数学成长资源(Mathematical growth resources)
小学数学扩展资源推荐

小学数学扩展资源推荐数学是一门普遍被认为枯燥乏味的学科,然而,如果能够给小学生提供一些有趣且富有挑战性的数学扩展资源,将会激发他们对数学的兴趣和热爱。
在这篇文章中,我将向大家推荐一些适合小学生的数学扩展资源,帮助他们更好地理解和掌握数学知识。
1. 数学游戏和应用程序数学游戏和应用程序是一种有趣且互动的学习方式,可以帮助小学生巩固和扩展他们的数学技能。
例如,"数独"是一种经典的数学游戏,通过填充九宫格中的数字,培养孩子的逻辑思维和推理能力。
另外,一些数学应用程序如"Mathletics"和"Khan Academy"提供了丰富的数学题库和练习,可以根据孩子的年级和能力进行个性化的学习。
2. 数学竞赛和奥林匹克参加数学竞赛和奥林匹克是培养小学生数学能力的有效途径。
这些竞赛通常包含一系列挑战性的数学问题,要求学生运用创造性思维和解决问题的能力。
例如,"小小数学家"是一个专为小学生设计的数学竞赛,通过参与这样的竞赛,孩子们可以锻炼他们的数学技巧,并与其他有相同兴趣的孩子们交流和分享经验。
3. 数学故事书和绘本数学故事书和绘本是一种将数学知识与故事情节相结合的方式,可以帮助小学生更好地理解和应用数学概念。
例如,"一百只鸭子"是一本适合小学生阅读的数学故事书,通过描述一百只鸭子的分组和排列,引导孩子们学习数学中的计数和组合。
此外,一些数学绘本如"数学魔法师"和"数学小怪兽"也可以激发孩子们对数学的兴趣和探索欲望。
4. 数学实践活动和实验数学实践活动和实验是一种将数学知识与实际生活相结合的学习方式,可以帮助小学生将抽象的数学概念与具体的情境联系起来。
例如,组织数学拼图比赛,可以让孩子们通过拼装拼图来锻炼他们的几何和空间想象能力。
另外,进行数学实验如测量和比较不同物体的重量和体积,可以帮助孩子们理解数学中的度量和比较概念。
数学学习有哪些资源推荐?

数学学习有哪些资源推荐?数学学习资源帮我推荐:从基础到进阶,打造新华考资学体验数学作为一门基础学科,其自学对个人的逻辑思维、抽象思维和问题解决能力具有重要意义。
随着信息技术的飞速发展,数学学习资源也呈现出多元化、丰富化的趋势,为不同层次的学习者提供了多样的选择。
本文将从教育专家的视角,针对不同学习需求,推荐一些优质的数学学习资源。
1. 基础学习资源:打好数理基础教材与习题册: 教材和习题册是数学学习的基础,选择与课程内容相符、练习题难度适宜的教材与习题册,并结合课堂教学,加深对基础知识的理解。
在线学习平台: 慕课平台如Coursera、edX等提供丰富多样的数学课程,涵盖代数、几何、微积分等基础内容,并提供视频讲解、练习题以及论坛互动等学习资源。
数学教学网站: Khan Academy、MathPlayground等网站提供免费的数学课程和练习内容,以动画、游戏等趣味形式呈现,适合初学者和低年级学生。
2. 拓展学习资源:提升数学能力数学建模竞赛: 参加数学建模竞赛,可以锻炼学生的数学应用能力,提升解决实际问题的能力。
数学解题网站: 如WolframAlpha、Symbolab等网站可以帮助学生快速解决数学问题,并提供详细的解题步骤和概念解释。
数学期刊与书籍: 阅读相关期刊和书籍,可以了解数学领域的最新研究成果,拓宽知识面。
3. 趣味学习资源:激发数学兴趣数学游戏: 数独、华容道等益智游戏,可以在娱乐中锻炼数学思维,提高逻辑推理能力。
数学科普书籍: 如《数学之旅》、《费马大定理》等科普书籍,以形象生动的形式介绍数学概念和历史,激发对数学的兴趣。
数学电影: 如《美丽心灵》、《心灵捕手》等以数学家为主角的电影,展现出数学的魅力,激发学习兴趣。
4. 教师资源:提升教学效果教育类网站: NCTM(美国国家数学教师委员会)、Maths Resources等网站提供丰富的教学资源,包括课程计划、教学活动、评估工具等。
小学数学课堂生成性资源的认识和利用

小学数学课堂生成性资源的认识和利用小学数学课堂生成性资源是指教师和学生在教学过程中创造的各种资源,包括教材、课件、教学设计、教学活动等。
这些资源可以帮助学生更好地理解和掌握数学知识,提高他们的数学能力和思维能力。
认识和利用这些生成性资源对于提高数学教学质量和学生学习效果具有重要意义。
认识生成性资源的重要性生成性资源是数学教学的重要途径。
教师可以通过利用各种生成性资源,开展丰富多样的教学活动,提供多种学习路径和角度,满足不同学生的学习需求,帮助学生更好地理解数学知识,发展数学思维。
而学生也可以通过积极利用生成性资源,主动参与教学活动,主动构建知识结构,形成能力模式,实现自主学习和个性发展。
教师应该认识到生成性资源在数学教学中的重要作用,充分重视生成性资源的利用。
教师应该通过认真研读教材、教学大纲等教学资源,了解数学教学的要求和内容,明确教学目标和重点,为生成性资源的创造奠定基础。
教师应该不断提高自己的教学能力和素质,不断创新教学方法和手段,尝试使用各种生成性资源开展教学活动,实现优质教育资源的开发和共享。
学生应该认识到生成性资源在数学学习中的重要作用,积极利用生成性资源。
学生应该主动参与教学活动,积极思考和探索,主动提出问题和观点,创造属于自己的学习资源。
学生应该在课外积极学习和思考,不断积累和整理学习资源,提高自己的学习能力和水平。
教师和学生可以通过各种方式认识和利用生成性资源,如:引导学生进行课外探究和实践,鼓励学生进行小组合作和互动,指导学生进行个性化学习和自主评价等。
只有充分认识和利用生成性资源,才能更好地推动数学教学的改革和发展,提高学生的数学素养和综合能力。
2022年新课程成长资源课时精练数学七年级上册北师大版答案

2022年新课程成长资源课时精练数学七年级上册北师大版答案
第一章函数与方程
1. 一元一次方程的解
问题:若ax+b=0,其中a≠0,求x的值。
答案:x=-b/a。
2. 一元二次方程的解
问题:若ax2+bx+c=0,其中a≠0,求x的值。
答案:x1=(-b+√b2-4ac)/2a,x2=(-b-√b2-4ac)/2a。
3. 一元三次方程的解
问题:若ax3+bx2+cx+d=0,其中a≠0,求x的值。
答案:x1=(-b+√b2-3ac)/3a,x2=(-b-√b2-3ac+√3(b2-3ac)i)/6a,x3=(-b-√b2-3ac-√3(b2-3ac)i)/6a,其中i=√-1。
第二章图形
1. 直线的性质
问题:直线的斜率是什么?
