含三角函数的导数问题精编版

合集下载

三角函数诱导公式练习题集附答案解析

三角函数诱导公式练习题集附答案解析

三角函数诱导公式练习题一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数2、点P(cos2009°,sin2009°)落在()A、第一象限B、第二象限C、第三象限D、第四象限3、已知,则=()A、B、C、D、4、若tan160°=a,则sin2000°等于()A、B、C、D、﹣5、已知cos(+α)=﹣,则sin(﹣α)=()A、﹣B、C、﹣D、6、函数的最小值等于()A、﹣3B、﹣2C、D、﹣17、本式的值是()A、1B、﹣1C、D、8、已知且α是第三象限的角,则cos(2π﹣α)的值是()A、B、C、D、9、已知f(cosx)=cos2x,则f(sin30°)的值等于()A、B、﹣C、0 D、110、已知sin(a+)=,则cos(2a﹣)的值是()A、B、C、﹣D、﹣11、若,,则的值为()A、B、C、D、12、已知,则的值是()A、B、C、 D、13、已知cos(x﹣)=m,则cosx+cos(x﹣)=()A、2mB、±2mC、D、14、设a=sin(sin20080),b=sin(cos20080),c=cos(sin20080),d=cos(cos20080),则a,b,c,d的大小关系是()A、a<b<c<dB、b<a<d<cC、c<d<b<aD、d<c<a<b15、在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan tan;④,其中恒为定值的是()A、②③B、①②C、②④D、③④16、已知tan28°=a,则sin2008°=()A、B、C、D、17、设,则值是()A、﹣1B、1C、D、18、已知f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β为非零实数),f(2007)=5,则f(2008)=()A、3B、5C、1D、不能确定19、给定函数①y=xcos(+x),②y=1+sin2(π+x),③y=cos(cos(+x))中,偶函数的个数是()A、3B、2C、1D、020、设角的值等于()A、B、﹣C、D、﹣21、在程序框图中,输入f0(x)=cosx,则输出的是f4(x)=﹣csx()A、﹣sinxB、sinxC、cosxD、﹣cosx二、填空题(共9小题)22、若(﹣4,3)是角终边上一点,则Z的值为.23、△ABC的三个内角为A、B、C,当A为°时,取得最大值,且这个最大值为.24、化简:=25、化简:=.26、已知,则f(1)+f(2)+f(3)+…+f(2009)=.27、已知tanθ=3,则(π﹣θ)=.28、sin(π+)sin(2π+)sin(3π+)…sin(2010π+)的值等于.29、f(x)=,则f(1°)+f(2°)+…+f(58°)+f(59°)=.30、若,且,则cos(2π﹣α)的值是.答案与评分标准一、选择题(共21小题)1、已知函数f(x)=sin,g(x)=tan(π﹣x),则()A、f(x)与g(x)都是奇函数B、f(x)与g(x)都是偶函数C、f(x)是奇函数,g(x)是偶函数D、f(x)是偶函数,g(x)是奇函数考点:函数奇偶性的判断;运用诱导公式化简求值。

