立体几何初步简单几何体优秀课件
合集下载
高中数学第一章立体几何初步1.1简单几何体1.1.2简单多面体省公开课一等奖新名师优质课获奖PPT课

同一点,故③是正确.
答案:A
反思只有了解并掌握好各种简单多面体概念及对应结构特征,才
能对问题作出正确判断.
第18页
题型一
题型二
题型三
题型四
【变式训练2】 有以下四个命题:①棱台上、下底面多边形是相
同;②用一个平面去截棱锥,夹在底面和截面间几何体是棱台;③棱
台上、下底面边长之比等于棱台高与截得此棱台棱锥高比;④两个
同一点,故④不正确.
答案:①
第19页
题型一
题型二
题型三
题型四
题型三 简单多面体有关量的计算
【例3】 已知,在正三棱锥V-ABC中,底面边长为8,侧棱长为2 6,
计算它高和斜高.
分析本题主要考查正三棱锥中基本量计算,关键是把已知量与未
知量放到直角三角形中求解.
第20页
题型一
题型二
题型三
题型四
解如图所表示,设O是底面中心,连接AO并延长,交BC于点D,则D
定义,故不是棱柱,也不是棱锥,也不是棱台,但它是一个多面体.
第31页
面公共顶点叫作棱柱顶点.如图所表示.
第4页
(2)表示:通惯用底面各顶点字母表示棱柱.如上图中棱柱可记作:
五棱柱ABCDE-A'B'C'D'E'.
(3)分类:按底面多边形边数分为三棱柱、四棱柱、五棱柱……
(4)特殊棱柱:侧棱垂直于底面棱柱叫作直棱柱,底面是正多边形
直棱柱叫作正棱柱.
(5)棱柱性质有:
②若过相对棱两个截面都垂直于底面,则该四棱柱为直四棱柱;
③若侧面两两全等,则该四棱柱为直四棱柱;
④若四棱柱四条对角线两两相等,则该四棱柱为直四棱柱.
其中,真命题序号是
答案:A
反思只有了解并掌握好各种简单多面体概念及对应结构特征,才
能对问题作出正确判断.
第18页
题型一
题型二
题型三
题型四
【变式训练2】 有以下四个命题:①棱台上、下底面多边形是相
同;②用一个平面去截棱锥,夹在底面和截面间几何体是棱台;③棱
台上、下底面边长之比等于棱台高与截得此棱台棱锥高比;④两个
同一点,故④不正确.
答案:①
第19页
题型一
题型二
题型三
题型四
题型三 简单多面体有关量的计算
【例3】 已知,在正三棱锥V-ABC中,底面边长为8,侧棱长为2 6,
计算它高和斜高.
分析本题主要考查正三棱锥中基本量计算,关键是把已知量与未
知量放到直角三角形中求解.
第20页
题型一
题型二
题型三
题型四
解如图所表示,设O是底面中心,连接AO并延长,交BC于点D,则D
定义,故不是棱柱,也不是棱锥,也不是棱台,但它是一个多面体.
第31页
面公共顶点叫作棱柱顶点.如图所表示.
第4页
(2)表示:通惯用底面各顶点字母表示棱柱.如上图中棱柱可记作:
五棱柱ABCDE-A'B'C'D'E'.
(3)分类:按底面多边形边数分为三棱柱、四棱柱、五棱柱……
(4)特殊棱柱:侧棱垂直于底面棱柱叫作直棱柱,底面是正多边形
直棱柱叫作正棱柱.
(5)棱柱性质有:
②若过相对棱两个截面都垂直于底面,则该四棱柱为直四棱柱;
③若侧面两两全等,则该四棱柱为直四棱柱;
④若四棱柱四条对角线两两相等,则该四棱柱为直四棱柱.
其中,真命题序号是
苏教版必修2数学课件-第1章立体几何初步第3节空间几何体的表面积和体积教学课件

6π [S=2π×1×2+2π×12=6π.]
栏目导航
合作探究 提素养
栏目导航
棱柱、棱锥和棱台的侧面积和表面积 【例 1】 正四棱锥的侧面积是底面积的 2 倍,高是 3,求它的 表面积. 思路探究:由 S 侧与 S 底的关系,求得斜高与底面边长之间的关系, 进而求出斜高和底面边长,最后求表面积.
所以 S 侧=3×12×(20+30)×DD′=75DD′. 又 A′B′=20 cm,AB=30 cm,则上、下底面面积之和为 S 上+S 下 = 43×(202+302)=325 3(cm2).
栏目导航
由 S 侧=S 上+S 下,得 75DD′=325 3, 所以 DD′=133 3(cm), 又因为 O′D′= 63×20=103 3(cm), OD= 63×30=5 3(cm),
错点)
运算核心素养.