答案:直线的斜率是两点之间的斜率,即斜率=(y2-y1)/
(x2-x1)。
2. 圆的性质
问题:圆的标准方程是什么?
答案:圆的标准方程为(x-a)2+(y-b)2=r2,其中a,b为圆心
坐标,r为半径。
3. 平面图形的性质
问题:平面图形的面积是怎么求的?
答案:平面图形的面积可以用面积公式求得,具体的面积公式取决于图形的形状。
成长资源七年级数学上·人教版

七年级 上册
第一章 有理数 ! " ! 正数和负数 一 ! " #$ " %& " '( " )* "# 二 ! "( & $ "+ $球双方进球数相同 & ! ! + ! ( * 年 $ , . ! 年 & + $ . /年 最低 ( , !. . -年 ( " 某地一天的最高气温是 * 0 气温是+* 0 * " ,! $ / 0 +! * . 0 /! ! +! 第$ 第! ,! +! . 个数是 ,! . ! 个数是 +!! 第$ 第! $ +- ,1 +2 . 个 数 是 ,$ . . !个数 $ . 第 - 1 2 第$ 是 +! . !! & + . 个数是 + 1 2 ! . $ ! ! . ! ! . ! 个数是 , ! ! . $ 三 ! " 迟到 * 分钟 星期 李明 张梅 一 二 三 四 五
(
/ 互为倒数 $ 9. /8! " 7 .)
$. . $ $. . $ $. . $ $. . $ # 9" ', ( ," . /# 8 . , ! 8 . , ! 8 ! !
此题的关键是能把 ' 与($ . 与/ 的 关 系 转 化 为 等 再进行幂的运算" 式形式 $ " # ( ' 是互为相反数" 互为相反数的平方 ' 与+
成立" 所以一定成立的有 " & "略 五 ! " 略 $!本月应缴获纳的水费为 ' 1<! ! &,/<$ ! 28$ ! 1 " 元# $ 1 $ 黑桃 & $ 红桃 & $ 梅花 - 可以这样凑成 $ ' &!黑桃 ( # . -< &+ " +& =8$ (! 由黑桃 $ 黑桃 & $ 红桃 $ 红桃 & $ 可以这样凑成 $ ' ( # # . -< &, " +& =" +8$ (! 由黑桃 0$ 红桃 0$ 梅花 &$ 方块 # 可以由以下算式 凑成 ! # # $<&+ " +! $ <" +! 8$ (!
成长资源九年级数学上·人教版

槡
槡
! 即 ! 三 "" " !(& ! "/ 2! $ !$ 时 & & !(& !在实数范围内有意义 " 槡
! ! 1 当 ! 为任意实数时 ! %"#/ ! 2! 取任意实数 ! %"有意义 " 槡
(% %3 # ( %3 $" #3(% %
& 1
& & $ 验证) $ $ $ 3 $% $ 3 3 $ " ' " ' " ' " ' ! 二次项 ) % 一次项 ) 常数项 ) /% & ! ! !% (' " # 是" 二 次 项 系 数) 一 次 项 系 数) 常 !" " #% ($%
槡 槡
!
槡 槡
!
数项 ) !" 槡 " # 当 ( & (" 时 $ 是 一 元 二 次 方 程" 二次项系 ! 数) 一 次 项 系 数) 常 数 项) (%"% () (% (" & ( %"# "
! 面积是# " ! ""#(" % 槡 #(! 3 #("%' #(! !! 四 '3#
#%!3" ! ! ( ' (%" 3槡 ( 槡 ' (%" 3 ' (%" ( ("( 槡 槡
! !" " ($ '槡 &! ! ' # $ !! & ()! ' ' 槡
浅议如何在数学课堂拓展生成性资源

改变单 调乏味的“ 自式” 独 教学 。教 给学生 自主学习的“ 工具”使 ,
学生 的 自主学 习成 为可能。倡导多元 的学习见解 , 教师不 以主观
3注重疏导点拨 , . 学会合作探究
意愿强行牵引学生。引导学生对“ 书本 ” 生 活” 和“ 两个世界进行沟
通, 使学 生体会到运用知识解决 生活问题的乐趣 。“ 自主探究” 不 仅是学 习方式 , 而且 是一种 深层次 的教 学理念 , 果理念 迷失 或 如
方面多下功夫。 同时要注 意把 握好 几个方面 的原 则。
关键词 : 数学 ; 生成性; 资源 随着初 中数学新课程 改革 的推进 , 教师 的课程 资源意识逐步 错 过启发教育 的太好机会 , 为此 , 教师必须善于捕捉生成时机 , 抓
增强 , 多教师越来越多地利用文字资料 、 书馆 、 很 图 网络等素材性 住 时机 因势利 导 , 使学生在 新鲜 的 、 探索 的体验 中发现 问题 和解
关键词 : 自主探究 ; 自学; 激励评 价
一
、
树立新课标理念 。 实现课 堂教学三个转变
熏陶。在 自学探究 中, 让学生把学 、 、 问联结在 一起 , 思 疑、 学有所
学生是学习的 主人 , 一切教育活动都 离不开学 生 自主性 的发 思 , 思有所 疑 , 疑有所 问 , 从而获得更 多的 自主探究 的空间和学习
课 程资源 , 但却 忽视数学课堂 中的生成性 资源 。数 学课改的深入 决 问题 , 在跃跃欲试的动机驱使 下不 断探索 。 开展使课堂 中凸现 的生成性资 源越来越 丰富 , 于初 中数学教学 对 中如何搞好生成性资源 的拓展 , 笔者进行 了一些探索 。
主 的学 习 。
第 一乐趣。 同时 , 引导学生到 图书馆 、 阅览室 , 到社会生 活中去探
数学学习有什么好的学习资源?