【高考数学】含有三角函数的导数大题

【高考数学】含有三角函数的导数大题

(2)若函数f (x )在(0,)上存在两个极值点,求实数a 的取值范围.2.(2019秋•汕头校级期末)已知函数f (x )=x cos x ﹣2sin x +1,g (x )=x 2e ax (a ∈R ).(1)证明:f (x )的导函数f '(x )在区间(0,π)上存在唯一零点;(2)若对任意x 1∈[0,2],均存在x 2∈[0,π],使得g (x 1)≤f (x 2),求实数a 的取值范围.注:复合函数y =e ax 的导函数y '=ae ax .3.(2020•开封一模)已知函数,a ∈R ,e 为自然对数的底数.(1)当a =1时,证明:∀x ∈(﹣∞,0],f (x )≥1;(2)若函数f (x)在上存在两个极值点,求实数a 的取值范围.4.(2020•遂宁模拟)已知函数(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若函数g (x )=a (lnx ﹣x )+f (x )﹣e x sin x ﹣1有两个极值点x 1,x 2(x 1≠x 2).且不等式g (x 1)+g (x 2)<λ(x 1+x 2)恒成立,求实数λ的取值范围.5.(2018秋•济宁期末)已知函数f (x )=(x ﹣a )cos x ﹣sin x ,g (x )=x 3﹣ax 2,a ∈R (Ⅰ)当a =1时,求函数y =f (x )在区间(0,)上零点的个数;(Ⅱ)令F (x )=f (x )+g (x ),试讨论函数y =F (x )极值点的个数.6.(2019秋•五华区校级月考)已知函数,f '(x )为f (x )的导数.(1)证明:f (x )在定义域上存在唯一的极大值点;(2)若存在x 1≠x 2,使f (x 1)=f (x 2),证明:x 1x 2<4.7.(2019秋•五华区校级月考)定义在[﹣π,+∞)的函数f (x )=e x ﹣cos x 的导函数为g (x ).证明:(1)g (x )在区间(﹣π,0)存在唯一极小值点;(2)f (x )有且仅有2个零点.(1)当a =1时,证明:∀x ∈(﹣∞,0],f (x )≥1;1.(2020•开封一模)已知函数f (x )=a •e ﹣x +sin x ,a ∈R ,e 为自然对数的底数.二.解答题(共10小题)含有三角函数的导数题目8.(2019秋•遂宁月考)已知函数,(1)讨论f(x)在上的单调性.(2)当a>0时,若f(x)在上的最大值为π﹣1,讨论:函数f(x)在(0,π)内的零点个数.9.(2019秋•肇庆月考)设函数f(x)=sin x﹣ax+x3(a∈R).(1)讨论f(x)的导函数f′(x)零点的个数;(2)若对任意的x≥0,f(x)≥0成立,求a的取值范围.10.(2019秋•江岸区校级月考)已知函数,f'(x)是f(x)的导函数.(1)证明:当m=2时,f'(x)在(0,+∞)上有唯一零点;(2)若存在x1,x2∈(0,+∞),且x1≠x2时,f(x1)=f(x2),证明:.一.选择题二.解答题(共10小题)1.(2020•开封一模)已知函数f (x )=a •e ﹣x +sin x ,a ∈R ,e 为自然对数的底数.(1)当a =1时,证明:∀x ∈(﹣∞,0],f (x )≥1;(2)若函数f (x )在(0,)上存在两个极值点,求实数a 的取值范围.【分析】(1)求出f ′(x )=﹣e ﹣x +cos x ,得出f ′(x )≤0,则f (x )在(﹣∞,0]上单调递减,结论可证.(2)函数f (x )在(0,)上存在两个极值点;则f ′(x )=0在(0,)上有两个不等实数根,分离参数得a =e x cos x 在(0,)上有两个不等实数根;设g (x )=e x cos x ,讨论函数g (x )的单调性即可解决;【解答】解:(1)当a =1时,f (x )=e ﹣x +sin x ,f ′(x )=﹣e ﹣x +cos x ,当x ≤0时,﹣e ﹣x ≤﹣1,则f ′(x )≤0(x ≤0)所以f (x )在(﹣∞,0]上单调递减,f (x )≥f (0)=1;所以:∀x ∈(﹣∞,0],f (x )≥1;(2)函数f (x )在(0,)上存在两个极值点;则f ′(x )=0在(0,)上有两个不等实数根;即f ′(x )=﹣ae ﹣x +cos x =0在(0,)上有两个不等实数根;即a =e x cos x 在(0,)上有两个不等实数根;设g (x )=e x cos x ,则g ′(x )=e x (cos x ﹣sin x );当时,g ′(x )>0,g (x )单调递增;当时,g ′(x )<0,g (x )单调递减;又g (0)=1,,;故实数a的取值范围为:【点评】本题考查不等式证明,根据函数极值个数求参数的范围,函数零点问题,考查分离参数法,属于难题.2.(2019秋•汕头校级期末)已知函数f(x)=x cos x﹣2sin x+1,g(x)=x2e ax(a∈R).(1)证明:f(x)的导函数f'(x)在区间(0,π)上存在唯一零点;(2)若对任意x1∈[0,2],均存在x2∈[0,π],使得g(x1)≤f(x2),求实数a的取值范围.注:复合函数y=e ax的导函数y'=ae ax.【分析】(1)设h(x)=f′(x),然后对h(x)求导,结合导数与单调性的关系可判断h(x)的单调性,然后结合零点判定定理可证,(2)依题意,“对任意x1∈[0,2],均存在x2∈[0,π],使得得g(x1)≤f(x2),等价于“g(x)max≤f(x)max”,结合导数可分别求解最值,即可求解.【解答】解:(1)设h(x)=f′(x)=cos x﹣x sin x﹣2cos x=﹣cos x﹣x sin x,∴h′(x)=sin x﹣sin x﹣x cos x=﹣x cos x当x时,h′(x)<0;当x时,h′(x)>0;所以h(x)在(0,)单调递减,在()单调递增.又h(0)=﹣1<0lh()=﹣,h(π)=1>0,故f′(x)在区间(0,π)上存在唯一零点.(2)记f(x)在区间[0,π]上的最大值为f(x)max,g(x)在区间[0,2]上的最大值为g(x)max.依题意,“对任意x1∈[0,2],均存在x2∈[0,π],使得得g(x1)≤f(x2),等价于“g(x)max≤f(x)max”,由(Ⅰ)知,f′(x)在(0,π)只有一个零点,设为x0,且当x∈(0,x0)时,f′(x)<0;当x∈(x0,π)时,f′(x)>0;,所以f(x)在(0,x0)单调递减,在当(x0,π)时单调递增.又f(0)=1,f(π)=1﹣π<0,所以当x∈[0,π]时,f(x)max=1.故应满足g(x)max≤1.因为g(x)=x2e ax,所以g′(x)=(ax2+2x)e ax=x(ax+2)e ax.①当a=0时,g(x)=x2,对任意x∈[0,2],g(x)max=g(2)=4,不满足g(x)max≤1.②当a≠0时,令g′(x)=0,得x=0或x=﹣.(ⅰ)当﹣≥2,即﹣1≤a<0时,在[0,2]上,g′(x)≥0,所以g(x)在[0,2]上单调递增,g(x)max=g(2)=4e2a.由4e2a≤1,得a≤﹣ln2,所以﹣1≤a≤﹣ln2.(ⅱ)当0<﹣<2,即a<﹣1时,上,g′(x)<0,g(x)单调递减.g(x)max=.由≤1,得a≤﹣或a≥,所以a<﹣1.(ⅲ)当﹣<0,即a>0时,显然在[0,2]上,g′(x)≥0,g(x)单调递增,于是g (x)max=g(2)=4e2a,此时不满足g(x)max≤1.综上,实数a的取值范围是(﹣∞,﹣ln2].【点评】本题主要考查了函数的导数与单调性关系,函数零点判定定理及恒成立与存在性问题与最值求解的相互转化,体现了分类讨论思想与转化思想的应用.3.(2020•开封一模)已知函数,a∈R,e为自然对数的底数.(1)当a=1时,证明:∀x∈(﹣∞,0],f(x)≥1;(2)若函数f(x)在上存在两个极值点,求实数a的取值范围.【分析】(1)把a=1代入,直接用导数法证明即可;(2)对f(x)求导,,对a进行讨论,判断函数f(x)的极值,确定a的范围.【解答】解:(1)当a=1时,,则,当x∈(﹣∞,0]时,0<e x≤1,则,又因为cos x≤1,所以当x∈(﹣∞,0]时,,仅x=0时,f'(x)=0,所以f(x)在(﹣∞,0]上是单调递减,所以f(x)≥f(0)=1,即f(x)≥1.(2),因为,所以cos x>0,e x>0,①当a≤0时,f'(x)>0恒成立,所以f(x)在上单调递增,没有极值点.②当a>0时,在区间上单调递增,因为,f'(0)=﹣a+1.当a≥1时,时,f'(x)≤f'(0)=﹣a+1≤0,所以f(x)在上单调递减,没有极值点.当0<a<1时,f'(0)=﹣a+1>0,所以存在,使f'(x0)=0,当时,f'(x)<0,x∈(x0,0)时,f'(x)>0,所以f(x)在x=x0处取得极小值,x0为极小值点.综上可知,若函数f(x)在上存在极值点,则实数a∈(0,1).【点评】本题考查了导数的综合应用及极值点引出的含参问题,综合性高,难度较大.4.(2020•遂宁模拟)已知函数(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若函数g(x)=a(lnx﹣x)+f(x)﹣e x sin x﹣1有两个极值点x1,x2(x1≠x2).且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求实数λ的取值范围.【分析】(1)求出f′(x)=e x sin x+e x cos x+x,求出切线的斜率,切点坐标,然后求解切线方程.(2)化简g(x)=,求出导函数,通过g′(x)=0有两个不同的正根,即x2﹣ax+a=0有两个不同的正根,列出不等式组,不等式g(x1)+g(x2)<λ(x1+x2)恒成立等价于恒成立,转化求解即可.【解答】解:(1)因为,所以f′(x)=e x sin x+e x cos x+x,=f′(0)=1,又f(0)=1,所以k切故所求的切线方程为y﹣1=1×(x﹣0),即x﹣y+1=0.(2)因为g(x)=a(lnx﹣x)+f(x)﹣e x sin x﹣1=所以,由题意g′(x)=0有两个不同的正根,即x2﹣ax+a=0有两个不同的正根,则,不等式g(x1)+g(x2)<λ(x1+x2)恒成立等价于恒成立又====所以,令(a>4),则,所以在(4,+∞)上单调递减,所以y<2ln2﹣3,所以λ≥2ln2﹣3.【点评】本题考查函数与方程的应用,函数的导数以及函数的最值的求法,切线方程的求法,考查分析问题解决问题的能力,是难题.5.(2018秋•济宁期末)已知函数f(x)=(x﹣a)cos x﹣sin x,g(x)=x3﹣ax2,a∈R (Ⅰ)当a=1时,求函数y=f(x)在区间(0,)上零点的个数;(Ⅱ)令F(x)=f(x)+g(x),试讨论函数y=F(x)极值点的个数.【分析】(1)先对函数求导,然后结合导数与单调性的关系可判断单调性,结合零点判定定理可求.(2)先求导,再分类讨论即可求出函数的单调区间和极值【解答】解:(1)a=1时,f(x)=(x﹣1)cos x﹣sin x,∴f′(x)=(﹣x+1)sin x,x∈(0,),sin x>0,当0<x<1时,f′(x)>0,f(x)单调递增,当1<x<时,f′(x)<0,f(x)单调递减,当x=1时,函数取得最小值f(1)=﹣sin1<0,而f(0)=﹣cos1<0.f()=﹣1<0,故函数f(x)在区间(0,)上零点的个数为0,(2)函数F(x)=(x﹣a)cos x﹣sin x x3﹣ax2,∴F′(x)=(x﹣a)(x﹣sin x),令F′(x)=0,解得x=a,或x=0,①若a>0时,当x<0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,当x>a时,F′(x)>0恒成立,故F(x)在(a,+∞)上单调递增,当0<x<a时,F′(x)<0恒成立,故F(x)在(0,a)上单调递减,故有2个极值点,②若a<0时,当x>0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,当x<a时,F′(x)>0恒成立,故F(x)在(﹣∞,a)上单调递增,当a<x<0时,F′(x)<0恒成立,故F(x)在(a,0)上单调递减,故有2个极值点,③当a=0时,F′(x)=x(x﹣sin x),当x>0时,F′(x)>0恒成立,故F(x)在(0,+∞)上单调递增,当x<0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,∴F(x)在R上单调递增,无极值.【点评】本题考查了导数的几何意义和导数和函数的单调性和极值的关系,关键是分类讨论,考查了学生的运算能力和转化能力,属于难题6.(2019秋•五华区校级月考)已知函数,f'(x)为f(x)的导数.(1)证明:f(x)在定义域上存在唯一的极大值点;(2)若存在x1≠x2,使f(x1)=f(x2),证明:x1x2<4.【分析】(1)求出,判断函数的单调性,说明在定义域(0,+∞)存在唯一x0,使f'(x0)=0且x0∈(1,2);当0<x<x0时,f'(x)>0;当x>x0时,f'(x)<0,推出结果.(2)存在x1≠x2,使f(x1)=f(x2),即,得.设g(x)=x﹣sin x,利用代换是判断函数的单调性推出,结合对数均值不等式,推出x1x2<4.【解答】证明:(1),当x≥2时,,,,“=”不能同时取到,所以f'(x)<0;当0<x<2时,,所以f'(x)在(0,2)上递减,因为,,所以在定义域(0,+∞)存在唯一x0,使f'(x0)=0且x0∈(1,2);当0<x<x0时,f'(x)>0;当x>x0时,f'(x)<0,所以x0是f(x)在定义域(0,+∞)上的唯一极值点且是极大值点.(2)存在x1≠x2,使f(x1)=f(x2),即,得.设g(x)=x﹣sin x,则g'(x)=1﹣cos x≥0,g(x)在(0,+∞)上递增,不妨设x1>x2>0,则g(x1)>g(x2),即x1﹣sin x1>x2﹣sin x2,x1﹣x2>sin x1﹣sin x2,所以,得,根据对数均值不等式,可得,x 1x2<4.【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力,是难题.7.(2019秋•五华区校级月考)定义在[﹣π,+∞)的函数f(x)=e x﹣cos x的导函数为g(x).证明:(1)g(x)在区间(﹣π,0)存在唯一极小值点;(2)f(x)有且仅有2个零点.【分析】(1)结合导数与单调性的关系,先求解函数的单调性,然后求解函数极值,(2)结合导数与单调性关系及零点判定定理进行讨论即可求解.【解答】解:(1)∵g(x)=e x+sin x,则g′(x)=e x+cos x,容易得出,g′(x)=e x+cos x在[﹣π,0)上单调递增,又g′(﹣π)<0,g′(0)>0,结合零点存在定理可知,存在唯一的x0∈(﹣π,0)使得g′(x)=0,若x∈(﹣π,0),g′(x)<0,g(x)单调递减,若x∈(x0,0),g′(x)>0,g(x)单调递增,故g(x)存在唯一的极小值点,(2)由(1)可知g(x)在(﹣π,0)上存在唯一的极小值点x0,∴g(x0)=e<0,又g(0)=1>0,g(﹣π)=e﹣π>0,结合零点存在定理可知,存在唯一的x1∈(﹣π,x0),使得g(x1)=0,存在唯一的x2∈(x0,0),使得g(x2)=0,故当x∈(﹣π,x1)∪(x2,0)时,g(x)>0,此时f(x)单调递增,当x∈(x1,x2)时,g(x)>0,此时g(x)单调递减,则f(x1)>f(﹣π)>0,f(x2)<f(0)=0,由零点存在性定理可知,存在唯一m∈(x1,x2),使得f(m)=0,故函数f(x)在[﹣π,0]上尤其仅有x=m与x=0两个零点,当x∈(0,+∞)时,e x>1≥cos x,则f(x)>0,故f(x)在(0,+∞)上没有零点,综上可得,f(x)有且仅有两个零点.【点评】本题主要考查了函数的极值及零点存在条件的应用,体现了分类讨论及转化思想的应用,属于中档试题.8.(2019秋•遂宁月考)已知函数,(1)讨论f(x)在上的单调性.(2)当a>0时,若f(x)在上的最大值为π﹣1,讨论:函数f(x)在(0,π)内的零点个数.【分析】(1)对a分大于零和小于零两种情况讨论,利用导数即可求出函数f(x)在上的单调性;(2)由(1)知a>0时f(x)的最大值为,从而求出a=2,又因为f(x)在上单调递增,且f(0)=﹣1<0,,所以f(x)在内有且仅有1个零点.再讨论当x时,函数f(x)存在一个极值点x0,利用导数得到f(x)在上无零点,f(x)在(x0,π)内有且仅有1个零点,所以函数f(x)在(0,π)内有2个零点.【解答】解:(1)f'(x)=a(sin x+x cos x),当a<0,时,sin x>0,cos x>0,∴f'(x)<0,f(x)单调递减,当时,sin x>0,cos x>0,∴f'(x)>0,f(x)单调递增,综上得:当a<0,f(x)在单调递减;a>0时,f(x)在单调递增;(2)由(1)知a>0时f(x)的最大值为由得a=2,∴f(x)=2x sin x﹣1,又∵f(x)在上单调递增;且f(0)=﹣1<0,,∴f(x)在内有且仅有1个零点.当时,令g(x)=f'(x)=2(sin x+x cos x),g'(x)=2(2cos x﹣x sin x)<0,∴g(x)在内单调递减,且,g(π)=﹣2π<0,∴存在,使得g(x0)=0,∴①当时,f'(x)>0,f(x)在单调递增,∴时,,∴f(x)在上无零点,②当x∈(x0,π)时,f'(x)<0,f(x)在(x0,π)内单调递减,又∵f(x0)>0,f(π)=﹣1<0,∴f(x)在(x0,π)内有且仅有1个零点,综上所求:函数f(x)在(0,π)内有2个零点.【点评】本题主要考查了利用导数研究函数的单调性和零点,是中档题.9.(2019秋•肇庆月考)设函数f(x)=sin x﹣ax+x3(a∈R).(1)讨论f(x)的导函数f′(x)零点的个数;(2)若对任意的x≥0,f(x)≥0成立,求a的取值范围.【分析】(1)先对函数求导,结合为偶函数,问题可转化为先研究x≥0,结合导数与单调性的关系及函数的零点判定定理可求,(2)结合导数先判断函数的单调性,结合零点判定定理可求.【解答】解:(1),令,x∈R,g(x)为偶函数,先研究x≥0,则g'(x)=x﹣sin x,g''(x)=1﹣cos x≥0,∴g'(x)在[0,+∞)为递增函数,且g'(0)=0,∴g'(x)≥0,即g(x)在[0,+∞)为单调递增函数,当g(0)=1﹣a>0,即a<1,g(x)没有零点,当g(0)=1﹣a=0,即a=1,g(x)有1个零点,当g(0)=1﹣a》<0,即a>1,,∴当,g(x)>0,∴当,g(x)在[0,+∞)有1个零点,∴g(x)为偶函数,在(﹣∞,0]也有有1个零点.综上:a<1,f'(x)没有零点;a=1,f'(x)有1个零点;a>1,f'(x)有2个零点.(2)①当a≤1时,由(1)知f'(x)≥0,f(x)在[0,+∞)为单调递增函数,f(x)≥f(0)=0,②当a>1时,f'(2a)=cos2a﹣a+2a2=cos2a+a2+a(a﹣1)>0,f'(0)=1﹣a<0,由零点存在性定理知∃x0∈(0,2a)使得f'(x0)=0,且在(0,x0),f'(x)<0,即f(x)单调递减,f(x)<f(0)=0与题设不符.综上可知,a≤1时,f(x)≥0,【点评】本题考查了导数的综合应用及零点判定定理的应用,属于中档题.10.(2019秋•江岸区校级月考)已知函数,f'(x)是f(x)的导函数.(1)证明:当m=2时,f'(x)在(0,+∞)上有唯一零点;(2)若存在x1,x2∈(0,+∞),且x1≠x2时,f(x1)=f(x2),证明:.【分析】(1)先求出f'(x),分析出当x∈(0,π)时,f'(x)为增函数,且,,得到f'(x)在(0,π)上有唯一零点,又因为当x∈[π,+∞)时,,所以f'(x)在[π,+∞)上没有零点,从而得出f'(x)在(0,+∞)上有唯一零点;(2)不妨设0<x1<x2,由f(x1)=f(x2)得=,即.设g(x)=x﹣sin x,利用导数得到g(x)在(0,+∞)为增函数,从而,再证明:.从而得出,即.【解答】证明:(1)当m=2时,,,当x∈(0,π)时,f'(x)为增函数,且,,∴f'(x)在(0,π)上有唯一零点,当x∈[π,+∞)时,,∴f'(x)在[π,+∞)上没有零点,综上知,f'(x)在(0,+∞)上有唯一零点;(2)不妨设0<x1<x2,由f(x1)=f(x2)得=,∴,设g(x)=x﹣sin x,则g'(x)=1﹣cos x≥0,故g(x)在(0,+∞)为增函数,∴x2﹣sin x2>x1﹣sin x1,从而x2﹣x1>sin x2﹣sin x1,∴=,∴,下面证明:,令,则t>1,即证明,只要证明,(*)设,则,∴h(t)在(1,+∞)单调递减,当t>1时,h(t)<h(1)=0,从而(*)得证,即,∴,即.【点评】本题主要考查了利用导数研究函数的零点,利用导数研究函数的单调性,是中档题.。