3.会求简单组合体的体积及表面积.(难点)
栏目导航
自主预习 探新知
栏目导航
1.柱体、锥体、台体的体积
几何体
体积
柱体 锥体
V 柱体= Sh (S 为底面面积,h 为高), V 圆柱= πr2h (r 为底面半径) 1
V 锥体= 3Sh (S 为底面面积,h 为高), V 圆锥= π3r2h (r 为底面半径)
栏目导航
台体
V 台体= 13h(S+ SS′+S′) (S′,S 分别为上、下底面面 积,h 为高),V 圆台= 13πh(r′2+rr′+r2) (r′,r 分别为上、 下底面半径)
思考:柱体、锥体、台体的体积公式之间的关系. 提示:V=Sh―S′―=→S V=13(S′+ S′S+S)h―S′―=→0 V=13Sh.
栏目导航
[解] 如图所示,设 SE 是侧面三角形 ABS 的高,则 SE 就是正 四棱锥的斜高.
栏目导航
合作探究 提素养
栏目导航
棱柱、棱锥和棱台的侧面积和表面积 【例 1】 正四棱锥的侧面积是底面积的 2 倍,高是 3,求它的 表面积. 思路探究:由 S 侧与 S 底的关系,求得斜高与底面边长之间的关系, 进而求出斜高和底面边长,最后求表面积.
所以 S 侧=3×12×(20+30)×DD′=75DD′. 又 A′B′=20 cm,AB=30 cm,则上、下底面面积之和为 S 上+S 下 = 43×(202+302)=325 3(cm2).
栏目导航
由 S 侧=S 上+S 下,得 75DD′=325 3, 所以 DD′=133 3(cm), 又因为 O′D′= 63×20=103 3(cm), OD= 63×30=5 3(cm),
错点)
运算核心素养.
3.会求简单组合体的体积及表面积.(难点)
栏目导航
自主预习 探新知
栏目导航
1.柱体、锥体、台体的体积
几何体
体积
柱体 锥体
V 柱体= Sh (S 为底面面积,h 为高), V 圆柱= πr2h (r 为底面半径) 1
V 锥体= 3Sh (S 为底面面积,h 为高), V 圆锥= π3r2h (r 为底面半径)
栏目导航
台体
V 台体= 13h(S+ SS′+S′) (S′,S 分别为上、下底面面 积,h 为高),V 圆台= 13πh(r′2+rr′+r2) (r′,r 分别为上、 下底面半径)
思考:柱体、锥体、台体的体积公式之间的关系. 提示:V=Sh―S′―=→S V=13(S′+ S′S+S)h―S′―=→0 V=13Sh.
栏目导航
[解] 如图所示,设 SE 是侧面三角形 ABS 的高,则 SE 就是正 四棱锥的斜高.
基本立体图形 立体几何初步PPT课件(第一课时棱柱、棱锥、棱台的结构特征)

点叫做棱柱的顶点. (2)棱柱的分类及表示:根据底面多边形的 边数 分为三棱柱(底面是三角形)、四棱柱
(底面是四边形)……,例如底面是五边形的棱柱可表示为五棱柱 ABCDE-A′B′C′D′E′.
必修第一册·人教数学B版
(3)特殊的棱柱: 直棱柱:侧棱 垂直 于底面的棱柱; 斜棱柱:侧棱 不垂直 于底面的棱柱; 正棱柱:底面是 正多边形 的 直 棱柱; 平行六面体:底面是 平行四边形 的四棱柱.
必修第一册·人教数学B版
返回导航 上页 下页
8.1 基本立体图形 第一课时 棱柱、棱锥、棱台的结构特征
必修第一册·人教数学B版
返回导航 上页 下页
内容标准
学科素养
1.了解空间几何体的分类及其相关概念. 2.理解棱柱、棱锥、棱台的定义,知道这三种几何体的结构特 征,能够识别和区分这些几何体.
数学抽象 直观想象
必修第一册·人教数学B版
课前 • 自主探究
返回导航 上页 下页
课堂 • 互动探究
课后 • 素养培优
课时 • 跟踪训练
必修第一册·人教数学B版
返回导航 上页 下页
[教材提炼] 知识点一 空间几何体 预习教材,思考问题 (1)观察纸箱、金字塔、茶叶盒、水晶石等有什么相同的特点? [提示] 围成它们的每个面都是平面图形,并且都是平面多边形. (2)观察纸杯、奶粉罐、腰鼓、篮球等几何体有什么相同的特点? [提示] 围成它们的面不全是平面图形,有些面是曲面.
(底面是四边形)……,其中三棱锥又叫四面体.
棱锥用表示顶点和底面各顶点的字母来表示,例如三棱锥可表示为:三棱锥 S-ABC.
(3)特殊的棱锥 正棱锥:底面是 正多边形 ,并且顶点与底面中心的连线 垂直 于底面的棱锥.
(底面是四边形)……,例如底面是五边形的棱柱可表示为五棱柱 ABCDE-A′B′C′D′E′.