数学学习有什么好的学习资源?数学学的宝藏:优质资源助力法功数学是一门基础学科,其逻辑严谨、思维抽象,对个人智力发展和各学科学都具有重要意义。
但是,许多学生在学习数学时困惑不已和迷茫,普遍缺乏有效的学习资源也阻碍他们进步速度。
本文将从教育专家的角度,向大家推荐一些优质的数学学习资源,帮助学生们打开数学学习的大门,体验数学的魅力,并取得更大的进步。
1. 教科书与配套练习册:基础搭建中,稳步提升教科书是学习数学最基础的资源,其内容体系完整、条例清晰,能为学生提供系统的知识体系。
对应的练习册则为学生提供大量的练习题,帮助他们巩固知识、熟练掌握技巧。
建议学生认真研读教科书,理解概念和理论,并按照练习册进行巩固练习,循序渐进地提升数学能力。
2. 在线学习平台:突破时间限制,自主学习伴随着互联网技术的快速发展,各种在线学习平台应运而生,为学生提供了十分丰富多样的数学学习资源。
例如,可汗学院、Coursera、edX等平台能提供在线的数学课程,涵盖初等数学到高等数学的各个领域,方便学生自主学习。
同时,一些专业机构也推出了针对不同年龄段、不同学习需求的在线课程,学生可以根据自身情况选择适合的内容进行学习。
3. 数学类网站与博客:知识拓展,趣味引导一些优秀的专业数学网站和博客,例如数学之旅、数学爱好者,会定期发布数学知识、解题技巧和数学史等内容,引导学生拓展知识面、激发学习兴趣。
这些平台通常由经验丰富的数学老师或研究人员维护,内容专业可靠,能够为学生提供更深入的学习体验。
4. 数学游戏与软件:寓教于乐,激发潜能一些数学游戏和软件,例如MathPlayground、Minecraft,通过游戏化的方式,将抽象的数学知识融入具体的场景中,让学生在玩乐中学数学,增强数学兴趣和学习效率。
这种寓教于乐的学习方式,尤其适合低年级学生,帮助他们更好地理解数学概念,并培养和训练对数学的兴趣。
5. 寻求师友帮助:互动交流,突破瓶颈学习数学的过程中,遇到问题是不可避免的,此时诚求师友帮助十分重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学成长资源(Mathematical growth resources)26.2 see a quadratic equation with the view of a functionSmart upgrade1. A2. B3. D4. A5. D6. C7.6 8. Minus 2 is less than or equal to 1(1) y = (x - 1) 2-1 (2) - 1 or 3(3) less than 0 or greater than 2 is greater than 0 and less than 210. Solution: y = x2-2x - 1 = x2-2x + 1-1-1 = (x-1) 2-2,∴ vertex coordinates of (1, 2).So y is equal to 0, x2 minus 2x minus 1 is equal to 0.X1 is equal to 1 plus 2, x2 is equal to 1 minus 2.∴ and intersection of the x a xis for the (1 + 2, 0), (1-2, 0).(1) substitute (0, 3) into y = -x2 + (m - 1), and m = 4.(2) minus x2 plus 3 is equal to 0, so x is equal to plus or minus 3,∴ and intersection of the x axis (3, 0), (3, 0), the vertex coordinates of (0, 3).(3) -3 < x < 3, the parabola is above the X-axis.(4) when x > 0, the value of y decreases with the increase of x value.The solution: (1) x2-2x - 3 = 0, x1 = -1, x2 = 3.∴ A (1, 0), B (3, 0).So if you plug in the coordinates of A, B, and B, and then you plug in y = ax2 + bx + 2,So you get a minus b plus 2 is equal to 0, 9, a plus 3b plus 2 is equal to 0.(2) it has to be (1) y = -23x2 + 43x + 2.∵ when x = 0, y = 2, ∴ C (0, 2).Let's say that the analytic formula for line AC is y is equal to k x plus b, and I'm going to put the two coordinates of A and C at y is equal to kx plus b, so k is equal to 2, and b is equal to 2.∴ analytical type of linear AC y = 2 x + 2.Similarly, the analytical formula for the line BC can be obtainedY is equal to minus 23x plus 2.Direct tests1. C2. D3. X = -1,4.12.55.4(1) if you want to make a point, you can get 22 + 2p + + 1 = 0.So q is equal to minus 2p plus 5.(2) to prove: a yuan quadratic equation ∵ x2 + p + q = 0 discriminant Δ = p2-4 q,By (1)Δ = p2 + 4 (2 p + 5) = p + 20 p2 + 8 = (2 + 4 p + 4) > 0,∴ a yuan quadratic equation x2 + p + q = 0, there are two not equal to the real root.∴ parabolic y = x2 + p + q has two intersections with the x axis.7. Solution: (1) drawing as shown.Depends on the questionY is equal to x minus 1, 2 minus 2 is x2 minus 2x plus 1 minus 2 is x2 minus 2x minus 1.∴ translation after image analytic expression for y = x2-2-1 x.(2) when y is 0, x2 minus 2x minus 1 is 0,(x - 1) 2 = 2,X minus 1 is equal to plus or minus 2,X1 is equal to 1 minus 2, x2 is equal to 1 plus 2.∴ the translation image and x axis to two points, coordinates, respectively (1-2, 0) and (1 + 2, 0).It can be seen from the diagram that when x < 1-2 or x > 1 + 2, the quadratic function y = (x - 1) 2-2 is greater than 0.26.3 practical problems and quadratic functionsSmart upgrade1. D2. D3. Y = -30x + 960 w = -30x2 + 960x - 14404. S = 2x25. Solution: (1) the profit of each loaf is (x-5) Angle, and the number of bread sold is (300-20x) or [160 - (x-7) x 20].(2) y = (300-20x) (x-5) = -20x2 + 400x - 1500,So y is equal to minus 20x2 plus 400x minus 1500.(3) y = -20x2 + 400x - 1500 = -20 (x-10) 2 + 500.∴ when x = 10, a maximum of 500 y.∴ when each bread unit price as the Angle of 10, the retail profits biggest daily, Angle of maximum profit of 500.6. Solution: (1) 17.38(2) after drinking, when v = 17, s = 46,Plug in s = TV + 0.08v2, you get t is equal to 1.35.If the speed of drinking is 11 m/s, the brake distance is s = 1.35 * 11 + 0.08 * 112 = 24.53. The brake distance of the non-alcoholic drink is 17.38, so it increases by 24.53-17.387.2 m.