导数带三角函数大题

导数带三角函数大题

导数带三角函数大题数学中,导数是用来描述函数变化率的概念。

在具体计算导数的过程中,经常会遇到包含三角函数的大题。

这些大题涉及了三角函数的性质以及导数的计算规则。

导数带三角函数大题是考察学生对于导数计算和三角函数的理解和运用能力的重要题型之一。

对于“ 导数带三角函数大题”这个问题,我们需要根据具体的大题来进行求解。

在这类大题中,通常会给出一个函数表达式,其中包含了三角函数,如正弦函数、余弦函数或者其他的三角函数。

学生需要根据给定的函数,计算它的导数。

计算导数的过程需要运用到相关的导数公式和三角函数的导数规则。

根据不同的三角函数,我们可以有不同的导数计算公式。

例如,对于正弦函数来说,它的导数规则可以表示为"d(sin x) / dx = cos x"。

对于余弦函数来说,其导数公式可以表示为"d(cos x) / dx = -sin x"。

而其他常见的三角函数如正切函数、余切函数等也有相应的导数规则。

在解决导数带三角函数大题的过程中,学生需要熟练地应用这些导数公式和三角函数的导数规则。

对于给定的函数表达式,首先要找出其中包含的三角函数,并将其导数按照相应的规则计算出来。

然后,将计算得到的导数与其他部分的导数进行合并和计算,最终得到函数的导数表达式。

通过解决导数带三角函数大题,学生可以加深对于导数和三角函数的理解,并提高在求解相关问题时的计算能力。

同时,这类题目也可以帮助学生培养分析问题、运用规则和推导解答的能力,对于培养数学思维和解决实际问题具有重要的意义。

总而言之,导数带三角函数大题是数学中重要的题型之一,其解答需要学生熟练掌握导数计算公式和三角函数的导数规则。

通过解决这类大题,可以提高学生的数学能力和解决实际问题的能力。

努力学习和掌握这些知识,将对于进一步学习和应用数学有着积极的促进作用。

【高考数学】含有三角函数的导数大题

【高考数学】含有三角函数的导数大题

(2)若函数f (x )在(0,)上存在两个极值点,求实数a 的取值范围.2.(2019秋•汕头校级期末)已知函数f (x )=x cos x ﹣2sin x +1,g (x )=x 2e ax (a ∈R ).(1)证明:f (x )的导函数f '(x )在区间(0,π)上存在唯一零点;(2)若对任意x 1∈[0,2],均存在x 2∈[0,π],使得g (x 1)≤f (x 2),求实数a 的取值范围.注:复合函数y =e ax 的导函数y '=ae ax .3.(2020•开封一模)已知函数,a ∈R ,e 为自然对数的底数.(1)当a =1时,证明:∀x ∈(﹣∞,0],f (x )≥1;(2)若函数f (x)在上存在两个极值点,求实数a 的取值范围.4.(2020•遂宁模拟)已知函数(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若函数g (x )=a (lnx ﹣x )+f (x )﹣e x sin x ﹣1有两个极值点x 1,x 2(x 1≠x 2).且不等式g (x 1)+g (x 2)<λ(x 1+x 2)恒成立,求实数λ的取值范围.5.(2018秋•济宁期末)已知函数f (x )=(x ﹣a )cos x ﹣sin x ,g (x )=x 3﹣ax 2,a ∈R (Ⅰ)当a =1时,求函数y =f (x )在区间(0,)上零点的个数;(Ⅱ)令F (x )=f (x )+g (x ),试讨论函数y =F (x )极值点的个数.6.(2019秋•五华区校级月考)已知函数,f '(x )为f (x )的导数.(1)证明:f (x )在定义域上存在唯一的极大值点;(2)若存在x 1≠x 2,使f (x 1)=f (x 2),证明:x 1x 2<4.7.(2019秋•五华区校级月考)定义在[﹣π,+∞)的函数f (x )=e x ﹣cos x 的导函数为g (x ).证明:(1)g (x )在区间(﹣π,0)存在唯一极小值点;(2)f (x )有且仅有2个零点.(1)当a =1时,证明:∀x ∈(﹣∞,0],f (x )≥1;1.(2020•开封一模)已知函数f (x )=a •e ﹣x +sin x ,a ∈R ,e 为自然对数的底数.二.解答题(共10小题)含有三角函数的导数题目8.(2019秋•遂宁月考)已知函数,(1)讨论f(x)在上的单调性.(2)当a>0时,若f(x)在上的最大值为π﹣1,讨论:函数f(x)在(0,π)内的零点个数.9.(2019秋•肇庆月考)设函数f(x)=sin x﹣ax+x3(a∈R).(1)讨论f(x)的导函数f′(x)零点的个数;(2)若对任意的x≥0,f(x)≥0成立,求a的取值范围.10.(2019秋•江岸区校级月考)已知函数,f'(x)是f(x)的导函数.(1)证明:当m=2时,f'(x)在(0,+∞)上有唯一零点;(2)若存在x1,x2∈(0,+∞),且x1≠x2时,f(x1)=f(x2),证明:.一.选择题二.解答题(共10小题)1.(2020•开封一模)已知函数f (x )=a •e ﹣x +sin x ,a ∈R ,e 为自然对数的底数.(1)当a =1时,证明:∀x ∈(﹣∞,0],f (x )≥1;(2)若函数f (x )在(0,)上存在两个极值点,求实数a 的取值范围.【分析】(1)求出f ′(x )=﹣e ﹣x +cos x ,得出f ′(x )≤0,则f (x )在(﹣∞,0]上单调递减,结论可证.(2)函数f (x )在(0,)上存在两个极值点;则f ′(x )=0在(0,)上有两个不等实数根,分离参数得a =e x cos x 在(0,)上有两个不等实数根;设g (x )=e x cos x ,讨论函数g (x )的单调性即可解决;【解答】解:(1)当a =1时,f (x )=e ﹣x +sin x ,f ′(x )=﹣e ﹣x +cos x ,当x ≤0时,﹣e ﹣x ≤﹣1,则f ′(x )≤0(x ≤0)所以f (x )在(﹣∞,0]上单调递减,f (x )≥f (0)=1;所以:∀x ∈(﹣∞,0],f (x )≥1;(2)函数f (x )在(0,)上存在两个极值点;则f ′(x )=0在(0,)上有两个不等实数根;即f ′(x )=﹣ae ﹣x +cos x =0在(0,)上有两个不等实数根;即a =e x cos x 在(0,)上有两个不等实数根;设g (x )=e x cos x ,则g ′(x )=e x (cos x ﹣sin x );当时,g ′(x )>0,g (x )单调递增;当时,g ′(x )<0,g (x )单调递减;又g (0)=1,,;故实数a的取值范围为:【点评】本题考查不等式证明,根据函数极值个数求参数的范围,函数零点问题,考查分离参数法,属于难题.2.(2019秋•汕头校级期末)已知函数f(x)=x cos x﹣2sin x+1,g(x)=x2e ax(a∈R).(1)证明:f(x)的导函数f'(x)在区间(0,π)上存在唯一零点;(2)若对任意x1∈[0,2],均存在x2∈[0,π],使得g(x1)≤f(x2),求实数a的取值范围.注:复合函数y=e ax的导函数y'=ae ax.【分析】(1)设h(x)=f′(x),然后对h(x)求导,结合导数与单调性的关系可判断h(x)的单调性,然后结合零点判定定理可证,(2)依题意,“对任意x1∈[0,2],均存在x2∈[0,π],使得得g(x1)≤f(x2),等价于“g(x)max≤f(x)max”,结合导数可分别求解最值,即可求解.【解答】解:(1)设h(x)=f′(x)=cos x﹣x sin x﹣2cos x=﹣cos x﹣x sin x,∴h′(x)=sin x﹣sin x﹣x cos x=﹣x cos x当x时,h′(x)<0;当x时,h′(x)>0;所以h(x)在(0,)单调递减,在()单调递增.又h(0)=﹣1<0lh()=﹣,h(π)=1>0,故f′(x)在区间(0,π)上存在唯一零点.(2)记f(x)在区间[0,π]上的最大值为f(x)max,g(x)在区间[0,2]上的最大值为g(x)max.依题意,“对任意x1∈[0,2],均存在x2∈[0,π],使得得g(x1)≤f(x2),等价于“g(x)max≤f(x)max”,由(Ⅰ)知,f′(x)在(0,π)只有一个零点,设为x0,且当x∈(0,x0)时,f′(x)<0;当x∈(x0,π)时,f′(x)>0;,所以f(x)在(0,x0)单调递减,在当(x0,π)时单调递增.又f(0)=1,f(π)=1﹣π<0,所以当x∈[0,π]时,f(x)max=1.故应满足g(x)max≤1.因为g(x)=x2e ax,所以g′(x)=(ax2+2x)e ax=x(ax+2)e ax.①当a=0时,g(x)=x2,对任意x∈[0,2],g(x)max=g(2)=4,不满足g(x)max≤1.②当a≠0时,令g′(x)=0,得x=0或x=﹣.(ⅰ)当﹣≥2,即﹣1≤a<0时,在[0,2]上,g′(x)≥0,所以g(x)在[0,2]上单调递增,g(x)max=g(2)=4e2a.由4e2a≤1,得a≤﹣ln2,所以﹣1≤a≤﹣ln2.(ⅱ)当0<﹣<2,即a<﹣1时,上,g′(x)<0,g(x)单调递减.g(x)max=.由≤1,得a≤﹣或a≥,所以a<﹣1.(ⅲ)当﹣<0,即a>0时,显然在[0,2]上,g′(x)≥0,g(x)单调递增,于是g (x)max=g(2)=4e2a,此时不满足g(x)max≤1.综上,实数a的取值范围是(﹣∞,﹣ln2].【点评】本题主要考查了函数的导数与单调性关系,函数零点判定定理及恒成立与存在性问题与最值求解的相互转化,体现了分类讨论思想与转化思想的应用.3.(2020•开封一模)已知函数,a∈R,e为自然对数的底数.(1)当a=1时,证明:∀x∈(﹣∞,0],f(x)≥1;(2)若函数f(x)在上存在两个极值点,求实数a的取值范围.【分析】(1)把a=1代入,直接用导数法证明即可;(2)对f(x)求导,,对a进行讨论,判断函数f(x)的极值,确定a的范围.【解答】解:(1)当a=1时,,则,当x∈(﹣∞,0]时,0<e x≤1,则,又因为cos x≤1,所以当x∈(﹣∞,0]时,,仅x=0时,f'(x)=0,所以f(x)在(﹣∞,0]上是单调递减,所以f(x)≥f(0)=1,即f(x)≥1.(2),因为,所以cos x>0,e x>0,①当a≤0时,f'(x)>0恒成立,所以f(x)在上单调递增,没有极值点.②当a>0时,在区间上单调递增,因为,f'(0)=﹣a+1.当a≥1时,时,f'(x)≤f'(0)=﹣a+1≤0,所以f(x)在上单调递减,没有极值点.当0<a<1时,f'(0)=﹣a+1>0,所以存在,使f'(x0)=0,当时,f'(x)<0,x∈(x0,0)时,f'(x)>0,所以f(x)在x=x0处取得极小值,x0为极小值点.综上可知,若函数f(x)在上存在极值点,则实数a∈(0,1).【点评】本题考查了导数的综合应用及极值点引出的含参问题,综合性高,难度较大.4.(2020•遂宁模拟)已知函数(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若函数g(x)=a(lnx﹣x)+f(x)﹣e x sin x﹣1有两个极值点x1,x2(x1≠x2).且不等式g(x1)+g(x2)<λ(x1+x2)恒成立,求实数λ的取值范围.【分析】(1)求出f′(x)=e x sin x+e x cos x+x,求出切线的斜率,切点坐标,然后求解切线方程.