1.3函数的基本性质——最大(小)值
函数的基本性质

例1. 如图是定义在区间[-5, 5]上的函数 y=f(x), 根据图象说出函数的单调区间, 以及在每一单调区间 上, 它是增函数还是减函数? y
解: 函数的单调区
间有 [-5, -2), [-2, 1). [1, 3), [3, 5].
例题(补充). 如图是函数 y=f(x) 的图象, 其定义域 为[-p, p], x0 为何值时, 有f(x)≥f(x0), 或 f(x)≤f(x0)? 函数的最大值是多少? 最小值是多少? 解: (1) 当 x0 = - p 时, f(x)≥f(x0),
2
-p y
-p 2
1
这时函数取得最小值
o
-1
[解析] 任取 x1、x2,使得-1<x1<x2<1, 则 Δx=x2-x1>0. ax1x2+1x1-x2 Δy=f(x2)-f(x1)= , 2 x2 - 1 x - 1 1 2
∵-1<x1<x2<1,
2 ∴x1x2+1>0,x2 1-1<0,x2-1<0,
Байду номын сангаас
x1x2+1x1-x2 ∴ 2 <0, x1-1x2 - 1 2 ∴当 a>0 时,f(x2)-f(x1)<0, 故此时函数 f(x)在(-1,1)上是减函数, 当 a<0 时,f(x2)-f(x1)>0, 故此时 f(x)在(-1,1)上是增函数. 综上所述,当 a>0 时,f(x)在(-1,1)上为减函数, 当 a<0 时,f(x)在(-1,1)上为增函数.
• 3.函数单调性在图象上的反映:若f(x)是区间A上的单调增 函数,则图象在A上的部分从左向右是逐渐________ 的,若 上升 f(x)是单调减函数,则图象在相应区间上从左向右是逐渐 下降 的. ________ 取值 作差 , • 4.用定义证明单调性的步骤:__________ ,________ 变形 ,________ 定号 ,________. 结论 ________
第一章 1.3 1.3.1 第二课时 函数的最大(小)值

返回
2.最小值
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对于任意的x∈I,都有 f(x)≥M ;
(2)存在x0∈I,使得 f(x0)=M .
返回
3.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数 a的值是________. 解析:a>0时,由题意得2a+1-(a+1)=2,即a=2; a<0时,a+1-(2a+1)=2,∴a=-2.
返回
解:设销售价为 x 元/瓶(3≤x≤4),则根据题意(销售量等于进货 4-x 量),正好当月销售完的进货量为 ×40+400(瓶),即 400(9 0.05 -2x)瓶. 此时所得的利润为 f(x)=400(9-2x)(x-3)=400(-2x2+15x-27)(元), 15 根据函数性质,当 x= 时,f(x)取得最大值 450. 4 15 这时进货量为 400(9-2x)=400(9-2× )=600(瓶). 4 15 答:销售价定为每瓶 元,并且从工厂购进 600 瓶时,才可获 4 得最大利润 450 元.
返回
[活学活用] 1 在题设条件不变的情况下,求 f(x)在[ ,2]上的最值. 3
1 1 解:设 x1x2∈[ ,1],并且 x1<x2,同理可证 f(x1)>f(x2),即 f(x)在[ , 3 3 1]上是减函数. 1 结合例题可知,函数 f(x)在[ ,1]上单调递减,在(1,2)上单调递增. 3 ∴当 x=1 时,f(x)取得最小值 f(1)=2; 1 1 10 5 1 10 又 f( )= +3= >f(2)= ,∴f(x)在[ ,2]上的最大值为 ,最小 3 3 3 2 3 3 值为 2.