(3) it is understood that 17t + 0.08 * 172 < 40, solution t < 0.99. Your reaction time should be no more than 0.99 seconds.7. Solution: (1) y = (x-20)? W is equal to x minus 20 times minus 2x plus 80.= -2x2 + 120x - 1 600,∴ function relation between the y and x is y = 120-2 x2 + x - 1, 600.(2) y = -2x2 + 120x - 1600 = -2 (x-30) 2 + 200,∴ when = 30 x, y has a maximum of 200.When the selling price is RMB 30 / kg, the maximum profit is 200 yuan per day.(3) when y = 150, the equation is equal to 2 (x-30) 2 + 200 = 150.So if you solve this equation, you get x1 is equal to 25, x2 is equal to 35.According to the question, x2 = 35 is not an issue.∴ when the sale price to $25 / kg, the farmers get the sales profit is 150 yuan per day.X: (1) y = kx + b, by image30k + b = 400,40k + b = 200. The solution is k = -20, b = 1 000.∴ y = 000-20 x + 1 (30 x 50 or less or less).(2) P = (x-20) y = (x-20) (-20x + 1 000)= -20x2 + 1 400x - 20 000.∵ - 20 < 0, ∴ P has a maxim um value.When x is minus 1, 400, 2 times? - 20? = 35,P maximum = 4 500.The maximum profit is 4 500 yuan per day when the unit price is 35 yuan per kilogram.(3) 31 x or less acuities were 34 or 36 x or less 39 or less.Direct tests1.252(1) according to the meaning, we have toY = (2, 400-2, 000 - x) (8 + 4 x x50),So y is equal to minus 225x2 plus 24x plus 3, 200.(2) by means of a questionMinus 225x2 plus 24x plus 3, 200 is equal to 4,800.So you get x2 minus 300, x plus 20, 000 is equal to 0.So to solve this equation, x1 is equal to 100, x2 is equal to 200.In order to make the people affordable, x = 200. Therefore, every refrigerator should be reduced by 200 yuan.(3) for y = -225x2 + 24x + 3, 200,When x is equal to minus 242 times? - 225? = 150,The maximum value of y = (2, 400-2, 000-150) (8 + 4 x 15050).= 250 times 20 is 5,000.Therefore, when the price of each refrigerator is 150 yuan, the profit of the mall is the largest, and the maximum profit is 5,000 yuan.Chapter xxvii similar to 27.1 figuresSmart upgradeB 1. A2. D3. C4.5. 2.6.10, 14,7.400 m8. Solution: no, because the length and width of glass similar ratio of 26:18 = 13:9, and frames the length and width ratio of 26 + (4) : (18 + 4) = 15:11 indicates: 9, 13 so glass and frame is not similar to that of the rectangular outside.9. Solution: the shape of A quadrilateral ABCD is similar to the quadrilateral A 'B' C 'D< A = < A '= 150 °,< D = 360 ° 150 ° (+ 60 °, 75 °) = 75 °.B 'C'C 'C' C 'B' AB = C 'D' CD,B 'C' 8 = 2.52 =C 'D' 5,B 'C' = 10,C 'D' = 254.10. Solution: the line segment given is: 22 cm, 2 cm, etc. Because 12 is 22, 2, 12 is 22.The answer is not unique, as long as it is proportional. Direct tests1. D2. B3. C4. A.Because = < < AB C DEF = 45 ° 90 ° + = 90 °,ABDE = 22 = 2, BCEF = 222 = 2,∴ ABDE = BCEF.∴ delta ABC ∽ delta DEF.When the BD = a2b, delta ACB ∽ delta CBD.7. Solution: (1) the ∵ < ACP = < PDB = 120 °,When ACPD = PCDB, ACCD = CDDB,CD2 is equal to AC, right? The DB, delta ACP ∽ delta PDB.(2) ∵ delta ACP ∽ delta PDB, ∴ < A = < DPB.∴ < APB = < APC + + < < CPD DPBSo this is Angle APC plus Angle A plus Angle CPD= < PCD + < CPD = 120 °.8. Solution: because point D, I is the third point of AB and CA,∴ ADAB = AIAC = 13.And ∵ < A = < A, ∴ delta ADI ∽ delta ABC.∴ DIBC = AIAC = 13, DI = 13 BC.The same thing is EF = 13AC, GH = 13AB.∵ point D, E, F, G, H, I were third point of the AB, BC, CA,∴ DE = 13 ab, FG = 13 BC, HI = 13 ac.∴ hexagon DEFGHI perimete r= DE + EF + FG + GH + HI + ID= 13AB + 13AC + 13BC + 13b + 13AC + 13BC= 23 (AB + AC + BC) = 23a.9. Solution: set AP = x, and BP = 6 - x.∵ AD ∥ BC, B < = 90 °, ∴ < A = 90 °.∴ < A < = B.(1) when APBP = ADBC, delta APD ∽ delta BPC,∴ x6 - x = 18, ∴ x = 23.(2) when APBC = ADBP,Delta APD ∽ delta BCP,∴ by 8 = 16 - x.∴ = 2 x, or x = 4.∴ the desires of AP long 23, 2 or 4.Direct tests1. A2.3Angle ACD = Angle B (Angle ADC = Angle ACB or ADAC = ACAB)4. Solution: (1) to prove: ∵ delta A BC is an equilateral triangle.∴ < BAC = < ACB = 60 °, < ACF = 120 °.∵ CE is exterior Angle bisector,∴ < ACE = 60 °.