(2)化简g(x)=,求出导函数,通过g′(x)=0有两个不同的正根,即x2﹣ax+a=0有两个不同的正根,列出不等式组,不等式g(x1)+g(x2)<λ(x1+x2)恒成立等价于恒成立,转化求解即可.【解答】解:(1)因为,所以f′(x)=e x sin x+e x cos x+x,=f′(0)=1,又f(0)=1,所以k切故所求的切线方程为y﹣1=1×(x﹣0),即x﹣y+1=0.(2)因为g(x)=a(lnx﹣x)+f(x)﹣e x sin x﹣1=所以,由题意g′(x)=0有两个不同的正根,即x2﹣ax+a=0有两个不同的正根,则,不等式g(x1)+g(x2)<λ(x1+x2)恒成立等价于恒成立又====所以,令(a>4),则,所以在(4,+∞)上单调递减,所以y<2ln2﹣3,所以λ≥2ln2﹣3.【点评】本题考查函数与方程的应用,函数的导数以及函数的最值的求法,切线方程的求法,考查分析问题解决问题的能力,是难题.5.(2018秋•济宁期末)已知函数f(x)=(x﹣a)cos x﹣sin x,g(x)=x3﹣ax2,a∈R (Ⅰ)当a=1时,求函数y=f(x)在区间(0,)上零点的个数;(Ⅱ)令F(x)=f(x)+g(x),试讨论函数y=F(x)极值点的个数.【分析】(1)先对函数求导,然后结合导数与单调性的关系可判断单调性,结合零点判定定理可求.(2)先求导,再分类讨论即可求出函数的单调区间和极值【解答】解:(1)a=1时,f(x)=(x﹣1)cos x﹣sin x,∴f′(x)=(﹣x+1)sin x,x∈(0,),sin x>0,当0<x<1时,f′(x)>0,f(x)单调递增,当1<x<时,f′(x)<0,f(x)单调递减,当x=1时,函数取得最小值f(1)=﹣sin1<0,而f(0)=﹣cos1<0.f()=﹣1<0,故函数f(x)在区间(0,)上零点的个数为0,(2)函数F(x)=(x﹣a)cos x﹣sin x x3﹣ax2,∴F′(x)=(x﹣a)(x﹣sin x),令F′(x)=0,解得x=a,或x=0,①若a>0时,当x<0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,当x>a时,F′(x)>0恒成立,故F(x)在(a,+∞)上单调递增,当0<x<a时,F′(x)<0恒成立,故F(x)在(0,a)上单调递减,故有2个极值点,②若a<0时,当x>0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,当x<a时,F′(x)>0恒成立,故F(x)在(﹣∞,a)上单调递增,当a<x<0时,F′(x)<0恒成立,故F(x)在(a,0)上单调递减,故有2个极值点,③当a=0时,F′(x)=x(x﹣sin x),当x>0时,F′(x)>0恒成立,故F(x)在(0,+∞)上单调递增,当x<0时,F′(x)>0恒成立,故F(x)在(﹣∞,0)上单调递增,∴F(x)在R上单调递增,无极值.【点评】本题考查了导数的几何意义和导数和函数的单调性和极值的关系,关键是分类讨论,考查了学生的运算能力和转化能力,属于难题6.(2019秋•五华区校级月考)已知函数,f'(x)为f(x)的导数.(1)证明:f(x)在定义域上存在唯一的极大值点;(2)若存在x1≠x2,使f(x1)=f(x2),证明:x1x2<4.【分析】(1)求出,判断函数的单调性,说明在定义域(0,+∞)存在唯一x0,使f'(x0)=0且x0∈(1,2);当0<x<x0时,f'(x)>0;当x>x0时,f'(x)<0,推出结果.(2)存在x1≠x2,使f(x1)=f(x2),即,得.设g(x)=x﹣sin x,利用代换是判断函数的单调性推出,结合对数均值不等式,推出x1x2<4.【解答】证明:(1),当x≥2时,,,,“=”不能同时取到,所以f'(x)<0;当0<x<2时,,所以f'(x)在(0,2)上递减,因为,,所以在定义域(0,+∞)存在唯一x0,使f'(x0)=0且x0∈(1,2);当0<x<x0时,f'(x)>0;当x>x0时,f'(x)<0,所以x0是f(x)在定义域(0,+∞)上的唯一极值点且是极大值点.(2)存在x1≠x2,使f(x1)=f(x2),即,得.设g(x)=x﹣sin x,则g'(x)=1﹣cos x≥0,g(x)在(0,+∞)上递增,不妨设x1>x2>0,则g(x1)>g(x2),即x1﹣sin x1>x2﹣sin x2,x1﹣x2>sin x1﹣sin x2,所以,得,根据对数均值不等式,可得,x 1x2<4.【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力,是难题.7.(2019秋•五华区校级月考)定义在[﹣π,+∞)的函数f(x)=e x﹣cos x的导函数为g(x).证明:(1)g(x)在区间(﹣π,0)存在唯一极小值点;(2)f(x)有且仅有2个零点.【分析】(1)结合导数与单调性的关系,先求解函数的单调性,然后求解函数极值,(2)结合导数与单调性关系及零点判定定理进行讨论即可求解.【解答】解:(1)∵g(x)=e x+sin x,则g′(x)=e x+cos x,容易得出,g′(x)=e x+cos x在[﹣π,0)上单调递增,又g′(﹣π)<0,g′(0)>0,结合零点存在定理可知,存在唯一的x0∈(﹣π,0)使得g′(x)=0,若x∈(﹣π,0),g′(x)<0,g(x)单调递减,若x∈(x0,0),g′(x)>0,g(x)单调递增,故g(x)存在唯一的极小值点,(2)由(1)可知g(x)在(﹣π,0)上存在唯一的极小值点x0,∴g(x0)=e<0,又g(0)=1>0,g(﹣π)=e﹣π>0,结合零点存在定理可知,存在唯一的x1∈(﹣π,x0),使得g(x1)=0,存在唯一的x2∈(x0,0),使得g(x2)=0,故当x∈(﹣π,x1)∪(x2,0)时,g(x)>0,此时f(x)单调递增,当x∈(x1,x2)时,g(x)>0,此时g(x)单调递减,则f(x1)>f(﹣π)>0,f(x2)<f(0)=0,由零点存在性定理可知,存在唯一m∈(x1,x2),使得f(m)=0,故函数f(x)在[﹣π,0]上尤其仅有x=m与x=0两个零点,当x∈(0,+∞)时,e x>1≥cos x,则f(x)>0,故f(x)在(0,+∞)上没有零点,综上可得,f(x)有且仅有两个零点.【点评】本题主要考查了函数的极值及零点存在条件的应用,体现了分类讨论及转化思想的应用,属于中档试题.8.(2019秋•遂宁月考)已知函数,(1)讨论f(x)在上的单调性.(2)当a>0时,若f(x)在上的最大值为π﹣1,讨论:函数f(x)在(0,π)内的零点个数.【分析】(1)对a分大于零和小于零两种情况讨论,利用导数即可求出函数f(x)在上的单调性;(2)由(1)知a>0时f(x)的最大值为,从而求出a=2,又因为f(x)在上单调递增,且f(0)=﹣1<0,,所以f(x)在内有且仅有1个零点.再讨论当x时,函数f(x)存在一个极值点x0,利用导数得到f(x)在上无零点,f(x)在(x0,π)内有且仅有1个零点,所以函数f(x)在(0,π)内有2个零点.【解答】解:(1)f'(x)=a(sin x+x cos x),当a<0,时,sin x>0,cos x>0,∴f'(x)<0,f(x)单调递减,当时,sin x>0,cos x>0,∴f'(x)>0,f(x)单调递增,综上得:当a<0,f(x)在单调递减;a>0时,f(x)在单调递增;(2)由(1)知a>0时f(x)的最大值为由得a=2,∴f(x)=2x sin x﹣1,又∵f(x)在上单调递增;且f(0)=﹣1<0,,∴f(x)在内有且仅有1个零点.当时,令g(x)=f'(x)=2(sin x+x cos x),g'(x)=2(2cos x﹣x sin x)<0,∴g(x)在内单调递减,且,g(π)=﹣2π<0,∴存在,使得g(x0)=0,∴①当时,f'(x)>0,f(x)在单调递增,∴时,,∴f(x)在上无零点,②当x∈(x0,π)时,f'(x)<0,f(x)在(x0,π)内单调递减,又∵f(x0)>0,f(π)=﹣1<0,∴f(x)在(x0,π)内有且仅有1个零点,综上所求:函数f(x)在(0,π)内有2个零点.【点评】本题主要考查了利用导数研究函数的单调性和零点,是中档题.9.(2019秋•肇庆月考)设函数f(x)=sin x﹣ax+x3(a∈R).(1)讨论f(x)的导函数f′(x)零点的个数;(2)若对任意的x≥0,f(x)≥0成立,求a的取值范围.【分析】(1)先对函数求导,结合为偶函数,问题可转化为先研究x≥0,结合导数与单调性的关系及函数的零点判定定理可求,(2)结合导数先判断函数的单调性,结合零点判定定理可求.【解答】解:(1),令,x∈R,g(x)为偶函数,先研究x≥0,则g'(x)=x﹣sin x,g''(x)=1﹣cos x≥0,∴g'(x)在[0,+∞)为递增函数,且g'(0)=0,∴g'(x)≥0,即g(x)在[0,+∞)为单调递增函数,当g(0)=1﹣a>0,即a<1,g(x)没有零点,当g(0)=1﹣a=0,即a=1,g(x)有1个零点,当g(0)=1﹣a》<0,即a>1,,∴当,g(x)>0,∴当,g(x)在[0,+∞)有1个零点,∴g(x)为偶函数,在(﹣∞,0]也有有1个零点.综上:a<1,f'(x)没有零点;a=1,f'(x)有1个零点;a>1,f'(x)有2个零点.(2)①当a≤1时,由(1)知f'(x)≥0,f(x)在[0,+∞)为单调递增函数,f(x)≥f(0)=0,②当a>1时,f'(2a)=cos2a﹣a+2a2=cos2a+a2+a(a﹣1)>0,f'(0)=1﹣a<0,由零点存在性定理知∃x0∈(0,2a)使得f'(x0)=0,且在(0,x0),f'(x)<0,即f(x)单调递减,f(x)<f(0)=0与题设不符.综上可知,a≤1时,f(x)≥0,【点评】本题考查了导数的综合应用及零点判定定理的应用,属于中档题.10.(2019秋•江岸区校级月考)已知函数,f'(x)是f(x)的导函数.(1)证明:当m=2时,f'(x)在(0,+∞)上有唯一零点;(2)若存在x1,x2∈(0,+∞),且x1≠x2时,f(x1)=f(x2),证明:.【分析】(1)先求出f'(x),分析出当x∈(0,π)时,f'(x)为增函数,且,,得到f'(x)在(0,π)上有唯一零点,又因为当x∈[π,+∞)时,,所以f'(x)在[π,+∞)上没有零点,从而得出f'(x)在(0,+∞)上有唯一零点;(2)不妨设0<x1<x2,由f(x1)=f(x2)得=,即.设g(x)=x﹣sin x,利用导数得到g(x)在(0,+∞)为增函数,从而,再证明:.从而得出,即.【解答】证明:(1)当m=2时,,,当x∈(0,π)时,f'(x)为增函数,且,,∴f'(x)在(0,π)上有唯一零点,当x∈[π,+∞)时,,∴f'(x)在[π,+∞)上没有零点,综上知,f'(x)在(0,+∞)上有唯一零点;(2)不妨设0<x1<x2,由f(x1)=f(x2)得=,∴,设g(x)=x﹣sin x,则g'(x)=1﹣cos x≥0,故g(x)在(0,+∞)为增函数,∴x2﹣sin x2>x1﹣sin x1,从而x2﹣x1>sin x2﹣sin x1,∴=,∴,下面证明:,令,则t>1,即证明,只要证明,(*)设,则,∴h(t)在(1,+∞)单调递减,当t>1时,h(t)<h(1)=0,从而(*)得证,即,∴,即.【点评】本题主要考查了利用导数研究函数的零点,利用导数研究函数的单调性,是中档题.。

