x x x x x = -+≤-+。 即有 3 3 3 2121x x x x -≤-。 于是, 对0ε?>, 30δε?=>, 对12,0x x ?≥, 当21x x δ-<时, 有 3 33 2121x x x x ε-≤ -< 即得()f x 在0x ≥上一致连续。 7. 求证下列函数在指定区间上不一致连续。 (1) ()()1 sin 01f x x x =<<; (2) ()()ln 0f x x x =>。

第一章 函数、极限与连续

第一章 函数、极限与连续 (一) 1.区间[)+∞,a 表示不等式( ) A .+∞<

函数的一致连续性

哈尔滨师范大学 学年论文 题目关于函数一致连续的探究学生万鑫 指导教师曾伟梁副教授 年级 2008级 专业信息与计算科学 系别信息系 学院数学学院 哈尔滨师范大学 2011年 6 月

关于一致连续函数的判据 万鑫 摘 要:连续与一致连续是数学分析中非常重要也非常基础的概念。这两个概念来自于实际问题,现实问题。我们经常观察的自然现象,如生物的连续生长,反映的是事物连续不断的变化的过程,如果用函数来刻画即是函数的连续性。数学分析研究种种不同性质的函数,其中有一类重要的函数就是一致连续函数。我们通过给出一致连续函数与非一致连续函数的定义,从而对函数的一致连续性进行探讨。 关键词:一致连续 非一致连续 判别依据 比较判别法 比值判别法。 一 函数)(x f 一致连续的概念 定义1:设函数()x f 在()a u 上有定义,若函数()x f 在点a 上存在极限,且极限是()a f , 即()()a f x f a x =→lim ,则称函数()x f 在点a 上连续,也称a 是函数()x f 的连续点. 用“δε—”语言叙述:函数()x f 在a 上连续?0>?ε,0>?δ, x ?:,δ<-a x 时,有()()ε?ε,0>?δ,I x x ∈?21,, δ<-X X 2 1 时,有()()ε?ε,0>?δ ,I x x ∈?21, , δ<-X X 2 1 时有()()ε≥-x x f f 21,则称函数()x f 在I 上非一致连续。 对于函数()x f 在区间I 上非一致连续,也就是说存在某个正数ε ,不论任何的 正数δ,在区间I 内至少存在两点与 x 1 x 2 ,虽然 δ<-X X 2 1 ,但 ()()ε≥-x x f f 21。

函数的极限及函数的连续性典型例题

函数的极限及函数的连续性典型例题 一、重点难点分析: ① 此定理非常重要,利用它证明函数是否存在极限。 ② 要掌握常见的几种函数式变形求极限。 ③ 函数 f(x)在 x=x 0 处连续的充要条件是在 x=x 0 处左右连续。 ④ 计算函数极限的方法,若在 x=x 0 处连续,则 ⑤ 若函数在 [a,b] 上连续,则它在 [a,b] 上有最大值,最小值。 二、典型例题 例 1 .求下列极限 解:由 可知 x 2+mx+2 含有 x+2 这个因式, ∴ x=-2 是方程 x 2+mx+2=0 的根, ∴ m=3 代入求得 n=-1。 求 m,n 。 ① ④ ④ ③ ③ ② 解析:① 例 2.已知

的连续性。 解析:函数的定义域为(-∞,+∞),由初等函数的连续性知,在非分界点处 函数是连续的, 从而 f(x)在点 x=-1 处不连续。 ∴ f(x) 在 (- ∞,-1),(- 1,+∞) 上连续, x=-1 为函数的不连续点。 , (a,b 为常数 ) 。 试讨论a,b 为何值时,f(x)在 x=0 处连续。 例 3 .讨论函数 例 4 .已知函数 , ∴ f(x)在 x=1 处连续。 解析: ∴ a=1, b=0 。 例 5 .求下列函数极限 ① ② 解析:① ②

要使 存在,只需 ∴ 2k=1 ,故 时, 存在。 例7.求函数 在 x=-1 处左右极限,并说明在 x=-1 处是否有极限? ,∴ f(x)在 x=-1处极限不存在。 三、训练题: 2. 的值是 3. 已知 ,则 = ,2a+b=0,求 a 与 b 的值。 ,求 a 的值。 5.已知 参考答案:1. 3 2. 3. 4. a=2, b=-4 5. a=0 例 6 .设 ,问常数k 为何值时,有 存在? 解析:∵ 4.已知 解析:由 1.已知