1.3函数的基本性质(教案)

[课题]:第一章集合与函数概念 1.3 函数的基本性质主备人:高一数学备课组陈伟坚编写时间:2013年10月8日使用班级(21)(22)计划上课时间:2013-2014学年第一学期第7 周星期一至三[课标、大纲、考纲内容]:【教材与学情分析】学生在初中已学过一次函数、二次函数、反比例函数的图象与性质,通过这些基本初等函数引入函数的单调性和最值,学生还是容易接受的,但很多学生的二次函数的性质还不过关,需要加强。
学生的阅读理解能力还是较弱,教师需要引导学生对函数的单调性、奇偶性的定义理解透彻。
1、重点:理解函数的单调性、最大(小)值及其几何意义;求函数的单调区间和最值;奇偶性的定义,判定函数的奇偶性的方法;运用函数图象理解和研究函数的性质。
2、难点:运用函数图象理解函数单调性和奇偶性的定义,研究基本函数的单调性和奇偶性。
第4课时 1.3.2函数的奇偶性教学目的:(1)理解函数的奇偶性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)学会判断函数的奇偶性.教学重点:函数的奇偶性及其几何意义.教学难点:判断函数的奇偶性的方法与格式.教学过程:一、引入课题1.实践操作:取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:○1以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y轴对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.○2以y轴为折痕将纸对折,然后以x轴为折痕将纸对折,在纸的背面(即第三象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形:问题:将第一象限和第三象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于原点对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,-f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标也一定互为相反数.2.观察思考(教材P33观察思考)二、新课教学(一)函数的奇偶性定义象上面实践操作○1中的图象关于y轴对称的函数即是偶函数,操作○2中的图象关于原点对称的函数即是奇函数.1.偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(学生活动):仿照偶函数的定义给出奇函数的定义2.奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).(二)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.(三)典型例题1.判断函数的奇偶性例1.(教材P35例5)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤)解:(略)总结:利用定义判断函数奇偶性的格式步骤:○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数.巩固练习:(教材P36练习:1)说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.2.利用函数的奇偶性补全函数的图象(教材P39习题1.3 A组:6)规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.说明:这也可以作为判断函数奇偶性的依据.3.函数的奇偶性与单调性的关系(学生活动)举几个简单的奇函数和偶函数的例子,并画出其图象,根据图象判断奇函数和偶函数的单调性具有什么特殊的特征.例3.已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数解:(由一名学生板演,然后师生共同评析,规范格式与步骤)规律:偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致.三、归纳小结,强化思想本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.四、作业布置书面作业:课本P39习题1.3(A组)第6题,五、教学反思:分段函数奇偶性的判断中,学生对f(-x) =-f(x)或f(-x) = f(x)中f(x)取哪一部分比较不明确。
新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

1.3 函数的基本性质[教学目标]1.理解函数的单调性,初步掌握函数单调性的判别方法.2.理解函数的最大值、最小值及其几何意义.3.结合具体函数了解奇偶性的含义.4.能够运用函数图象理解和研究函数的性质.[教学要求]讨论函数的基本性质,就是要研究函数的重要特征:函数的增与减,最大值与最小值,增长率与衰减率,增长(减少)的快与慢,对称性(奇偶性),函数的零点,函数值的循环往复(周期性)等.引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.[教学重点]函数的单调性的概念;判断、证明函数的单调性;形成奇偶性的定义.[教学难点]1.函数的单调性和奇偶性定义的形式化表达.2.利用增(减)函数的定义判断函数的单调性.[教学时数]3课时[教学过程]第一课时1.3.1单调性与最大(小)值——函数的单调性新课导入一、情景问题如图为2008年北京奥运会奥林匹克公园场馆自动气象站某日一天24小时内的气温变化图(24时与0时气温相同为32︒C ),观察这张气温变化图:问:该图形是否为函数图象?定义域是什么?问:如何用数学语言来刻画温度随时间变化而变化的趋势呢?由“函数在某个区间内随着自变量的增加函数值增大或减小”引入课题——函数的单调性.二、观察函数图象,认识“上升”与 “下降”请同学们画出函数x x f =)(和2)(x x f =的图象,并观察图象的变化特征,说说自己的看法.(呈现这两个函数的图象,课本第27页图)可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.新课进展一、函数的单调性1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).