三角函数的导数和积分练习题

三角函数的导数和积分练习题

三角函数的导数和积分练习题练习一:求下列函数的导数。

1. $f(x) = \sin(x) + \cos(x)$解析:根据求导法则,可得$$f'(x) = \cos(x) - \sin(x)$$2. $g(x) = 3\sin(x) + \frac{1}{2}\cos(x)$解析:根据求导法则,可得$$g'(x) = 3\cos(x) - \frac{1}{2}\sin(x)$$3. $h(x) = \tan(x) + \cot(x)$解析:根据求导法则,可得$$h'(x) = \sec^2(x) - \csc^2(x)$$4. $k(x) = \frac{\sin(x)}{\cos(x)}$解析:根据求导法则,可得$$k'(x) = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} $$练习二:求下列函数的积分。

1. $F(x) = \sin(x) + C$解析:由于$\sin(x)$的积分是$-\cos(x)$,所以可得$$\int \sin(x) \, dx = -\cos(x) + C$$其中$C$为积分常数。

2. $G(x) = \frac{1}{2}\cos(x) + C$解析:由于$\cos(x)$的积分是$\sin(x)$,所以可得$$\int \cos(x) \, dx = \sin(x) + C$$其中$C$为积分常数。

3. $H(x) = \ln|\sec(x) + \tan(x)| + C$解析:根据换元积分法,令$u = \sec(x) + \tan(x)$,则$du = (\sec(x) + \tan(x))\tan(x) \, dx$。

将其代入原积分式,可得$$\int \sec(x) \, dx = \ln|\sec(x) + \tan(x)| + C$$其中$C$为积分常数。

三角函数的导数与应用学习三角函数的导数及其在实际问题中的应用

三角函数的导数与应用学习三角函数的导数及其在实际问题中的应用

三角函数的导数与应用学习三角函数的导数及其在实际问题中的应用三角函数的导数与应用在数学领域中,三角函数是一类与角度相关的函数,包括正弦函数、余弦函数和正切函数等。

而三角函数的导数则是描述这些函数变化率的重要概念。

本文将学习三角函数的导数及其在实际问题中的应用。

一、导数的定义与求导法则为了理解三角函数的导数,我们首先需要了解导数的定义。

对于函数f(x),其在某一点x=a处的导数,可以表示为f'(a)或者dy/dx(a)。

导数描述了函数在该点处的变化率,即斜率。

对于三角函数来说,我们可以通过基本的导数求导法则来求得导数。

下面是常见的三角函数导数公式:1. 正弦函数的导数:(sin x)' = cos x2. 余弦函数的导数:(cos x)' = -sin x3. 正切函数的导数:(tan x)' = sec^2 x这些导数公式可以通过限制的定义来证明,但是在此不做展开。

接下来,我们将通过实际问题来应用三角函数的导数。

二、三角函数的导数在实际问题中的应用1. 频率与振幅的分析三角函数在物理学和工程学中经常用于描述周期性现象,如振动和波动。

通过分析三角函数的导数,我们可以得到频率和振幅的相关信息。

以正弦函数为例,正弦函数的导数为余弦函数。

通过求解正弦函数的导数,我们可以得到在任意时刻的振动速度。

振动的频率可以通过求得的导数波形的周期性来分析。

2. 最大值与最小值的求解三角函数在数学问题和实际应用中经常涉及到求解最大值和最小值的情况。

通过求解导数,我们可以找到函数的极值点。

对于一个闭区间上的连续函数,最大值和最小值通常出现在导数等于零的点或者定义域的端点。

因此,通过求解导数为零的方程,我们可以求解函数的最大值和最小值。

这个过程被称为极值点的求解。

3. 函数的变化趋势分析通过三角函数的导数,我们可以得到函数的变化趋势分析。

导数的正负号可以告诉我们函数的增减性和变化趋势。

以正弦函数为例,当导数大于零时,函数递增;当导数小于零时,函数递减。

第20讲 导数解答题之导数解决含三角函数式的证明(解析版)