高等数学课件:函数的连续性

高等数学课件:函数的连续性 1.7函数的连续性 教学目的:理解函数连续性的概念,会判断函数的连续性。掌握连续函数的四则运算,知道反函数及复合函数的连续性,掌握初等函数的连续性, 知道间断点的概念及分类,会判断其类型。 教学重点:函数连续性的概念, 连续函数的四则运算,知道反函数及复合函数的连续性. 教学内容: 1.6.1函数的连续性 1 函数在一点的连续性 xUx()xx定义1 设函数在点的某个邻域内有定义,自变量在点处有增量 yfx,()000 ,相应地函数值的增量 ,x ,,,,,yfxxfx()() 00 xx如果,就称函数fx()在点处连续,称为函数fx()的连续点。 lim0,,y00,,x0 x函数fx()在点处连续还可以描述如下。 0 xUx()设函数yfx,()在点的某个邻域内有定义,如果,就称函数 lim()()fxfx,000xx,0 xfx()在点处连续。 0 左连续及右连续的概念。 xlim()()fxfx,lim()()fxfx,如果,称函数fx()在点处左连续;如果,称函000,,xx,xx,00

x数fx()lim()lim()fxfx,在点处右连续。由于lim()fx存在的充要条件是,因此,根0,,xx,xxxx,,000 xx据函数连续的定义有下述结论:若函数yfx,()在点的某个邻域内有定义,则它在点处00 x连续的充分必要条件是在点处左连续且右连续。 0 2 区间上的连续函数 如果函数在开区间上每一点都连续,我们称函数在开区间内连续,如果函数开区间内连续,在区间的左端点右连续,右端点左连续,就称函数在闭区间上连续。 yx,sin(,),,,,例1 证明在内连续。 x,,,,,,x(,)证明,当有增量时,对应的函数值的增量,x ,,xx,,,,,,,,,yxxxxsin()sin2sincos ,,22,, ,,xx,x,,sin,由于, cos1x,,,,222,, ,,,xxx,,所以 02sincos2,,,,,,,yxx,,222,, 45 xx当时,由夹逼准则得,因此在点处连续,由于的任 ,,y0yx,sin,,x0 意性,在内连续。 yx,sin(,),,,, xya,例2 证明()在内连续。 (,),,,,a,0a,1 x证明,当有增量时,对应的函数值的增量,,,,,,x(,),x xxxxx,,,,,,,,yaaaa(1) x由于时,,因此 axa,1lnx,0 xxx, limlim(1)lim(ln)0,,,,,,yaaaxa000,,,,,,xxx xxya,ya,xx因此,在点处连续,由于的任意性,在内连续。 (,),,,, 1.6.2 函数的间断点

函数一致连续性研究

学号: 0901114208 函数一致连续性的研究 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 2009级(1)班 姓名:贾珊 指导教师:杨长森 2013年4月

函数一致连续性的研究 摘要函数在区间上的一致连续性是数学分析课程中的重要理论之一,一致连续性刻画了函数在区间上的整体性质.准确理解函数一致连续概念以及掌握证明函数一致连续的方法是数学分析的一个重要内容.本文从以下几个方面对函数的一致连续性进行研究:由函数的连续性引入一致连续性概念,总结了一致连续的3个否定说法;讨论并证明了函数连续与一致连续的关系;用四种方法证明了有界闭区间上一致连续性定理,即Canto定理;概括总结了3种证明函数一致连续的方法;用连续数模描述函数一致连续性并得出函数一致连续的观察法;最后讨论了一致连续的延拓问题. 关键词一致连续;否定说法; Canto定理;连续数模;延拓问题

前言 函数在区间上的一致连续性问题是数学分析中的典型问题之一,是函数在区间上逐点连续的加强,一致连续性刻画的是函数在区间上的一种整体形态;一致连续性的研究不仅可以加深我们对函数在区间上连续性的认识,而且可以培养我们从微观和宏观相结合的角度观察问题,发现问题,从而提高探究问题的能力[1];同时,函数的一致连续性是闭区间上连续函数黎曼可积的基础,而且与随后的参数积分,函数项积分等有着密切的关系. 因此准确理解函数一致连续概念以及掌握证明函数一致连续的方法是数学分析的一个重要内容. 一、一致连续性概念引入 为了清楚的引出函数的一致连续概念,我们首先指出,函数f 在区间I 的连续概念可直接用-εδ“”语言叙述如下:设函数f 在区间I 上有定义,对 ()()0,0,(,),I x I f x f αααεδαδαε?∈?>?>∈-< ,当时,有则称f 在区间I 上连续[]2 . 在这个定义中,对于给定的0,ε>αδ是与点α有关的,点α不同所对应的α δ也可能不同.于是自然来考虑:对于I 中的所有点,是否存在一个公共适用的δ?事实上,对于不同的函数(包括函数的定义域不同)都可能有不同的情况的回答. 例1.1 (1)在区间(0,1)上研究函数() 2.f x x =; (2)在区间(0,1)上研究函数()1g x x = ; (3)对任意一个固定的0a >,在(),a +∞上研究函数()1g x x =. 解:(1)对于()001εα>?∈及,, 由于 ()()()222, f x f x x x x ααααα-=-=+-<-

高等数学同济大学版课程讲解函数的极限

课 时 授 课 计 划 课次序号: 03 一、课 题:§1.3 函数的极限 二、课 型:新授课 三、目的要求:1.理解自变量各种变化趋势下函数极限的概念; 2.了解函数极限的性质. 四、教学重点:自变量各种变化趋势下函数极限的概念. 教学难点:函数极限的精确定义的理解与运用. 五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合. 六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编, 高等教育出版社; 2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社. 七、作业:习题1–3 1(2),2(3),3,6 八、授课记录: 九、授课效果 分析: 第三节 函数的极限 复习 1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞ =??>?>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系. 在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多. 一、x →∞时函数的极限 对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.