∴ < BAC = < ECD.And ∵ = < < the ADB CDE,∴ delta ABD ∽ delta CFD.(2) BM orthogonal complement AC at point M, AC = AB = 6.∴ AM = CM = 3, BM = AB? Sin60 ° = 33.∵ AD = 2 CD,∴ CD = 2, AD = 4, MD = 1.In Rt delta in BDMBD = BM2 + MD2 = 27.By (1) delta ABD ∽ delta CED,BDED = ADCD, 27ED = 2.∴ ED = 7.∴ BE = BD + ED = 37.27.2.2 examples of similar triangles Smart upgrade1. C2.7.53.10 m4. Solution: ∵ AB an BD, AC an AB,∴ AC ∥ BD.∴ < ACB = < DBC.And ∵ < A = < BCD = 90 °,∴ delta ABC ∽ delta CDB.∴ ACBC = BCBD.∴ BC2 = AC? BD.In Rt delta ABC,BC2 = AC2 + AB2 = 152 + 302 = 1 125, ∴ AC? BD = 1 125∴ 15? BD = 1, 125.∴ BD = 75 (cm).5. Prove that: (1) the ∵ quadrilateral ABCD and quadrilateral DEFG are square.∴ AD = CD, DE = DG,ADC = < < EDG = 90 °,Angle ADC + Angle ADG = Angle EDG + Angle ADGThe < ADE = < the CDG.∴ delta ADE ≌ delta CDG. (SAS)∴ A E = CG.(2) by (1) to know delta ADE ≌ delta CDG,∴ < DAE will work = < DCG.And < ANM = < CND, ∴ delta AMN ∽ delta CDN.∴ ANCN = MNDN,Namely the AN? DN = CN? MN.6. Solution: (1) to prove: ∵ ABCD is a square.∴ < DAE will work = < FBE = 90 °.∴ <ADE + < DEA = 90 °.EF DE coming again,∴ < AED + < FEB = 90 °.∴ < ADE = < FEB. ∴ delta ADE ∽ delta BEF.(2) by (1) delta ADE ∽ delta BEF, AD = 4, BE = 4 - x,So yx is equal to 4 minus x4.So y is equal to 14 minus x2 plus 4x is equal to 14 times x minus 2 plus 4.It's minus 4 times x minus 2 plus 1.∴ when = 2 x, y has the maximum value, maximum of y is 1.7. Solution: ∵ CD an FB, AB an FB, ∴ CD ∥ AB.∴ delta CGE ∽ delta AHE.∴ CGAH = EGEH that CD - EFAH = FDFD + BD.∴ 3-1.6 AH = 22 + 15.∴ AH = 11.9.∴ AB + HB = = AH AH + EF = 11.9 + 1.6 = 13.5 (m).8. Solution: (1) the nature of the light and shadow is DE ∥ AC,∴ < BDE = < BAC, < BED = < BCA.∴ delta BDE ∽ delta BAC.∴ DEBD = ACAB.AC = 302 + 302 = 50 ∵ (m), BD = 83 (m),AB = 40 (m), ∴ DE = 103 (m).(2) BE = de2-bd2 = 2.The time spent by wang gang at E point is 40 + 23 = 14 (s), and zhang hua's time at the D point is 14-4 = 10 (s), and zhang hua's speed of chasing wang is (40-83), which is 10 (m/s).Direct tests1. B2. C3.9B: ABA is a good place to goAB = kA 'B', AC = kA 'C',In Rt delta ABC and Rt delta A 'B' C ',BCB 'C' = AB2 - AC2A 'B' 2 - A '2 - A' B '-' B '-' B '-' B '-' 2 - A '-' B '-' B '-' B '.∴ ABA 'B' = ACA 'C' = BCB 'C'.∴ Rt delta ABC ∽ Rt delta A 'B' C '.Answer: (1) an acute Angle corresponding to the corresponding ratio of two right angles(2) the hypotenuse is proportional to a right AngleIn Rt delta ABC and Rt delta A 'B' C ',< = C < C '= 90 °, ABA' B '= ACA' C '27.2.3 the perimeter and area of a similar triangleSmart upgrade1. C2. C3. B4. B5. D6.203 cm27.506.6498.1:69.1210. Solution: ∵ EF ∥ AB, ∴ delta ECF ∽ delta ACB.∴ S delta ECFS delta ACB = CE2CA2.When the area of delta ECF is equal to the area of thequadrilateral EABF,Delta ECFS delta, delta ACB = CE2CA2 = 12.∴ CE = 22 ca = 22.Solution: the area of a small triangle is xcm2, and 32102 = x400.X is equal to 36.The perimeter of the two triangles is 3k and 10k respectively10k minus 3k is equal to 560.So 3k = 240, 10, k = 800.The area of the small triangle is 36 cm2 and the circumference is 240 cm.The circumference of the large triangle is 800 cm.Direct tests1. B2.1:23.94.255. Solution: (1) to prove: ∵ DC to AC,∴ delta ACD is isosceles triangle.∵ CF split < ACD,∴ F is the halfway point of the AD.∵ E as the midpoint of AB,∴ EF for delta ABD the median line.∴ EF ∥ BC.(2) by (1) the EF ∥ BC, ∴ EFBD = 12.∴ S delta AEF: S train ABD = 1:4.∴ S quadrilateral BDEF: S delta ABD = 3, 4.∵ S delta ABD = 6,∴ S quadrilateral BDEF = 92.27.3 likelihoodSmart upgradeB 1. C2. D3.() 16. Solution:Figure (1), (2), (3), and (4) are the centers of O1, O2, O3, and O4 respectively.7.Solution: ∵ quadrilateral ABCD and quadrilateral EFGH is a graphic,∴ parallelogram ABCD ∽ quadrilateral EFGH.∵ parallelogram ABCD and the area of the quadrilateral EFGH ratio of 4, 9,∴ parallelogram ABCD and quadrilateral EFGH simil arity ratio of 2:3.Similar ∵ polygon circumference ratio is equal to the similar ratio,∴ parallelogram ABCD and quadrilateral EFGH ratio of the circumference of the 2, 3.Solution: as shown below.9. Solution: (1) to make a few pairs of lines CC ', BB 'and AA' in the corresponding points respectively, the three lines intersect at point O, and O is the desired.