第20讲 导数解答题之导数解决含三角函数式的证明1.已知函数()2sin tan 2f x x x x =+-. (1)证明:函数()f x 在(,)22ππ-上单调递增;(2)若(0,)2x π∈,2()f x mx <,求m 的取值范围.【解析】解:(1)证明:21()cos 2cos f x x x'=+-, 因为(,)22x ππ∈-,所以cos (0x ∈,1],于是22211()2cos 2cos 20cos cos f x x x x x'=+-+-(等号当且仅当0x =时成立). 故函数()f x 在(,)22ππ-上单调递增. (2)由(1)得()f x 在(0,)2π上单调递增,又(0)0f =,所以()0f x >,(ⅰ)当0m 时,2()0f x mx >成立.(ⅱ)当0m >时,令()sin p x x x =-,则()cos 1p x x '=-, 当(0,)2x π∈时,()0p x '<,()p x 单调递减,又(0)0p =,所以()0p x <, 故(0,)2x π∈时,sin x x <.(*)由(*)式可得222()sin tan 2tan f x mx x x x mx x x mx -=+--<--, 令2()tan g x x x mx =--,则2()tan 2g x x mx '=-由(*)式可得2222()2(2cos )cos cos x xg x mx x m x x x'<-=- 令2()2cos h x x m x =-,得()h x 在(0,)2π上单调递增,又(0)0h <,()02h π>,所以存在(0,)2t π∈使得()0h t =,即(0,)x t ∈时,()0h x <,所以(0,)x t ∈时,()0g x '<,()g x 单调递减, 又(0)0g =,所以()0g x <,即(0,)x t ∈时,2()0f x mx -<,与2()f x mx >矛盾.综上,满足条件的m 的取值范围是(-∞,0].2.已知函数()()(x f x ln e a a =+为常数,e 是自然对数的底数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[1-,1]上的减函数.(Ⅰ)求a 的值;(Ⅱ)若2()1g x t t λ++在[1x ∈-,1]及λ所在的取值范围上恒成立,求t 的取值范围; (Ⅲ)试讨论函数2()2()lnxh x x ex m f x =-+-的零点的个数. 【解析】解:(Ⅰ)()()x f x ln e a =+是R 上的奇函数(0)0f ∴=,0(0)()0f ln e a ∴=+= (1)0ln a ∴+=,0a ∴=⋯(4分)(Ⅱ)由()I 知()f x x =,()sin g x x x λ∴=+,()cos g x x λ∴'=+ 又()g x 在[1-,1]上单调递减,()0g x '∴在[1-,1]上恒成立.cos x λ∴-对[1x ∈-,1]恒成立,[cos ]1min x -=-,1λ∴-⋯(6分)2()1g x t t λ++在[1x ∈-,1]上恒成立,即2()1max g x t t λ++⋯(7分) ()(1)sin1max g x g λ=-=--,2sin11t t λλ∴--++,即2(1)sin110t t λ++++对1λ-恒成立令2()(1)sin11(1)F t t λλλ=++++-,则2101sin110t t t +⎧⋯⎨--+++⎩(8分) ∴21sin10t t t -⎧⎨-+⎩,1t ∴-.⋯(9分)(Ⅲ)由()I 知()f x x =,2()2lnxh x x ex m x∴=-+- ∴讨论函数2()2lnx h x x ex m x =-+-的零点的个数,即讨论方程22lnxx ex m x=-+根的个数. 令1()lnxf x x=,22()2f x x ex m =-+,121()lnxf x x -'=, ∴当(0,)x e ∈时,1()0f x '>,1()f x ∴在(0,)e 上为增函数;当(,)x e ∈+∞时,1()0f x '<,1()f x ∴在(,)e +∞上为减函数,∴当x e =时,11()max f x f =(e )1e=而222()()f x x e m e =-+-,∴函数1()f x 、2()f x 在同一坐标系的大致图象如图所示, ∴①当21m e e ->,即21m e e>+时,方程无解.函数()h x 没有零点;---(10分) ②当21m e e -=,即21m e e =+时,方程有一个根.函数()h x 有1个零点⋯(11分)③当21m e e -<,即21m e e<+时,方程有两个根.函数()h x 有2个零点.⋯(12分)3.已知函数2()2cos f x x ax b x =++在点(,())22f ππ处的切线方程为34y π=.(Ⅰ)求a ,b 的值,并讨论()f x 在[0,]2π上的增减性; (Ⅱ)若12()()f x f x =,且120x x π<<<,求证:12()02x x f +'<. (参考公式:cos cos 2sinsin)22θϕθϕθϕ+--=-【解析】(Ⅰ)解:由题意知()22sin f x ax b x '=+-,∴()023()24f f πππ⎧'=⎪⎪⎨⎪=⎪⎩解得11a b π⎧=-⎪⎨⎪=⎩故21()2cos f x x x x π=-+,2()2sin f x x x π'=--.当02xπ时,()f x '为减函数,且()02f π'=,()0f x '∴>,()f x 为增函数.(Ⅱ)证明:由12()()f x f x =,得221211222cos 2cos x x x x x x ππ-+=-+,所以1212121212()()()cos cos 0x x x x x x x x π--+-+-=,两边同除以12x x -,得121212cos cos 12()0x x x x x x π--++=-,所以121212122sinsin 1222()0x x x x x x x x π+---++=-, 令1202x x x +=,得1200122sin sin2220x x x x x x π---=-,得1200122sin sin222x x x x x x π--=-.因为2()2sin xf x x π'=--,所以121200000012122sin sinsin 222()2sin sin sin (1)2x x x xx f x x x x x x x x x π--'=--=-=---,因为12211221sin sin 2222x x x xx x x x --=--, 又21(0,)22x x π-∈,易知21210sin 22x x x x --<<,所以1212sin2102x x x x --<-, 又0(0,)x π∈,所以0sin 0x >,故0()0f x '<,得12()02x x f +'<. 4.设2()cos 12x f x x =+-.(Ⅰ)求证:当0x 时,()0f x ;(Ⅱ)若不等式sin cos 2ax e x x -+对任意的0x 恒成立,求实数a 的取值范围.【解析】(Ⅰ)证明:2()cos 1(0)2x f x x x =+-,则()sin f x x x '=-,设()sin x x x ϕ=-,则()1cos x x ϕ'=-,⋯(2分)当0x 时,()1cos 0x x ϕ'=-,即()sin f x x x '=-为增函数, 所以()(0)0f x f ''=,即()f x 在0x 时为增函数,所以()(0)0f x f =.⋯(4分)(Ⅱ)解法一:由(Ⅰ)知0x 时,sin x x ,2cos 12x x -+,所以21sin cos 22x x x x ++-+,⋯(6分)设2()12xx G x e x =---,则()1x G x e x '=--,设()1x g x e x =--,则()1x g x e '=-,当0x 时()10x g x e '=-,所以()1x g x e x =--为增函数, 所以()(0)0g x g =,所以()G x 为增函数,所以()(0)0G x G =, 所以sin cos 2x e x x -+对任意的0x 恒成立.⋯(8分) 又0x ,1a 时,ax x e e ,所以1a 时sin cos 2ax e x x -+对任意的0x 恒成立.⋯(9分)当1a <时,设()sin cos 2ax h x e x x =-+-,则()cos sin ax h x ae x x '=--,(0)10h a '=-<, 所以存在实数00x >,使得任意0(0,)x x ∈,均有()0h x '<,所以()h x 在0(0,)x 为减函数, 所以在0(0,)x x ∈时()(0)0h x h <=,所以1a <时不符合题意. 综上,实数a 的取值范围为[1,)+∞.⋯(12分)(Ⅱ)解法二:因为sin cos 2ax e x x -+等价于(sin cos 2)ax ln x x -+⋯(6分) 设()(sin cos 2)g x ax ln x x =--+,则sin cos ()sin cos 2x xg x a x x +'=--+可求sin cos [1,1]sin cos 2x xx x +∈--+,⋯(8分)所以当1a 时,()0g x '恒成立,()g x 在[0,)+∞是增函数, 所以()(0)0g x g =,即(sin cos 2)ax ln x x -+,即sin cos 2ax e x x -+ 所以1a 时,sin cos 2ax e x x -+对任意0x 恒成立.⋯(9分) 当1a <时,一定存在00x >,满足在0(0,)x 时,()0g x '<, 所以()g x 在0(0,)x 是减函数,此时一定有()(0)0g x g <=,即(sin cos 2)ax ln x x <-+,即sin cos 2ax e x x <-+,不符合题意,故1a <不能满足题意, 综上所述,1a 时,sin cos 2ax e x x -+对任意0x 恒成立.⋯(12分) 5.已知函数()sin x f x e x =. (1)求函数()f x 的单调区间;(2)如果对于任意的[0,]2x π∈,()f x kx 恒成立,求实数k 的取值范围;(3)设函数()()cos x F x f x e x =+,20152017[,]22x ππ∈-.过点1(,0)2M π-作函数()F x 的图象的所有切线,令各切点的横坐标构成数列{}n x ,求数列{}n x 的所有项之和S 的值.【解析】解:(1)()(sin cos )sin()4x x f x e x x x π'=+=+,()f x ∴的增区间为3[2,2]()44k k k Z ππππ-+∈; 减区间为37[2,2]()44k k k Z ππππ++∈.⋯(4分) (2)令()()sin x g x f x kx e x kx =-=-要使()f x kx 恒成立,只需当[0,]2x π∈时,()0min g x ,()(sin cos )x g x e x x k '=+-令()(sin cos )x h x e x x =+,则()2cos 0x h x e x '=对[0,]2x π∈恒成立,()h x ∴在[0,]2π上是增函数,则2()[1,]h x e π∈,①当1k 时,()0g x '恒成立,()g x 在[0,]2π上为增函数,()(0)0min g x g ∴==,1k ∴满足题意;②当21k e π<<时,()0g x '=在[0,]2π上有实根0x ,()h x 在[0,]2π上是增函数,则当[0x ∈,0)x 时,()0g x '<,0()(0)0g x g ∴<=不符合题意;③当2k e π时,()0g x '恒成立,()g x 在[0,]2π上为减函数,()(0)0g x g ∴<=不符合题意,1k ∴,即(k ∈-∞,1].⋯(8分)(3)()()cos (sin cos )()2cos x x x F x f x e x e x x F x e x '=+=+∴=, 设切点坐标为0000(,(sin cos ))x x e x x +,则切线斜率为000()2cos x F x e x '=, 从而切线方程为000000(sin cos )2cos ()x x y e x x e x x x -+=-,∴000000001(sin cos )2cos ()tan 2()22x x e x x e x x x x ππ--+=-⇔=-, 令1tan y x =,22()2y x π=-,这两个函数的图象均关于点(,0)2π对称,则它们交点的横坐标也关于2x π=对称,从而所作的所有切线的切点的横坐标构成数列{}n x 的项也关于2x π=成对出现,又在20152017[,]22ππ-共有1008对,每对和为π. 1008S π∴=.⋯(12分)6.已知函数sin ()x xf x e=. (1)求函数()f x 的单调区间; (2)如果对于任意的[2x π∈-,0],()f x kx 恒成立,求实数k 的取值范围. 【解析】解:(1)由于sin ()xxf x e =, 所以cos sin ()xx xf x e -'=,当cos sin 0x x ->)04x π+>,即3(24x k ππ∈-,2)4k ππ+,k Z ∈时,()0f x '>;当cos sin 0x x -<)04x π+<,即(24x k ππ∈+,52)4k ππ+,k Z ∈时,()0f x '<.所以()f x 的单调递增区间为3(24k ππ-,2)4k ππ+,()k Z ∈, 单调递减区间为(24k ππ+,52)4k ππ+,()k Z ∈; (2)令sin ()()xxg x f x kx kx e =-=-, 要使()f x kx 总成立,只需[2x π∈-,0]时()0max g x ,对()g x 求导,可得cos sin ()xx xg x k e -'=-,令cos sin ()xx xh x e -=,则2cos ()0([2xx h x x e π-'=<∈-,0]) 所以()h x 在[2π-,0]上为减函数,所以()[1h x ∈,2]e π; 对k 分类讨论:①当1k 时,()0g x '恒成立,所以()g x 在[2π-,0]上为增函数,所以()(0)0max g x g ==, 即()0g x ,故成立;②当21k e π<<时,()0g x '=在上有实根0x , 因为()h x 在(2π-,0)上为减函数,所以当0(x x ∈,0)时,()0g x '<, 所以0()(0)0g x g >=,不符合题意;③当2k e π时,()0g x '恒成立, 所以()g x 在[2π-,0]上为减函数,则2()()22k g x g e πππ-=-,由202k e ππ-,可得22e kππ, 即有k ∈∅.综上,可得实数k 的取值范围是(-∞,1].7.已知函数()sin x f x e x =. (1)求函数()f x 的单调区间;(2)如果对于任意的[0,]2x π∈,()f x kx 总成立,求实数k 的取值范围.【解析】解:(1)由于()sin x f x e x =,所以()sin cos (sin cos )sin()4x x x x f x e x e x e x x x π'=+=+=+,当(2,2)4x k k ππππ+∈+,即3(2,2)44x k k ππππ∈-+时,()0f x '>; 当(2,22)4x k k πππππ+∈++,即37(2,2)44x k k ππππ∈++时,()0f x '<. 所以()f x 的单调递增区间为3(2,2)()44k k k Z ππππ-+∈, 单调递减区间为37(2,2)()44k k k Z ππππ++∈; (2)令()()sin x g x f x kx e x kx =-=-,要使()f x kx 总成立,只需[0,]2x π∈时()0min g x ,对()g x 求导,可得()(sin cos )x g x e x x k '=+-, 令()(sin cos )x h x e x x =+, 则()2cos 0x h x e x '=>,((0,))2x π∈所以()h x 在[0,]2π上为增函数,所以2()[1,]h x e π∈; 对k 分类讨论:①当1k 时,()0g x '恒成立, 所以()g x 在[0,]2π上为增函数,所以()(0)0min g x g ==, 即()0g x 恒成立;②当21k e π<<时,()0g x '=在上有实根0x , 因为()h x 在(0,)2π上为增函数,所以当0(0,)x x ∈时,()0g x '<, 所以0()(0)0g x g <=,不符合题意;③当2k e π时,()0g x '恒成立, 所以()g x 在(0,)2π上为减函数,则()(0)0g x g <=,不符合题意.综上,可得实数k 的取值范围是(-∞,1]. 8.已知()sin cos f x x x ax =--,其中a R ∈. (1)若()f x 在0x =处取得极值,求实数a 的值. (2)若()f x 在[2π-,]2π上单调递增,求实数a 的取值范围. 【解析】解:(1)()cos sin f x x x a '=+-,(2分) 由(0)0f '=可得10a -=,1a =;(4分) 经检验,1a =满足题意.(5分)(2)函数()f x 在[,]22ππ-单调递增.()cos sin 0f x x x a '∴=+-在[,]22ππ-上恒成立.(7分)即cos sin a x x +在[,]22ππ-上恒成立.即(cos sin )min a x x +cos sin ),[,]422y x x x x πππ=+=+∈-,1min y =-(10分)1a ∴-.(11分) 检验,1a =-时,()cos sin 10f x x x '=++=,[,]22x ππ∈-,仅在2x π=-处取得.所以满足题意.1a ∴-.(12分)9.已知()sin cos f x x x ax =--.(1)若()f x 在[,]22ππ-上单调,求实数a 的取值范围;(2)证明:当2a π=时,()1f x -在[0x ∈,]π上恒成立.【解析】解:(1)()cos sin )4f x x x a x a π'=+-=+-⋯(1分)若()f x 在[,]22ππ-上单调递增,则当[,]22x ππ∈-,()0f x '恒成立,当[,]22x ππ∈-时,3[,],sin()[)[44444x x x πππππ+∈-+∈+∈-,此时1a -;⋯(4分)若()f x 在[,]22ππ-上单调递减,同理可得2a⋯(5分)所以a 的取值范围是(,1][2,)-∞-+∞⋯(6分)(2)2a π=时,22()sin cos ,())4f x x x x f x x πππ'=--=+-⋯(7分) 当[0x ∈,]π时,()f x '在[0,]4π上单调递增,在[,]4ππ上单调递减, 22(0)10,()10f f x ππ''=->=--<⋯(9分)∴存在0(,)4x ππ∈,使得在[0,0)x 上()0f x '>,在0(x ,]π上()0f x '<, 所以函数()f x 在[0,0)x 上单调递增,在0(x ,]π上单调递减⋯(11分)故在[0,]π上,(){(0)min f x min f =,()}1f π=-,所以()1f x -在[0x ∈,]π上恒成立⋯(12分)10.已知2()12a f x xlnx x =++. (1)若()f x 在其定义域上为单调递减函数,求实数a 的取值范围;(2)若函数()()cos sin 1g x f x x x x xlnx =+---在(0,]2π上有1个零点. (ⅰ)求实数a 的取值范围;(ⅱ)证明:若1x >,则不等式2(1)[()]2a x f x x axlnx -->成立. 【解析】解:(1)()10f x lnx ax '=++在(0,)+∞上恒成立,⋯⋯⋯⋯(1分) 所以1lnx a x --,令1()lnx h x x --=,则2()lnx h x x '=, 由20lnx x >,得1x >,所以()h x 在(1,)+∞单调递增, 由20lnx x <,得01x <<,所以()h x 在(0,1)单调递减, 所以当1x =时,()h x 取得最小值h (1)1=-,⋯⋯⋯⋯(2分) 所以1a -.⋯⋯⋯⋯(3分)(2)2()()cos sin 2a i g x x x x x =+-,(0x ∈,]2π, 所以()(sin )g x x a x '=-,当1a 时,sin 0a x -,所以()g x 在(0,]2π单调递增, 又因为(0)0g =,所以()g x 在(0,]2π上无零点.⋯⋯⋯⋯(4分) 当01a <<时,0(0,)2x π∃∈,使得0sin x a =, 所以()g x 在0(x ,]2π单调递减,在0(0,)x 单调递增,又因为(0)0g =,2()128a g ππ=-, 所以若2108a π->,即28a π>时,()g x 在(0,]2π上无零点,⋯⋯(5分) 若2108a π-,即280a π<时,()g x 在(0,]2π上有一个零点,⋯⋯⋯⋯(6分) 当0a 时,()sin 0g x a x x '=-<,()g x 在(0,]2π上单调递减,()g x 在(0,]2π上无零点, 综上当280a π<时,()g x 在(0,]2π上有一个零点⋯⋯⋯⋯(7分) ()ii 证明:要证当1x >时,2(1)[()]2a x f x x axlnx -->成立, 只需证(1)[1]x xlnx axlnx -+>,只需证11lnx lnx a x x +>-,⋯⋯⋯⋯(8分) 设1()F x lnx x =+,1x ,则21()x F x x-'=, 所以()F x 在(1,)+∞上单调递增,()F x F >(1)1=, 由(1)知,1a =-时,()10f x lnx x '=+-,即1lnx x -,当且仅当1x =时取等号, 所以当1x >时,1lnx x <-即11lnx x <-, 所以11lnx lnx x x +>-,⋯⋯⋯⋯(9分) 又因为280aπ<,所以1a <, 所以11lnx lnx a x x >--,所以11lnx lnx a x x +>-, 即1x >,不等式2(1)[()]2a x f x x axlnx -->成立.⋯⋯⋯⋯(10分)。