必修第一册·人教数学B版
(3)特殊的棱柱: 直棱柱:侧棱 垂直 于底面的棱柱; 斜棱柱:侧棱 不垂直 于底面的棱柱; 正棱柱:底面是 正多边形 的 直 棱柱; 平行六面体:底面是 平行四边形 的四棱柱.
必修第一册·人教数学B版
返回导航 上页 下页
8.1 基本立体图形 第一课时 棱柱、棱锥、棱台的结构特征
必修第一册·人教数学B版
返回导航 上页 下页
内容标准
学科素养
1.了解空间几何体的分类及其相关概念. 2.理解棱柱、棱锥、棱台的定义,知道这三种几何体的结构特 征,能够识别和区分这些几何体.
数学抽象 直观想象
必修第一册·人教数学B版
课前 • 自主探究
返回导航 上页 下页
课堂 • 互动探究
课后 • 素养培优
课时 • 跟踪训练
必修第一册·人教数学B版
返回导航 上页 下页
[教材提炼] 知识点一 空间几何体 预习教材,思考问题 (1)观察纸箱、金字塔、茶叶盒、水晶石等有什么相同的特点? [提示] 围成它们的每个面都是平面图形,并且都是平面多边形. (2)观察纸杯、奶粉罐、腰鼓、篮球等几何体有什么相同的特点? [提示] 围成它们的面不全是平面图形,有些面是曲面.
(底面是四边形)……,其中三棱锥又叫四面体.
棱锥用表示顶点和底面各顶点的字母来表示,例如三棱锥可表示为:三棱锥 S-ABC.
(3)特殊的棱锥 正棱锥:底面是 正多边形 ,并且顶点与底面中心的连线 垂直 于底面的棱锥.
高中数学 第一章 立体几何初步 1.7.1 柱、锥、台的侧面展开与面积课件高一数学课件

提示:这三种几何体侧面积之间的关系
12/13/2021
第十五页,共五十八页。
3.如何求简单多面体的侧面积? 提示:(1)关键:找到多面体的特征几何图形,如棱柱中的矩 形,棱台中的直角梯形,棱锥中的直角三角形,它们是联系高与 斜高、侧棱、底面边长间的桥梁,架起了求侧面积公式中未知量 与条件中已知几何元素间的桥梁. (2)策略:①正棱柱、正棱锥、正棱台的所有侧面的面积都相 等,因此求侧面积时,可先求一个侧面的面积,然后乘以侧面的 个数;②解决台体的问题,通常要补上截去的小棱锥,寻找上下 底面之间的关系.
B.100π
C.168π
4 4,母线长为 D.169π
解析:
12/13/2021
第三十五页,共五十八页。
先画轴截面,圆台的轴截面如图,则它的母线长 l= h2+r2-r12
= 4r12+3r12=5r1=10,∴r1=2,r2=8,∴S 侧=π(r2+ r1)l=π×(8+2)×10=100π,S 表=S 侧+πr12+πr22=100π+4π+64π =168π.
12/13/2021
第二十四页,共五十八页。
类型二 锥体的侧面积与表面积 【例 2】 正四棱锥底面边长为 4 cm,高和斜高的夹角为 30°,如图,求正四棱锥的侧面积.
12/13/2021
第二十五页,共五十八页。
【解】 正棱锥的高 PO、斜高 PE、底面边心距 OE 组成 Rt △POE.
∵OE=2 cm,∠OPE=30°, ∴PE=siOn3E0°=4 cm. 因此 S 棱锥侧=12ch′=12×4×4×4=32(cm2).
12/13/2021
第十页,共五十八页。
知识点二 直棱柱、正棱锥、正棱台的侧面积 [填一填]
12/13/2021
第十五页,共五十八页。
3.如何求简单多面体的侧面积? 提示:(1)关键:找到多面体的特征几何图形,如棱柱中的矩 形,棱台中的直角梯形,棱锥中的直角三角形,它们是联系高与 斜高、侧棱、底面边长间的桥梁,架起了求侧面积公式中未知量 与条件中已知几何元素间的桥梁. (2)策略:①正棱柱、正棱锥、正棱台的所有侧面的面积都相 等,因此求侧面积时,可先求一个侧面的面积,然后乘以侧面的 个数;②解决台体的问题,通常要补上截去的小棱锥,寻找上下 底面之间的关系.
B.100π
C.168π
4 4,母线长为 D.169π
解析:
12/13/2021
第三十五页,共五十八页。
先画轴截面,圆台的轴截面如图,则它的母线长 l= h2+r2-r12
= 4r12+3r12=5r1=10,∴r1=2,r2=8,∴S 侧=π(r2+ r1)l=π×(8+2)×10=100π,S 表=S 侧+πr12+πr22=100π+4π+64π =168π.