(2) as can be seen from the figure, A 'B' = 42 + 62 = 213,AB is equal to 22 plus 32 is equal to 13.∵ again A 'B' and AB is corresponding t o the side,A 'B: AB = 13:213 = 2:1,∴ delta ABC to delta A 'B' C 'of A ratio of 2:1.(3) as shown below.10. Solution: (1) (2) as shown.(3) the center coordinates (0, 0).(4) is the axisymmetric figure.Direct tests1. (1) draw the origin O, x axis, Y-axis. B (2, 1).(2) graph delta A 'B' C '.3 S is equal to 12 times4 times 8 is 16.Solution: figure.Chapter xxviii acute triangle function 28.1 acute triangle functionClass 1Smart upgrade1. C2. B3. A4. A.5.12136.457. (1), 3212 (2), 889898. Solution: ∵ AB = BC2 + AC2 = 289 = 17.∴ sin = BCAB = 817 A.9. Solution: c = a2 + b2 =? 63? 2 plus 182 is equal to 123,Minimum Angle of < a. ∴ sin A = 12.10. Solution: there are three pairs of proportional line segments of the sine of Angle B,Sine of B is equal to ACAB = CDBC = ADAC.Direct tests1. B2. A3.30 °4.555.356. Solution: as shown in the picturePoint B is the BC vertical bank, the perpendicular is C, and in Rt delta ACB, there isAB = BCsin < BAC sin60 = 900 °= 6003,So time t = sv = 60035 x 60= 2, 3, material (3.4 min).A: it takes about 3.4 minutes from A to B.The second classSmart upgrade1. D2. B3. C4. A5. D6.7247. (1), 810 (2), 5233638. 1313 (2), 33232 (1)(3), 21313413139. Solution: (1) sine of A = 35, cosine of A = 45, sine of B = 45, cosine of B = 35.(2) sin A = 817, cos A = 1517, sine B = 1517, cos B = 817.(3) sine of A = 158, cosine of A = 78, sine of B = 78, cosine of B = 158.10. Solution: (1) by BC = 6, AC = 8, according to the Pythagorean theorem,AB = BC2 + AC2 = 62 + 82 = 10∴ sinA = BCAB = 610 = 35(2) ∵ < ACB = 90 °, CD an AB∴ < A + A + < ACD = < < B∴ < ACD = < B∴ cos < ACD = cosB = BCAB = 610 = 35(3) ∵ S delta ABC = 12 ab? CD = 12 BC? AC∴ AB? CD = BC? AC∴ CD = BC? ACAB is equal to 6 times 810 is equal to 245Direct tests1. C2. B3. B4. A5. C6.45The third classSmart upgrade1. D2. B3. C4. B5. D6. > >7.1230 ° + 8. Solution: (1) the sin sin 60 ° 45 ° = 12-2 cos + 32-2? 22 is 12 times 3 minus 1.(2) 1-45 ° cos2-1-60 ° sin2 = 1 -? 22? 2 minus 1 --? 32? 2= 12 (2-1).(3) | sin 30 ° to 30 ° - cos | = 12-32 = 12 (3-1).(4) cos 45 ° to 45 ° sine and cosine 60 ° 1 + 30 ° 30 ° - 3 tan sin = 1-121 + 12-3 x = 23 33-3.9. Solution: c = a2 + b2 = 72 + 216 = 288 = 122.∵ tan A = ab = 6266 = 33,∴ < 30 °, A = < B = 90 ° - < = 60 °.∴ < 30 °, A = < B = 60 °, c = 122.10. Solution: ∵ | | + cos A - 22 (sin - 12 B) = 0, 2∴ | | cos A - 22 acuity 0, (sin - 12 B) 2 0 or higher,∴ | | cos A - 22 = 0,(sin B minus 12) 2 is equal to 0.∴ cos A - 22 = 0, sin - 12 B = 0,So cosine of A is equal to 22, sine of B is equal to 12.∴ < 45 °, A = B < = 30 °∴ < = 180 ° to 45 ° to 30 ° C = 105 °.Direct tests1. B2.333.24.55. Resolution: the length of the carpet should be determined. The total length of the carpet should be the sum of the line segment AC and BC.Because AB = 4 m, < BAC = 30 °, < = 90 ° C,SinA = sin30 ° = BCAB = 12, so the BC = 2 m, according to the Pythagorean theorem can be:AC = 23 m.So the length of the carpet on the AB section should beM (2 + 23).Answer: (2 + 23) m6. Solution: (1) in Rt delta ABC, sinB = 55, AB = 25, ACAB = 55.∴ AC = 2, according to the Pythagorean theorem: the BC = 4.(2) the ∵ PD ∥ AB,∴ delta ABC ∽ delta DPC.∴ DCPC = ACBC = 12.Set PC = x, DC = 12x, AD = 2-12x,∴ S delta ADP = 12 AD? PC = 12 (2-12x)? x= -14x2 + x = -14 (x-2) 2 + 1.∴ when = 2 x, y, a maximum of 1.Class 4Smart upgradeB 1. C2. C3.126.0.922 4.345.3 + 57. Solution: (1) the original form = -4 + 33 + 1-3 * (3-1) = 0.(2) the original equation is 1 + 3-2 times 12 = 4-1 = 3.(3) primitive = (22) 2-33 + 12 + 6 * 33So it's 12 minus 33 plus 12 plus 23 is equal to 1 minus 3.(4) the original formula is 3-1 + 12-1 + 12 = 3-1.(1) sine A = 0.8683, cosine A = 0.4962, tan A = 1.75.(2) < = 19.18 ° A, B < = 84.33 °.9. Solution: the original is equal to x plus 1x2 plus x minus 2? X + 2? X + 1?? X - 1? = 1? X - 1? 2.When x = tan 30 ° to 45 ° - cos = 1-32,The original type = 1? - 32? 