定义1 若?ε>0,?X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞ f (x )?A . 若?ε>0,?X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞ f (x )?A . 例1 证明lim x 0. 证 0 -,故?ε>00-<εε, 即x >21 ε.因此,?ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 lim x ?0. 例2 证明lim 100x x →-∞ =. 证 ?ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞ 10x ?0. 定义2 若?ε>0,?X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞ f (x )?A . 为方便起见,有时也用下列记号来表示上述极限: f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞). 注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞ ===或或,则称y A =为曲线()y f x =的水 平渐近线. 由定义1、定义2及绝对值性质可得下面的定理. 定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞ f (x )?A . 例3 证明2lim 1 x x x →∞--?1.

高中数学函数单调性的判断方法

高中数学函数单调性的判断方法 单调性是函数的重要性质,它在数学中有许多应用,如我们常用求函数单调性的方法求函数的值域。那么,有哪些求函数单调性的方法呢? 方法一:定义法 对于函数f(x)的定义域I 内某个区间A 上的任意两个值12,x x (1)当12x x <时,都有12()()f x f x <,则说f(x)在这个区间上是增函数; (2)若当12x x <时,都有12()()f x f x >,则说f(x) 在这个区间上是减函数。 例如:根据函数单调性的定义,证明:函数 在 上是减函数。 要证明函数f (x )在定义域内是减函数,设任意1212,x x R x x ∈<且,则33221221212121()()()()f x f x x x x x x x x x -=-=-++,12x x <因为 210x x ->所以,且在1x 与2x 中至少有一个不为 0,不妨设20x ≠,那么222222121123()24 x x x x x x x ++=++0>,12()()f x f x >所以,故 ()f x 在 (,)-∞+∞上为减函数。 方法二:性质法 除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题. 若函数f(x)、g(x)在区间B 上具有单调性,则在区间B 上有: 1. f(x)与c?f(x)当c >0具有相同的单调性,当c <0具有相反的单调性; 2.当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数; 3.当f(x)、g(x)都是增(减)函数,则f(x)?g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数; 例如,已知f (x )在R 上是减函数,那么-5f (x )为____函数。 这道题很简单,我们根据单调性的性质,很容易就能判断它是增函数。 方法三:同增异减法(处理复合函数的单调性问题) 对于复合函数y =f [g(x)]满足“同增异减”法(应注意内层函数的值域), 可令 t =g(x),则三个函数 y =f(t)、t =g(x)、y =f [g(x)]中, 若有两个函数单调性相同,则第三个函数为增函数;

函数一致连续性及其应用

1 函数一致连续性[1] 设()x f 在定义在区间I 上的函数,若对任给0>ε,存在()0>=εδδ,使得对任意 的1x 、I x ∈2,只要δ<-21x x ,就有()()ε<-21x f x f ,则称函数()x f 在区间I 上一致连续. 1.1 函数一致连续的相关定理与证明 定理1.1[2] 若()x f 在区间I 上有定义,则()x f 在I 上一致连续的充要条件是 ()()0lim 21,02121=-<-+∈→x f x f SUP x x I x x δ δ. 证明 ①必要性 因为()x f 在区间I 上一致连续,所以由定义知 0,00>?>?δε,对任意的1x ,I x ∈2,只要 021δ<-x x ,就有()()2 21ε < -x f x f ,故可得出()()2 21,0 2121ε δ≤ -<-∈x f x f SUP x x I x x . 因为当00δδ<<时,有 ()()()()εε δδ <≤ -≤-<-<-∈∈2 21,21,0 21212121x f x f SUP x f x f SUP x x x x I x x I x x . 故可得()()0lim 21,02121=-<-+∈→x f x f SUP x x I x x δ δ. ②充分性 由于()()0lim 21,02121=-<-+∈→x f x f SUP x x I x x δ δ,所以0,00>?>?δε,对任意的1x ,I x ∈2只要 021δ<-x x ,就有 ()()εδ<-<-∈21,0 2121x f x f SUP x x I x x . 故取00δδ≤<,当1x ,I x ∈2,021δ<-x x 时,可以得到 ()()()()()()εδδ <-≤-≤-<-<-∈∈21,21,210 21212121x f x f S U P x f x f S U P x f x f x x x x I x x I x x , 所以()x f 在区间I 上一致连续. 定理1.2[2] 函数()x f 在区间I 上一致连续的充要条件是在I 上任意两个数列n x ',n x '',只要使0lim =''-'∞ →n n n x x ,就有()()0lim =''-'∞ →n n n x f x f 证明 ①必要性 因为()x f 在区间I 上一致连续,所以由定义知 0,0>?>?δε,对任意的x ',I x ∈''只要δ<''-'x x ,就有 ()()ε<''-'x f x f .

(完整版)大一高数第一章函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

相关文档
最新文档