12/13/2021
第二十四页,共五十八页。
类型二 锥体的侧面积与表面积 【例 2】 正四棱锥底面边长为 4 cm,高和斜高的夹角为 30°,如图,求正四棱锥的侧面积.
12/13/2021
第二十五页,共五十八页。
【解】 正棱锥的高 PO、斜高 PE、底面边心距 OE 组成 Rt △POE.
∵OE=2 cm,∠OPE=30°, ∴PE=siOn3E0°=4 cm. 因此 S 棱锥侧=12ch′=12×4×4×4=32(cm2).
12/13/2021
第十页,共五十八页。
知识点二 直棱柱、正棱锥、正棱台的侧面积 [填一填]
高中数学 第一章 立体几何初步 1.1.6 棱柱、棱锥、棱

探究一
探究二
探究三
探究四
【典型例题 2】 已知正六棱台的两底面边长分别为 1 cm 和 2 cm,高是 1 cm,求它的侧面积.
解:如图所示是正六棱台的一个侧面及其高组成 的一部分(其余部分省略),则侧面 ABB1A1 为等腰梯 形,OO1 为高,且 OO1=1 cm,AB=1 cm,A1B1=2 cm,取 AB 和 A1B1 的中点 C,C1,连接 OC,CC1,O1C1,则 CC1 为正六 棱台的斜高,且四边形 OO1C1C 为直角梯形.
探究一
探究二
探究三
探究四
【典型例题 1】 如图所示,正四棱锥底面正方形的边长为 4 cm,高与斜 高的夹角为 30°,求该正四棱锥的侧面积和表面积.
思路分析:根据多面体的侧面积公式,必须求出相应多面体的底面边长 和各侧面的斜高,我们可以把问题转化到三角形内加以分析求解.
探究一
探究二
探究三
探究四
解:正四棱锥的高 PO,斜高 PE,底面边心距 OE 组成一个 Rt△POE. 因为 OE=2 cm,∠OPE=30°, 所以 PE=sin���3������0��� °=4(cm).
思考 1 斜棱柱的侧面展开图是什么?它的侧面积如何求解?
提示:斜棱柱的侧面展开图是一些平行四边形连接起来的不规则图形, 它的侧面积等于各个侧面面积之和,也等于直截面(与侧棱垂直相交的截面) 的周长与侧棱长的乘积.
2.圆柱、圆锥的侧面积 几何体 侧面展开图 圆柱
圆锥
侧面积公式
S 圆柱侧=2πrl r 为底面半径 l 为侧面母线长
1.1.6 棱柱、棱锥、棱台和球的表面积
课程目标
1.掌握棱柱、棱锥和棱台的表面积公式 的推导方法,进一步加强空间问题与平 面问题相互转化的思想,并熟练运用公 式求面积. 2.了解棱柱、棱锥和棱台的侧面积的求 法——侧面展开图. 3.了解球的表面积公式,并会熟练运用公 式求球的表面积. 4.了解旋转体的构成,并会求旋转体的表 面积.
04《基本立体图形》立体几何初步 PPT教学课件 (第一课时棱柱、棱锥、棱台的结构特征)

返回导航 上页 下页
必修第二册·人教数学A版
返回导航 上页 下页
知识点三 棱锥的结构特征 预习教材,思考问题 棱锥和棱柱相比,有什么相同之处?又有什么不同?
[提示] 相同之处是底面仍然是平面多边形,不同之处是侧棱不再平行,而是交于一 点.
必修第二册·人教数学A版
返回导航 上页 下页
知识梳理 (1)棱锥的定义:有一个面是 多边形 ,其余各面都是 有一个公共顶点 的 三角形,由这些面所围成的多面体叫做棱锥,这个 多边形 面叫做棱锥的底面,有 公共顶点 的各个三角形面叫做棱锥的侧面,相邻侧面的 公共边 叫做棱锥的侧棱, 各侧面的公共顶点 叫做棱锥的顶点. (2)棱锥的分类及表示:根据底面多边形的 边数 分为三棱锥(底面是三角形)、四棱锥
返回导航 上页 下页
[解析] (1)正确,棱台的侧面一定是梯形,而不是平行四边形; (2)正确,由棱锥的定义知棱锥的侧面只能是三角形; (3)正确,由四个面围成的封闭图形只能是三棱锥; (4)错误,如图所示四棱锥被平面截成的两部分都是棱锥.
[答案] (1)(2)(3)
必修第二册·人教数学A版
返回导航 上页 下页
[提示] 和棱锥更密切,因为棱台是用一个平行于棱锥底面的平面去截棱锥而得到, 把棱锥的侧棱延长后会交于一点,也就是说棱台可以补为棱锥.