2 = 43.10. Solution: 1 ° tan? Tan 2 °? Tan 3 °? Tan 4 °? ... ?Tan 87 °? Tan 88 °? Tan 89 ° = (? Tan tan 1 ° 89 °)? (tan 2 °, 88 °) tan? ... ? 44 ° (tan, tan, 46 °)? Tan 45 °= 1 * 1 * 1 *... * 1 * 1 = 1.Direct tests1. Solution: the original formula = 3 + 1-1 = 3.Solution: the original is equal to (3) -1 times 32-12 + 8 times 0.125So it's 13 times 32 minus 12 plus 1 is 1.28.2 solve right triangleClass 1Smart upgrade1. A2. A3. C4.125.456.1:27. Solution: (1) c = a2 + b2 = 42 + 82 = 45.(2) a = btan B = 103 = 1033,C = bsin B = 10 sin 60 ° = 1032 = 1032.A = c (3)? Sine of A is equal to 20 times 32 is 103,B = c? Cos 60 ° 20 x = 12 = 10.8. Solution: A and C respectively are AE orthogonal BC, CF perp AD, the feet are E and F, and AE = CF.In Rt delta ABE, AE is equal to AB? 45 ° sin = = 42 CF.In Rt delta CDE, CD = CFcos < FCD = 30 ° CFcos = 4232 = 863.9. Solution: (1) to prove: ∵ AD an BC,∴ delta ABD and delta ADC for a right triangle.∴ tan B = ADBD, cos < DAC = ADAC.∵ tan B = cos < DAC, ∴ ADBD = ADAC, namely the AC = BD.(2) in Rt delta ADC, we know that sin C = 1213,AD = 12k, AC = 13k.∴ CD = AC2 - AD2 = 5 k.∵ BC = BD + CD and AC = BD,∴ BC = 13 k + 5 k = 18 k.By the known BC = 12, ∴ 18 k = 12.∴ k = 23. ∴ AD = 12 k = 8.10. Solution: in the delta ADC, < = 90 °, ADC< = 60 ° C, AC = 10, CD = 5, AD = 53.In the delta of the ADB, < B = 45 °,< = 90 ° of ADB. BD = AD = 53,∴ AB = 5 6, BC = 5 (3 + 1).Direct tests1.62. M - n? Tan alpha tan alpha.3. Solution: M is MN perp AC, at this time MN is the smallest, AN =1 500 m.4. Solution: ∵ in Rt delta ADB, BDA, a < = 45 °, AB = 3,∴ DA = 3.CDA = ∵ in Rt delta ADC, < 60 °,∴ tan60 ° = CAAD. ∴ CA = 33.∴ BC = CA - BA = (33-3) m.A: the height of the traffic sign BC is (33-3) meters.The second classSmart upgrade1. B2. C3. C4. No5.306.11.8Solution: as shown in the picture, light FE affects E in the B building.EG: (1) EG: 1.< FEG = 30 °,The FG = 30 x 30 ° tan = 30 x = 103 = 3317.32 (m),MG = FM - GF = 20-17.32 = 2.68 (m).CD = ∵ DN = 2 m, 1.8 m,∴ ED = 2.68 2 = 0.68 (m).The shadow of A building affects the first floor of the B building, blocking the Windows of the building by 0.68 m.8. Solution: prolong BC to AD at E point, then CE perp AD.In Rt delta AEC, AC = 10, by the slope ratio of 1:3: < CAE = 30 °,∴ CE = AC? 30 ° sin = 10 x 12 = 5,AE = AC? Cos 30 ° 32 = = 10 x 53.In Rt delta ABE, BE = ab2-ae2= 142 -? 53? 2 = 11.∴ BC = BE - CE = 11-5 = 6 (m).A: the height of the flagpole is 6 meters.9. Solution:P for PC perp AB, perpendicular to C, then< = 30 °, APCAC = PC? Tan, 30 °,BC = PC? Tan 45 °.∴ PC, ∵ AC + BC = AB? Tan 30 ° + PC?Tan 45 ° = 100.∴ (33 + 1)? PC = 100.∴ PC = 50 x 50 (3-3) material (3-1.732)63.4 > 50 material.Answer: the distance between the center of the forest reserve and the line AB is greater than the radius of the reserve, so the highway planned to be built will not go through the protected area.Direct tests1. A.2. Solution: extend the CD to AB in G, and CG = 12 km,PC = 300 x 10 = 3 000 m = 3 km,In Rt delta PCD,CD = PC? Tan < P = 3 x tan60 ° = 33.∴ 12 - CD = 12-33 material 6.8 km.A: the mountain is about 6.8 kilometers high.According to the question, we can tell< < the ACB = 45 °, the ADB = 60 °, DC = 50.In Rt delta ABC,By < BAC = < BCA = 45 °, BC = AB.In Rt delta ABD, by tangent of ADB = ABBD,Have to BD = = ABtan < the ADB ABtan 60 ° = 33 ab.∵ BC - BD = DC again.∴ AB - 33 AB = 50, that is, (3-3) AB = 150.∴ AB = 1503-3 material 118.The perpendicular line of the BC is the perpendicular to the BC.By the question: < = 45 °, CAD < BAD = 60 °,AD = 60 m.In Rt delta ACD, < CAD = 45 °, AD an BC,∴ CD = AD = 60.In Rt delta ABD,∵ tan < BAD = BDAD,∴ BD = AD? Tan < BAD = 603.∴ BC = CD + BD= 60 + 603Material of 163.9 m.A: the tall building is about 163.9 m.The third classSmart upgrade1. D2.25033.90.6(1) building 1 height: AB = BD? Tan 30 ° 30 x =0.5774 material (m);High tower 2: CD + 30 x = 30 x 30 ° tan tan 5 ° material20 (m).