三角函数的求导公式

三角函数的求导公式是什么?[数学作业]收藏转发至天涯微博悬赏点数 109个回答crystalzjyu2009-03-28 14:18:39三角函数的求导公式是什么?回答回答skoou2009-03-28 14:18:48(sinX)&#39;=cosX;(cosX)&#39;=-sinX;(lnX)&#39;=1/X; (logaX)&#39;=1/Xlogae &#160; &#160; &#160; &#160; & #160; &#160; &#160; &#160; &#160; &#160; &#160; &#1 60; &#160; &#160; &#160; &#160; &#160; &#160; &#16 0; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; & #160; &#160; &#160; &#160; &#160; &#160; &#160; &#1 60; &#160; &#160; &#160; &#160; &#160; &#160; &#16 0; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; & #160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#16 0; &#160; ..... &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &# 160; &#160; &#160; &#160; &#160; &#160; &#160; &#16 0; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; &#160; & #160; &#160; &#160; &#160; &#160; &#160; &#160; &#1 60; &#160; &#160; &#160; &#160; &#160; &#160; &#16 0; 这些三角函数的推导过程详见:蓝雪舞梦2009-03-28 14:22:59三角函数,(sinx)'= cosx ,(cosx)'=-sinx.反三角函数,(arcsin X)'=1/√(1-x^2)langziyilang2009-03-28 14:26:45我写吧,COS求导是-SIN,SIN求导是COS,ARCSINX求导是1/根号下1-X平方,ARCCOS求导是-1/根号下1-X平方。

含三角函数的导数问题复习整理

1.已知函数f(x)=-cos x+ln x,则f′(1)的值为( ) A .sin1-1 B.1-sin1C.1+sin1 D .-1-sin1答案 C解析∵f(x)=-cos x+ln x,∴f′(x)=1x+sin x,∴f′(1)=1+sin1.2.曲线y =tan x在x=-π4处的切线方程为______ 答案y=2x+π2-1解析y′=(sin xcos x)′=cos2x+sin2xcos2x=1cos2x,所以在x=-π4处的斜率为2,曲线y=tan x在x=-π4处的切线方程为y=2x+π2-1.3.函数y=x-2sin x在(0,2π)内的单调增区间为________.答案(π3,5π3)∴函数y=x-2sin x在(0,2π)内的增区间为(π3,5π3).4. 函数()2sinf x x x=+的部分图象可能是Oyx Oyx Oyx OyxA B C D5.已知函数f (x )=x sin x ,x ∈R ,f (-4),f (4π3),f (-5π4)的大小关系为______(用“<”连接).答案 f (4π3)<f (-4)<f (-5π4). 解析 f ′(x )=sin x +x cos x ,当x ∈[5π4,4π3]时,sin x <0,cos x <0,∴f ′(x )=sin x +x cos x <0,则函数f (x )在x ∈[5π4,4π3]时为减函数,∴f (4π3)<f (4)<f (5π4),又函数f (x )为偶函数, ∴f (4π3)<f (-4)<f (-5π4). 6.设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.解析 由f (x )=sin x -cos x +x +1,0<x <2π,知f ′(x )=cos x +sin x +1,于是f ′(x )=1+2sin(x +π4). 令f ′(x )=0,从而sin(x +π4)=-22,得x =π,或x =3π2.因此,由上表知f (x )的单调递增区间是(0,π)与(2,2π),单调递减区间是(π,3π2),极小值为f (3π2)=3π2,极大值为f (π)=π+2.7. 已知函数2()sin cos f x x x x x =++(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值。

2012-2019年导数与三角函数交汇真题汇编(含答案解析)