必修第二册·人教数学A版
返回导航 上页 下页
知识梳理 (1)棱台的定义:用一个 平行 于棱锥底面的平面去截棱锥,底面与截面之 间的那部分多面体叫做棱台,原棱锥的 底面 和 截面 分别叫做棱台的下底面和上底 面, 其余各面 叫做棱台的侧面,相邻侧面的 公共边 叫做棱台的侧棱,侧面与上(下) 底面的 公共顶点 叫做棱台的顶点. (2)棱台的分类及表示:根据底面多边形的 边数 分为三棱台(底面是三角形)、四棱台 ( 底 面 是 四 边 形 )…… , 例 如 底 面 是 五 边 形 的 棱 台 可 表 示 为 五 棱 台 ABCDE-A′B′C′D′E′.
人教版高中数学必修立体几何复习课件(共102张PPT)

1 1
1
11.已知某个几何体的三视图如图2,根据图中标出的尺寸 (单位:cm),可得这个几何体的体积是_____8_0__0.0 cm 3
3
2 0 20
主视图
10
10
2 俯0视图
2 侧0视图
第二章 点、直线、平面之间的位置关系
• 四个公理
直线与直线位置关系 • 三类关系 直线与平面位置关系
平面与平面位置关系
(3)
a a
// b
b
(较常用);
(4)
a
//
a
;
(5)
a a
b
a
(面面垂直 线面垂直)
a b
4.面面垂直
向的侧视图(或称左视图)为(
A
A
H
G
Q
B
C
侧视 B
)A
C
I
P
E
图1
F
B
D
E
D
图2
F
B
B
B
E A.
E B.ቤተ መጻሕፍቲ ባይዱ
E C.
E D.
练习10:(1)如图是一个空间几何体的三
视图,如果直角三角形的直角边长均为
正视图 侧视图
1,那么几何体的体积为( ) C
A.1 B.1 C. 1 D.1
俯视图
2
3
6
V1 3S底 h1 31111 3
②判定定理:如果一个平面内的两条相交直线都平行于 另一个平面,那么两个平面互相平行;
符号表述: a,b , a b O, a //,b // //
//
③面面平行的性质定理:
a
a
//
高中数学 第一章 立体几何初步 1.7.2.2 棱台与圆台的体积课件高一数学课件

当底面 ABC 水平放置时,水形状为三棱柱形,设水面高为 h, 则有 V 水=Sh.∴6S=Sh,∴h=6.∴当底面 ABC 水平放置时,液 面高为 6.
12/13/2021
第三十一页,共四十八页。
12/13/2021
第三十二页,共四十八页。
——分割法与补形法—— 求不规则几何体体积方法探究 当一个几何体形状不规则时,常常将几何体通过分割或者补 形变成一个或几个规则的、体积易求的几何体,然后再计算.当 一个几何体的体积很难计算时,经常考虑将三棱锥还原为三棱柱 或长方体,将三棱柱还原成平行六面体,将台体还原成锥体等.
其中高.特别
地,圆台的体积公式可以表示为 V 圆台=13πh(r2+rr′+r′2),其
中 r、r′分别为圆台的上、下底面的半径,h 为圆台的高.
12/13/2021
第八页,共四十八页。
[答一答] 根据柱体、锥体、台体之间的关系,你能发现三者的体积公 式之间的关系吗?
12/13/2021
第二十二页,共四十八页。
规律方法 圆台的轴截面是等腰梯形,将题中的已知量转移 到轴截面中,即可求出圆台的上、下底面半径,进一步求出圆台 的体积.
12/13/2021
第二十三页,共四十八页。
已知圆台的上下底面半径分别是 2,4,且侧面面积等于两底 面面积之和,求该圆台的母线长和体积.
解析:V=13h(S+ SS′+S′)=13×4×(3+ 3×27+27)= 52.
12/13/2021
第四十五页,共四十八页。
三、解答题 5.圆台的上、下底面半径和高的比为 1 4 4,母线长 为 10,求圆台的体积.
12/13/2021
第二十七页,共四十八页。
V=13π×345×(122+132+12×13)≈1 367.92π. 因此,降雨量为1 π3×671.9622 π≈5.34(cm)≈53(mm).
12/13/2021
第三十一页,共四十八页。
12/13/2021
第三十二页,共四十八页。
——分割法与补形法—— 求不规则几何体体积方法探究 当一个几何体形状不规则时,常常将几何体通过分割或者补 形变成一个或几个规则的、体积易求的几何体,然后再计算.当 一个几何体的体积很难计算时,经常考虑将三棱锥还原为三棱柱 或长方体,将三棱柱还原成平行六面体,将台体还原成锥体等.
其中高.特别
地,圆台的体积公式可以表示为 V 圆台=13πh(r2+rr′+r′2),其
中 r、r′分别为圆台的上、下底面的半径,h 为圆台的高.
12/13/2021
第八页,共四十八页。
[答一答] 根据柱体、锥体、台体之间的关系,你能发现三者的体积公 式之间的关系吗?
12/13/2021
第二十二页,共四十八页。
规律方法 圆台的轴截面是等腰梯形,将题中的已知量转移 到轴截面中,即可求出圆台的上、下底面半径,进一步求出圆台 的体积.