(2). BD = CD present tan 30 ° 35 (m) = 20 present 0.5 774 material, so the distance between the two floor should be at least 35 m apart when will eliminate the impact.5. Solution: there is danger of hitting the rocks.Reason: past point P for PD perp AC at D.Let's say PD is x, in Rt delta PBD,< PBD = 45 °, 90 ° to 45 ° = ∴ BD = = x PD.In Rt delta PAD, ∵ < PAD = 30 °, 90 ° to 60 ° =∴ AD = 30 ° xtan = 3 x∴ ∵ AD = AB + BD, 3 x = 12 + x∴ x = 123-1 = 6 (3 + 1).6 (3 + 1) < 18 ∵∴ fishing boats not change course continue sailed east, there are dangerous on the rocks.6. Solution: according to the question, < A = 30 °, < PBC = 60 °.< APB. = 30 ° to 60 ° to 30 ° = ∴ < APB = < A∴ AB = PB.In Rt delta BCP, < = 90 ° C,< PBC = 60 °,PC = 450 m,∴ PB = 60 ° sine 450 = 450 = 3003 (m).∴ AB = PB = 3003 520 m material.Answer: (1) make a DG perp ABIn G, EH orthogonal complement AB to H. EHGD is rectangle∴ EH = DG = 5 m.∵ DGAG = 11.2, ∴ AG = 6 m.∵ EHFH = 11.4, ∴ FH = 7 m.∴ FA = = 7 FH + GH - AG + 1-6 = 2 (m)∴ S trapezoid ADEF = 12 + AF (ED)? EH = 12 (1 + 2) * 5 = 7.5 (m2),V = 7.5 x 4 000 = 30 000 (m3).∴ 30 000 m3 earthwork is needed to complete the project.(2) the party a originally planned to complete the x m3 soil each day, and party b had planned to complete the y m3 soil every day.According to the question, 20? X + y? Is equal to 3, 000, 15 [? 1 + 30%? X +? 1 + 40%? Y] = 30 000So if you simplify this, you get x plus y is equal to 1, 500, 1.3 x plus 1.4 y is equal to 2, 000.So the solution is x is equal to 1,000, y is equal to 500.A: the team originally planned to complete 1, 000 m3 of earth a day, and party b originally planned to complete 500 m3 of soil per day.Direct tests1. C2.11.23.90 °4. (40 + 403) nautical milesChapter 29 projection and view 29.1 projectionClass 1Smart upgrade1. B2. C3, C4. D5. B6.4.2 above8. Solution: connecting AE, point C as CF ∥ AE,For DF ∥ BE DF in point F, DF is the shadow of the CD, as shown in figure.The picture reflects the situation under the street lamp.(2) the light in the picture is parallel, and the light in the picture intersects at one point.(3) in the picture, the "AB" and "EF" are the lines of the little li in the sun and under the lamp.10. Solution: (1) figure.(2) by the question, to delta ABC ∽ delta GHC style, ∴ ABGH = BCHC.∴ 1.6 GH = 36 + 3. ∴ GH = 4.8 m.(3) delta A1B1C1 ∽ delta GHC1, ∴ A1B1GH = B1C1HC1.Set B1C1 to be x m, then 1.64.8 = xx + 3,So we solve for x is equal to 32 m, which is B1C1 is equal to 32 m.So it's the same thing as 1.64.8 is equal to B2C2B2C2 plus 2, so you have to solve for B2C2 is equal to 1 m.Direct tests1.3.32. C3. D4.11.8 mThe second classSmart upgrade1. C2. A3. B4. D5. The same6.127. The center is 8The quadrilateral ABCD is the orthographic projection of the cuboid.Section 10. Solution: ∵ cylindrical axis parallel to the plane, cylindrical orthogonal projection is side length is 4 square,∴ bottom, radius of the cylinder is 2, the high of 4.∴ the volume of a cylinder is PI * 22 * 4 = 16 PI,The surface area of the cylinder is 2 times PI times 22 plus 4 PI times 4 is 24 PI.11. Solution: as shown in the picture, C is used as the CE vertical flagpole AB at E, connecting AC.In Rt delta ACE, ∵ AECE = 11.5,∴ AE = 11.5 * 21= 14.∴ AB = AE + BE + 2 = = 14 16 (m).∴ flagpole is 16 meters high.Solution: as shown in the picture, AB is a bamboo pole, the CD is the shadow on the wall, lengthened the light and the AD is intersecting with the ground plane to E.The tangent of E is equal to the CDCE, which is 42 + CE = 1CE,So the solution is equal to 23.So xiao Ming should move the bamboo pole more than 23 meters.Direct testsD. 1. C2 and C3. B4.29.2 third viewSmart upgrade1. A2. D3. C4. A5. B6. A7. Solution: the number of cuboids in each position is marked in the top view, as shown. So there are 9 boxes.8. Solution: this geometric body is a cone, its bus length is1, and the base radius is 12.So the lateral area is PI times 1 times 12, which is 12 PI.9. Solution: (1) triangular prism. (2) as shown below.(3) the length of the main view is 10 cm, the side length of the triangle in the top view is 4 cm, and the height of the positive triprism is 10 cm, and the side length of the base side is 4 cm.So the side area is 4 times 3 times 10 is 120.Direct tests1. C2. A3. B4. B5. D6. A7. C8. C9. B10. B11.6。