2012-2019年导数与三角函数交汇真题汇编(含答案解析) 2019全国新课标I 卷理2020.已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点.20.解:(1)设()()g x f 'x =,则1()cos 1g x x x=-+,21sin ())(1x 'x g x =-++.当1,2x π⎛⎫∈- ⎪⎝⎭时,()g'x 单调递减,而(0)0,()02g'g'π><,可得()g'x 在1,2π⎛⎫- ⎪⎝⎭有唯一零点,设为α.则当(1,)x α∈-时,()0g'x >;当,2x α⎛π⎫∈ ⎪⎝⎭时,()0g'x <. 所以()g x 在(1,)α-单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,故()g x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点,即()f 'x 在1,2π⎛⎫- ⎪⎝⎭存在唯一极大值点.(2)()f x 的定义域为(1,)-+∞.(i )当(1,0]x ∈-时,由(1)知,()f 'x 在(1,0)-单调递增,而(0)0f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点.(ii )当0,2x ⎛π⎤∈ ⎥⎝⎦时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ⎛⎫ ⎪⎝⎭单调递减,而(0)=0f ',02f 'π⎛⎫< ⎪⎝⎭,所以存在,2βαπ⎛⎫∈ ⎪⎝⎭,使得()0f 'β=,且当(0,)x β∈时,()0f 'x >;当,2x βπ⎛⎫∈ ⎪⎝⎭时,()0f 'x <.故()f x 在(0,)β单调递增,在,2βπ⎛⎫⎪⎝⎭单调递减. 又(0)=0f ,1ln 1022f ππ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,所以当0,2x ⎛π⎤∈ ⎥⎝⎦时,()0f x >.从而,()f x 在0,2⎛⎤⎥⎝⎦π没有零点. (iii )当,2x π⎛⎤∈π⎥⎝⎦时,()0f 'x <,所以()f x 在,2π⎛⎫π ⎪⎝⎭单调递减.而02f π⎛⎫> ⎪⎝⎭,()0f π<,所以()f x 在,2π⎛⎤π ⎥⎝⎦有唯一零点.(iv )当(,)x ∈π+∞时,ln(1)1x +>,所以()f x <0,从而()f x 在(,)π+∞没有零点. 综上,()f x 有且仅有2个零点.2019全国新课标I 卷文2020.已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.20.解:(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=. 当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减.又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减. 又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x ….又当0,[0,π]a x ∈„时,ax ≤0,故()f x ax ….因此,a 的取值范围是(,0]-∞.5、(2017•山东)已知函数f (x )=x 2+2cosx ,g (x )=e x (cosx ﹣sinx+2x ﹣2),其中e≈2.17828…是自然对数的底数.(13分)(Ⅰ)求曲线y=f (x )在点(π,f (π))处的切线方程; (Ⅱ)令h (x )=g (x )﹣a f (x )(a ∈R ),讨论h (x )的单调性并判断有无极值,有极值时求出极值.5、【答案】解:(Ⅰ)f (π)=π2﹣2.f′(x )=2x ﹣2sinx ,∴f′(π)=2π. ∴曲线y=f (x )在点(π,f (π))处的切线方程为:y ﹣(π2﹣2)=2π(x ﹣π). 化为:2πx ﹣y ﹣π2﹣2=0.(Ⅱ)h (x )=g (x )﹣a f (x )=e x (cosx ﹣sinx+2x ﹣2)﹣a (x 2+2cosx ) h′(x )=e x (cosx ﹣sinx+2x ﹣2)+e x (﹣sinx ﹣cosx+2)﹣a (2x ﹣2sinx ) =2(x ﹣sinx )(e x ﹣a )=2(x ﹣sinx )(e x ﹣e lna ).令u (x )=x ﹣sinx ,则u′(x )=1﹣cosx≥0,∴函数u (x )在R 上单调递增. ∵u (0)=0,∴x >0时,u (x )>0;x <0时,u (x )<0.(i )a≤0时,e x ﹣a >0,∴x >0时,h′(x )>0,函数h (x )在(0,+∞)单调递增; x <0时,h′(x )<0,函数h (x )在(﹣∞,0)单调递减. ∴x=0时,函数h (x )取得极小值,h (0)=﹣1﹣2a . (ii )a >0时,令h′(x )=2(x ﹣sinx )(e x ﹣e lna )=0. 解得x 1=lna ,x 2=0.①0<a <1时,x ∈(﹣∞,lna )时,e x ﹣e lna <0,h′(x )>0,函数h (x )单调递增; x ∈(lna ,0)时,e x ﹣e lna >0,h′(x )<0,函数h (x )单调递减; x ∈(0,+∞)时,e x ﹣e lna >0,h′(x )>0,函数h (x )单调递增. ∴当x=0时,函数h (x )取得极小值,h (0)=﹣2a ﹣1.当x=lna 时,函数h (x )取得极大值,h (lna )=﹣a[ln 2a ﹣2lna+sin (lna )+cos (lna )+2]. ②当a=1时,lna=0,x ∈R 时,h′(x )≥0,∴函数h (x )在R 上单调递增.③1<a 时,lna >0,x ∈(﹣∞,0)时,e x ﹣e lna <0,h′(x )>0,函数h (x )单调递增; x ∈(0,lna )时,e x ﹣e lna <0,h′(x )<0,函数h (x )单调递减; x ∈(lna ,+∞)时,e x ﹣e lna >0,h′(x )>0,函数h (x )单调递增. ∴当x=0时,函数h (x )取得极大值,h (0)=﹣2a ﹣1.当x=lna 时,函数h (x )取得极小值,h (lna )=﹣a[ln 2a ﹣2lna+sin (lna )+cos (lna )+2].综上所述:a≤0时,函数h (x )在(0,+∞)单调递增;x <0时,函数h (x )在(﹣∞,0)单调递减. x=0时,函数h (x )取得极小值,h (0)=﹣1﹣2a .0<a <1时,函数h (x )在x ∈(﹣∞,lna )是单调递增;函数h (x )在x ∈(lna ,0)上单调递减.当x=0时,函数h (x )取得极小值,h (0)=﹣2a ﹣1.当x=lna 时,函数h (x )取得极大值,h (lna )=﹣a[ln 2a ﹣2lna+sin (lna )+cos (lna )+2]. 当a=1时,lna=0,函数h (x )在R 上单调递增.a >1时,函数h (x )在(﹣∞,0),(lna ,+∞)上单调递增;函数h (x )在(0,lna )上单调递减.当x=0时,函数h (x )取得极大值,h (0)=﹣2a ﹣1.当x=lna 时,函数h (x )取得极小值,h (lna )=﹣a[ln 2a ﹣2lna+sin (lna )+cos (lna )+2].【考点】导数的加法与减法法则,导数的乘法与除法法则,函数的单调性与导数的关系,利用导数研究函数的单调性,利用导数研究函数的极值,利用导数研究曲线上某点切线方程 【解析】【分析】(Ⅰ)f (π)=π2﹣2.f′(x )=2x ﹣2sinx ,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(Ⅱ)h (x )=g (x )﹣a f (x )=e x (cosx ﹣sinx+2x ﹣2)﹣a (x 2+2cosx ),可得h′(x )=2(x ﹣sinx )(e x ﹣a )=2(x ﹣sinx )(e x ﹣e lna ).令u (x )=x ﹣sinx ,则u′(x )=1﹣cosx≥0,可得函数u (x )在R 上单调递增.由u (0)=0,可得x >0时,u (x )>0;x <0时,u (x )<0.对a 分类讨论:a≤0时,0<a <1时,当a=1时,a >1时,利用导数研究函数的单调性极值即可得出.17.(2015湖南理21(1))已知0a >,函数()[)()e sin 0,axf x x x =∈+∞. 记n x 为()f x 的从小到大的第n ()*n ∈N 个极值点,证明:数列(){}nf x 是等比数列.● 17. 解析 ()e sin e cos e (sin cos )axaxaxf x a x x a x x '=+=+● e sin()ax x ϕ=+,其中a 1tan =ϕ,π02ϕ<<. ● 令 ()0f x '=,由0x …得 πx m ϕ+=,即*π,x m m ϕ=-∈N .● 对k ∈N ,若2π(21)πk x k ϕ<+<+,即2π(21)πk x k ϕϕ-<<+-,则()0f x '>;● 若(21)π(22)πk x k ϕ+<+<+,即(21)π(22)πk x k ϕϕ+-<<+-,则()0f x '<. ● 因此,在区间((1)π,π)m m ϕ--与(π,π)m m ϕ-上,)('x f 的符号总相反, ● 于是,当*π,x m m ϕ=-∈N 时,)(x f 取得极值,所以*π,n x n n ϕ=-∈N .● 此时,()1()()esin(π)(1)e a n n a n n f x n πϕπϕϕ-+-=-=-,易知0)(≠n x f , ● 且2[(1)π]π11(π)()(1)e e ()(1)en a n a n n a n n f x f x ϕϕ++-++--==--是常数, 21.(2016全国丙理21)设函数()cos2(1)(cos +1)f x a x a x =+-,其中0a >,记()f x 的最大值为A . (1)求()f x '; (2)求A ;(3)证明2.f x A '()„21.解析 (1)()()2sin 21sin f x a x a x '=---.(2)当1a …时,()()()()()cos21cos 121320f x a x a x a a a f =+-++-=-=≤.因此32A α=-.当01a <<时,将()f x 变形为()()22cos 1cos 1f x a x a x =+--. 令()()2211g t at a t =+--,则A 是()g t 在[]1,1-上的最大值,,,且当时,取得极小值,极小值为. 令,解得且,所以. (i )当时,在内无极值点,,,,所以.()1g a -=()132g a =-14at a-=()g t ()2211611488a a a a g a a a --++⎛⎫=--=- ⎪⎝⎭1114a a --<<13a >-15a >15a >105a <„()g t ()1,1-()1g a -=()123g a =-()()11g g -<23A a =-(ii )当时,在同一坐标中画出函数,,在上的图像.由上图,我们得到如下结论当时,.综上,. (3)由(1)得.当时,; 当时,,所以; 当时,.所以; 综上所述有.25.(2017山东理20)已知函数,,其中是自然对数的底数.(1)求曲线在点处的切线方程;115a <<y x =32y x =-2618x x y x ++=1,5⎡⎫+∞⎪⎢⎣⎭115a <<2618a a A a++=2123,05611,18532,1a a a a a a a a ⎧-<⎪⎪++⎪<<⎨⎪->⎪⎪⎩„()()2sin21sin 21f x a x x a a α'=---+-„105a <„()()1242232f x a a a A '+-<-=??115α<<131884a A a =++…()12f x a A '+<?1a ≥()31642f x a a A '--=??()2f x A '„()2f x A '„()22cos f x x x =+()()e cos sin 22x g x x x x =-+-e 2.71828=L ()y f x =()(),f ππ(2)令,讨论的单调性并判断有无极值,有极值时求出极值.25.解析 (1)由题意,又,所以,因此曲线在点处的切线方程为,即.(2)由题意得,因为,令,则,所以在上单调递增. 因为,所以当时,;当时,. (i )当时,.当时,,在区间上单调递减; 当时,,在区间上单调递增, 所以当时,取得极小值,极小值为;(ii )当时,,由,得,. ① 当时,,当时,,此时单调递增; 当时,,此时单调递减; 当时,,此时单调递增. 所以当时,取得极大值,极大值为,()()()()h x g x af x a =-∈R ()h x ()22f π=π-()22sin f x x x '=-()2f 'π=π()y f x =()(),f ππ()()222y x -π-=π-π222y x =π-π-2()e (cos sin 22)(2cos )x h x x x x a x x =-+--+()()()()e cos sin 22e sin cos 222sin x xh x x x x x x a x x '=-+-+--+--=()()2e sin 2sin x x x a x x ---()()2e sin x a x x =--()sin m x x x =-()1cos 0m x x '=-…()m x R (0)0m =0x >()0m x >0x <()0m x <0a „e x a -0>0x <()0h x '<()h x (),0-∞0x >()0h x '>()h x ()0,+∞0x =()h x ()021h a =--0a >()()()ln 2e esin x ah x x x '=--()0h x '=1ln x a =2=0x 01a <<ln 0a <(),ln x a ∈-∞()0h x '>()h x ()ln ,0x a ∈()0h x '<()h x ()0,x ∈+∞()0h x '>()h x ln x a =()h x ()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦当时,取得极小值,极小值是; ②当时,,所以当时,,函数在上单调递增,无极值点; ② 当时,,所以 当时,,此时单调递增; 当时,,此时单调递减; 当时,,此时单调递增; 所以当时,取得极大值,极大值为; 当时,取得极小值,极小值为.综上所述:当时,在上单调递减,在上单调递增, 函数有极小值,极小值为;当时,函数在和上单调递增,在上单调递减,函数有极大值,也有极小值,极大值是,极小值是;当时,函数在上单调递增,无极值;当时,函数在和上单调递增,在上单调递减,函数有极大值,也有极小值, 极大值是,极小值是.26.(2017北京理19)19.已知函数.(1)求曲线在点处的切线方程;0x =()h x ()021h a =--1a =ln 0a =(),x ∈-∞+∞()0h x '…()h x (),-∞+∞1a >ln 0a >(),0x ∈-∞()0h x '>()h x ()0,ln x a ∈()0h x '<()h x ()ln ,x a ∈+∞()0h x '>()h x 0x =()h x ()021h a =--ln x a =()h x ()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦0a „()h x (),0-∞()0,+∞()h x ()021h a =--01a <<()h x (),ln a -∞()0,+∞()ln ,0a ()h x ()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦()021h a =--1a =()h x (),-∞+∞1a >()h x (),0-∞()ln ,a +∞()0,ln a ()h x ()021h a =--()()()2ln ln 2ln sin ln cos ln 2h a a a a a a ⎡⎤=--+++⎣⎦()e cos xf x x x =-()y f x =()()0,0f(2)求函数在区间上的最大值和最小值.26.解析 (1)因为,所以,. 又因为,所以曲线在点处的切线方程为.(2)设,则. 当时,,所以在区间上单调递减. 所以对任意,有,即. 所以函数在区间上单调递减.因此在区间上的最大值为,最小值为.10.(2014 辽宁理 21)(本小题满分12分)已知函数()()()cos 2f x x x x =-π+-()8sin 13x +,()()()23πcos 41sin ln 3x g x x x x ⎛⎫=--+- ⎪π⎝⎭.证明:(1)存在唯一00,2x π⎛⎫∈ ⎪⎝⎭,使()00f x =; (1)存在唯一1,2x π⎛⎫∈π⎪⎝⎭,使()10g x =,且对(1)中的01x x +<π. 16.【2012高考真题全国卷理20】(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数f (x )=ax+cosx ,x ∈[0,π].(Ⅰ)讨论f (x )的单调性;(Ⅱ)设f (x )≤1+sinx ,求a 的取值范围. 【答案】()f x π0,2⎡⎤⎢⎥⎣⎦()e cos x f x x x =-()e (cos sin )1x f x x x '=--(0)0f '=(0)1f =()y f x =(0,(0))f 1y =()e (cos sin )1xh x x x =--()e (cos sin sin cos )2e sin xxh x x x x x x '=---=-π0,2x ⎛⎫∈ ⎪⎝⎭()0h x '<()h x π0,2⎡⎤⎢⎥⎣⎦π0,2x ⎡⎤∈⎢⎥⎣⎦()(0)0h x h =„()0f x '„()f x π0,2⎡⎤⎢⎥⎣⎦()f x π0,2⎡⎤⎢⎥⎣⎦(0)1f =ππ22f ⎛⎫=- ⎪⎝⎭(2013)北京文已知函数2()sin cos f x x x x x =++(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知函数f(x)=-cos x+ln x,则f′(1)的值为() A.sin1-1 B.1-sin1
C.1+sin1 D.-1-sin1
答案 C
解析∵f(x)=-cos x+ln x,∴f′(x)=1 x+
sin x,∴f′(1)=1+sin1.
2.曲线y=tan x在x=-
π
4处的切线方程为______
答案y=2x+
π
2-1
解析y′=(
sin x
cos x )′=
cos2x+sin2x
cos2
x=
1
cos2x,所以在x=-
π
4处的斜率为2,曲线y=
tan x在x=-
π
4处的切线方程为y=2x+
π
2-1.
3.函数y=x-2sin x在(0,2π)内的单调增区间为________.
答案(
π
3,

3)
∴函数y=x-2sin x在(0,2π)内的
增区间为(
π
3,

3).
4. 函数()2sin
f x x x
=+的部分图象可能是
A B C D
5.已知函数f(x)=x sin x,x∈R,f(-4),f(

3),f(-

4)的大小关系为______(用“<”连接).
答案f(

3)<f(-4)<f(-

4).
解析f′(x)=sin x+x cos x,当x∈[

4,

3]时,sin x<0,cos x<0,∴f′(x)=sin x+x cos x<0,则函数f(x)在x∈[

4,

3]时为减函数,∴f(

3)<f(4)<f(

4),又函数f(x)为偶函数,
∴f(

3)<f(-4)<f(-

4).
6.设函数f(x)=sin x-cos x+x+1,0<x<2π,求函数f(x)的单调区间与极值.解析由f(x)=sin x-cos x+x+1,0<x<2π,
知f′(x)=cos x+sin x+1,
O
y
x O
y
x O
y
x O
y
x
于是f ′(x )=1+2sin(x +π
4).
令f ′(x )=0,从而sin(x +π4)=-22,得x =π,或x =3π
2.
因此,由上表知f (x )的单调递增区间是(0,π)与(3π
2,2π),单调递减区间是(π,3π2),极小值为f (3π2)=3π2,极大值为f (π)=π+2.
7. 已知函数2
()sin cos f x x x x x =++
(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值。

(2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围。

解:(1)'()2cos (2cos )f x x x x x x =+=+
因为曲线()y f x =在点(,())a f a 处的切线为y b =
所以'()0()f a f a b =⎧⎨
=⎩,即22cos 0sin cos a a a a a a a b
+=⎧⎨++=⎩,解得0
1a b =⎧⎨=⎩
(2)因为2cos 0x +>
所以当0x >时'()0f x >,()f x 单调递增 当0x <时'()0f x <,()f x 单调递减 所以当0x =时,()f x 取得最小值(0)1f =, 所以b 的取值范围是(1,)+∞
8.已知函数.
(Ⅰ)当时,求函数值域; (Ⅱ)当时,求函数的单调区间.
解:(Ⅰ)当时, ()()sin cos ,(0,)f x x a x x x π=-+∈π
2a =()f x π
2
a >()f x π
2a =
π()()sin cos ,(0,)2
f x x x x x π=-+∈
--------------------------------1分
由得 --------------------------------------2分
的情况如下
--------------------------------------------------4分
因为,,
所以函数的值域为. ---------------------------------------------------5分 (Ⅱ), ①当
时,的情况如下
-------------------------------------------------9分 所以函数的单调增区间为,单调减区间为和 ②当时,的情况如下
------------------------------------------------13分 所以函数的单调增区间为,单调减区间为.
π
'()()cos 2
f x x x =-'()0f x =π
2
x =(),'()f x f x (0)1f =(π)1f =-()f x (1,1)-'()()cos f x x a x =-π
π2
a <<(),'()f x f x ()f x π(,)2a π(0,)2
(,π)a πa ≥(),'()f x f x -+()f x π(,π)2π(0,)2。

相关文档
最新文档