12/13/2021
第二十三页,共四十八页。
已知圆台的上下底面半径分别是 2,4,且侧面面积等于两底 面面积之和,求该圆台的母线长和体积.
解析:V=13h(S+ SS′+S′)=13×4×(3+ 3×27+27)= 52.
12/13/2021
第四十五页,共四十八页。
三、解答题 5.圆台的上、下底面半径和高的比为 1 4 4,母线长 为 10,求圆台的体积.
12/13/2021
第二十七页,共四十八页。
V=13π×345×(122+132+12×13)≈1 367.92π. 因此,降雨量为1 π3×671.9622 π≈5.34(cm)≈53(mm).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题3*:如果把一个半圆面绕着其直径所 在的直线在空间旋转一周,则半圆面在旋 转的过程中所形成的图形会是什么呢? (球体)
7
一、球的结构特征
1、球的定义:以半圆的直径所在直线为旋转轴,将 半圆旋转一周后所形成的曲面叫作球面。
把球面所围成的几何体叫作球体,简称球。
其中:把半圆的圆心叫做球心。
连结球心与球面上的任意一点的线段叫作球
构特征。(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观:(1)使学生感受空间几何体存在于
现实生活周围,增强学生学习的积极性,同时提高学生的观
察能力。(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、
台、球的结构特征。难点:柱、锥、台、球的结构特征的概
9
问题4: 如图所示:把矩形ABCD绕着其一边 AB所在的直线在空间中旋转一周,则矩形的 其它三条边在旋转的过程中所形成的曲面围
成的几何体会是什么呢?
B
C
A
D
10
二、圆柱的结构特征
1、定义:以矩形的一边所在直线为
O1
旋转轴,把它在空间中旋转一周后,其余
矩形
三边旋转形成的曲面所围成的几何体叫做 圆柱。
(1)
(2)
( 26
▪ 两个特殊的棱柱:直棱柱与正棱柱 把侧棱垂直于底面的棱柱叫作直棱柱; 把底面是正多边形的直棱柱叫作正棱柱;
▪ 直棱柱的性质:直棱柱的侧面都是矩形; ▪ 正棱柱的性质:正棱柱的侧面是全等的矩
形成的曲面围成的几何体会是什么呢?
B
A
C
13
三、圆锥的结构特征
1、定义:以直角三角形的一条直角
S
边所在直线为旋转轴,其余两边旋转而成
的曲面所围成的几何体叫做圆锥。
直角三角形 (1)旋转轴叫做圆锥的轴。
O
A
(2) 垂直于轴的边旋转而成
的圆面叫做圆锥的底面。
(3)不垂直于轴的边旋转而 成的曲面叫做圆锥的侧面。
(4)无论旋转到什么位置不 垂直于轴的边都叫做圆锥的母线。14
2、圆锥的表示:
用表示它的轴的 S 端点的两个字母 表示,如所示, 记为:圆锥SO
B
O
轴 侧面 母线
A 底面
15
问题6: 如图所示: 直角梯形ABCD绕着它的垂直 于底边的腰AB所在的直线在空间中旋转一周, 则直角梯形ABCD的其它三条边在旋转的过程
括。
三、教学方法:(1)学法:观察、思考、交流、讨论、
概括。(2)探究交流法
四、教学过程
2
§1.简单几何体
❖导入:三维空间是人类生存的现实空间,生活 中蕴涵着丰富的几何体,请大家欣赏下列各式 各样的几何体。
3
4
§1.1:简单的旋转体
▪ 问题1:如图所示:已知线段AB垂直于直线L 于A点,如果把线段AB绕着点A旋转一周, 且在线段AB在旋转的过程中始终与直线L垂 直,那么线段AB在旋转的过程中所形成的图 形会是什么呢?
23
1、定义:有两个面互相平行,其余各面都 是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,其 余各面叫做棱柱的侧面。
相邻侧面的公共边叫做棱柱的侧棱。
侧面与底的公共顶点叫做棱柱的顶点。
24
底面
侧面 侧棱 顶点
底面
25
观察下列几何体并思考:棱柱(1),(3) 与棱柱(2)的不同之处?
其中:把围成多面体的各个多边形叫作多面体的面;两个 面的公共边叫作多面体的棱,棱与棱的公共点叫作多面 体的顶点;
▪ 连结不在同一个面内的两个顶点的线段叫作多面体的对 角线。例如:
▪ 多面体按照它的面数的多少,可以分为:四面体、五面 体、六面体、、、、、
21
棱
面
面 棱 顶点
面 22
五、 观察下列几何体并思考: 它们具有哪些性质?
18
圆台的表示: 用表示它的轴的字母表示,如圆台OO′
O'
底面
轴
侧面
母线
O
底面
19
总结:由于球体、圆柱、圆锥、圆台分别由平 面图形半圆、矩形、直角三角形、直角梯形通 过绕着一条轴旋转而生成的,所以把它们都叫 旋转体。
20
§1.2:简单的多面体
1.多面体的定义:把由若干个平面多边形围成的空间图
形叫做多面体。 ▪ 自然界有很多的物体都呈多面体的形状,如图所示:
中所形成的曲面围成的几何体会是什么呢?
B
C
A
D
16
四、圆台的结构特征: 圆台的定义1:把直角梯形绕着它的垂直于底边
的腰所在的直线在空间中旋转一周,则直角梯形 的其它三条边在旋转的过程中所形成的曲面围成 的几何体会叫作圆台
17
圆台的定义2:用一个平行于圆锥底面 的平面去截圆锥,底面与截面之间的部分, 这样的几何体叫做圆台。
立体几何初步简单几何体优秀 课件
1
一、教学目标:1.知识与技能:(1)通过实物操作,增
强学生的直观感知。(2)能根据几何结构特征对空间物体
进行分类。(3)会用语言概述棱柱、棱锥、圆柱、圆锥、
棱台、圆台、球的结构特征。(4)会表示有关于几何体以
及柱、锥、台的分类。2.过程与方法:(1)让学生通过直
观感受空间物体,从实物中概括出柱、锥、台、球的几何结
AA
B
L
5
问题2:如图所示:已知直线AB垂直于直线L于O点,如 果把直线AB绕着点O点旋转一周,且直线AB在旋转的 过程中始终与直线L垂直,那么直线AB在旋转的过程中
所形成的图形会是什么呢?
A
O
B
L
6
问题3:如图所示:把半圆O绕着其直径AB所 在的直线在空间旋转一周,则半圆O在旋转 的过程中所形成的图形会是什么呢?(球面)
(1)旋转轴叫做圆柱的轴。
O
(2) 垂直于轴的边旋转而成
的圆面叫做圆柱的底面。
(3)由平行于轴的边旋转而 成的曲面叫做圆柱的侧面。
(4)无论旋转到什么位置不 垂直于轴的边都叫做圆柱的母线。11
2、表示:用表示它的轴的端点的两个字
母表示,如圆柱OO1。 O
侧面
O1
轴
底面
母线
12
问题5: 如图所示:把直角三角形ABC绕着其一 边AB所在的直线在空间中旋转一周,则直角 三角形ABC的其它两条边在旋转的过程中所
的半径。
A
连结球面上的任意两点且过球心的线段叫做球的直
径。
半
O
径
2、球的表示:用表示球心的字
母表示,如球O
球心
B
8
请大家想一想怎样用集合的观点去定义球?
▪ 把到定点O的距离等于或小定长的点的集 合叫作球体,简称球。
▪ 其中:把定点O叫作球心,定长叫作球的 半径
▪ 到定点O的距离等于定长的点的集合叫作 球面。
7
一、球的结构特征
1、球的定义:以半圆的直径所在直线为旋转轴,将 半圆旋转一周后所形成的曲面叫作球面。
把球面所围成的几何体叫作球体,简称球。
其中:把半圆的圆心叫做球心。
连结球心与球面上的任意一点的线段叫作球
构特征。(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观:(1)使学生感受空间几何体存在于
现实生活周围,增强学生学习的积极性,同时提高学生的观
察能力。(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点
重点:让学生感受大量空间实物及模型、概括出柱、锥、
台、球的结构特征。难点:柱、锥、台、球的结构特征的概
9
问题4: 如图所示:把矩形ABCD绕着其一边 AB所在的直线在空间中旋转一周,则矩形的 其它三条边在旋转的过程中所形成的曲面围
成的几何体会是什么呢?
B
C
A
D
10
二、圆柱的结构特征
1、定义:以矩形的一边所在直线为
O1
旋转轴,把它在空间中旋转一周后,其余
矩形
三边旋转形成的曲面所围成的几何体叫做 圆柱。
(1)
(2)
( 26
▪ 两个特殊的棱柱:直棱柱与正棱柱 把侧棱垂直于底面的棱柱叫作直棱柱; 把底面是正多边形的直棱柱叫作正棱柱;
▪ 直棱柱的性质:直棱柱的侧面都是矩形; ▪ 正棱柱的性质:正棱柱的侧面是全等的矩
形成的曲面围成的几何体会是什么呢?
B
A
C
13
三、圆锥的结构特征
1、定义:以直角三角形的一条直角
S
边所在直线为旋转轴,其余两边旋转而成
的曲面所围成的几何体叫做圆锥。
直角三角形 (1)旋转轴叫做圆锥的轴。
O
A
(2) 垂直于轴的边旋转而成
的圆面叫做圆锥的底面。
(3)不垂直于轴的边旋转而 成的曲面叫做圆锥的侧面。
(4)无论旋转到什么位置不 垂直于轴的边都叫做圆锥的母线。14
2、圆锥的表示:
用表示它的轴的 S 端点的两个字母 表示,如所示, 记为:圆锥SO
B
O
轴 侧面 母线
A 底面
15
问题6: 如图所示: 直角梯形ABCD绕着它的垂直 于底边的腰AB所在的直线在空间中旋转一周, 则直角梯形ABCD的其它三条边在旋转的过程
括。
三、教学方法:(1)学法:观察、思考、交流、讨论、
概括。(2)探究交流法
四、教学过程
2
§1.简单几何体
❖导入:三维空间是人类生存的现实空间,生活 中蕴涵着丰富的几何体,请大家欣赏下列各式 各样的几何体。
3
4
§1.1:简单的旋转体
▪ 问题1:如图所示:已知线段AB垂直于直线L 于A点,如果把线段AB绕着点A旋转一周, 且在线段AB在旋转的过程中始终与直线L垂 直,那么线段AB在旋转的过程中所形成的图 形会是什么呢?
23
1、定义:有两个面互相平行,其余各面都 是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,其 余各面叫做棱柱的侧面。
相邻侧面的公共边叫做棱柱的侧棱。
侧面与底的公共顶点叫做棱柱的顶点。
24
底面
侧面 侧棱 顶点
底面
25
观察下列几何体并思考:棱柱(1),(3) 与棱柱(2)的不同之处?
其中:把围成多面体的各个多边形叫作多面体的面;两个 面的公共边叫作多面体的棱,棱与棱的公共点叫作多面 体的顶点;
▪ 连结不在同一个面内的两个顶点的线段叫作多面体的对 角线。例如:
▪ 多面体按照它的面数的多少,可以分为:四面体、五面 体、六面体、、、、、
21
棱
面
面 棱 顶点
面 22
五、 观察下列几何体并思考: 它们具有哪些性质?
18
圆台的表示: 用表示它的轴的字母表示,如圆台OO′
O'
底面
轴
侧面
母线
O
底面
19
总结:由于球体、圆柱、圆锥、圆台分别由平 面图形半圆、矩形、直角三角形、直角梯形通 过绕着一条轴旋转而生成的,所以把它们都叫 旋转体。
20
§1.2:简单的多面体
1.多面体的定义:把由若干个平面多边形围成的空间图
形叫做多面体。 ▪ 自然界有很多的物体都呈多面体的形状,如图所示:
中所形成的曲面围成的几何体会是什么呢?
B
C
A
D
16
四、圆台的结构特征: 圆台的定义1:把直角梯形绕着它的垂直于底边
的腰所在的直线在空间中旋转一周,则直角梯形 的其它三条边在旋转的过程中所形成的曲面围成 的几何体会叫作圆台
17
圆台的定义2:用一个平行于圆锥底面 的平面去截圆锥,底面与截面之间的部分, 这样的几何体叫做圆台。
立体几何初步简单几何体优秀 课件
1
一、教学目标:1.知识与技能:(1)通过实物操作,增
强学生的直观感知。(2)能根据几何结构特征对空间物体
进行分类。(3)会用语言概述棱柱、棱锥、圆柱、圆锥、
棱台、圆台、球的结构特征。(4)会表示有关于几何体以
及柱、锥、台的分类。2.过程与方法:(1)让学生通过直
观感受空间物体,从实物中概括出柱、锥、台、球的几何结
AA
B
L
5
问题2:如图所示:已知直线AB垂直于直线L于O点,如 果把直线AB绕着点O点旋转一周,且直线AB在旋转的 过程中始终与直线L垂直,那么直线AB在旋转的过程中
所形成的图形会是什么呢?
A
O
B
L
6
问题3:如图所示:把半圆O绕着其直径AB所 在的直线在空间旋转一周,则半圆O在旋转 的过程中所形成的图形会是什么呢?(球面)
(1)旋转轴叫做圆柱的轴。
O
(2) 垂直于轴的边旋转而成
的圆面叫做圆柱的底面。
(3)由平行于轴的边旋转而 成的曲面叫做圆柱的侧面。
(4)无论旋转到什么位置不 垂直于轴的边都叫做圆柱的母线。11
2、表示:用表示它的轴的端点的两个字
母表示,如圆柱OO1。 O
侧面
O1
轴
底面
母线
12
问题5: 如图所示:把直角三角形ABC绕着其一 边AB所在的直线在空间中旋转一周,则直角 三角形ABC的其它两条边在旋转的过程中所
的半径。
A
连结球面上的任意两点且过球心的线段叫做球的直
径。
半
O
径
2、球的表示:用表示球心的字
母表示,如球O
球心
B
8
请大家想一想怎样用集合的观点去定义球?
▪ 把到定点O的距离等于或小定长的点的集 合叫作球体,简称球。
▪ 其中:把定点O叫作球心,定长叫作球的 半径
▪ 到定点O的距离等于定长的点的集合叫作 球面。