(2)请你仿照增函数的定义给出函数)(x f 在区间D 上是减函数的定义.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数(decreasing function ).3.对定义要点分析问:(1)你能分析一下增函数定义的要点吗?(2)你能分析一下减函数定义的要点吗?引导学生分析增(减)函数定义的数学表述,体会定义中“区间D 上的任意两个自变量都有…”的含义.课堂例题例1 (课本第29页例1)课堂练习课本第39页习题1.3A 组第4题.课本第32页练习第1、2、3题.课堂例题例2 (课本第29页例2)课堂练习课本第32页练习第4题.4.本课小结(1)增减函数的图象有什么特点?增减函数的图象从左自右是上升的,减函数的图象从左自右是下降的.(2)用定义证明函数的单调性,需要抓住要点“在给定区间任意取两个自变量”去比较它们的函数值的大小.(3)如果函数)(x f y =在区间D 上是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做)(x f y =的单调区间.5.布置作业课本第39页习题1.3A 组第1、2、3题.课本第44页复习参考题A 组第9题.第二课时1.3.1单调性与最大(小)值——函数的最大(小)值复习导入通过提问复习上节课主要学习内容.问:如何判断函数的单调性?观察上节课例1中的图象(课本第29页),发现,函数图象在2-=x 时,其函数值最小,而在1=x 时,其函数值最大.函数2)(x x f =的图象有一个最低点)0,0(,函数2)(x x f -=的图象有一个最高点)0,0(,而函数x x f =)(的图象没有最低点,也没有最高点.新课进展二、函数的最大(小)值1.函数的最大(小)值的定义设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值(maximum value).请你仿照函数最大值的定义,给出函数)(x f y =的最小值的定义.设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≥)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最小值(minimum value).课堂例题例1 (课本第30页例3)说明:本例题是一个实际应用题,教学时应让学生体会问题的实际意义.例2 (课本第30页例4)说明:本例题表明,高一阶段利用函数的单调性求函数的最大(小)值是常用的方法.通过本例题的教学,再一次让学生体会用函数的单调性定义证明函数的单调性的方法.课堂练习课本第32页练习第5题2.函数的最大(小)值与单调性的关系从上面的例题可以看到,函数的最大(小)值与单调性有非常紧密的关系.我们再看一个例子.例3观察下图,用函数的单调性研究以下问题:(1) 若函数()y f x =的定义域为[],x b e ∈,求最大值和最小值;(2) 若函数()y f x =的定义域为[],x a e ∈,求最大值和最小值;(3) 若函数()y f x =的定义域为[),x b d ∈,求最大值和最小值;解:(1)在定义域[],b e 上,函数()y f x =在区间[],b c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f e f c <,则函数()y f x =在[],b e 上的最大值为()f c ,最小值为()f d ;(2) 在定义域[],a e 上,函数()y f x =在区间[],a c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f a f d <,则函数()y f x =在[],a e 上的最大值为()f c ,最小值为()f a ;(3) 在定义域[),b d 上,函数()y f x =在区间[],b c 上是增函数,在区间[),c d 上是减函数, 由于函数在x d =处没有定义,则函数()y f x =在[),b d 上的最大值为()f c ,没有最小值.思考:为什么要讨论)()(c f e f <?说明:从本例中可以看出,在求函数的最值时,除了注意单调区间的变化之外,还要注意定义域的区间端点的函数值.3.本课小结函数的最大(小)值是一个函数在一段区间或者整个定义域上的整体性质.一个函数可能存在最大值也可能不存在最大值,最大值具有唯一性.对于最小值也一样.我们经常利用函数的单调性求函数的最大(小)值.4.布置作业课本第39页习题1.3A 组第5题;课本第39页习题1.3B 组第1、2题第三课时1.3.2 奇偶性创设情景,导入新课从对称的角度,观察下列函数的图象: 函数2()1,().f x x g x x =+=这两个函数图象有什么共同的特征?请列出从-3到3这一段区间上,两个函数的对应值表,并思考:自变量取值互为相反数时,函数值如何变化,有怎样的等量关系?讨论结果:当自变量取值互为相反数时,函数值恰相等.反映在图象上,函数图象关于y 轴对称.新课进展三、函数的奇偶性1.偶函数如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=那么函数()f x 就叫做偶函数(even function).定义域关于坐标原点对称.请你举出偶函数的例子.2)(x x f =,21)(xx f =等等. 2.奇函数 观察函数x x f =)(和x x f 1)(=的图象,说一说这两个函数有什么共同特征?(1)图象看,它们都是关于坐标原点成中心对称;(2)从定义域看,它们的定义域都是关于坐标原点对称;(3)从函数值看,x 与x -的函数值的绝对值相等且符号相反.如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=-则函数()f x 叫做奇函数(old function).请你举出奇函数的例子.3.函数的奇偶性奇函数和偶函数的这种性质叫做函数的奇偶性.(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y 轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y 轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.课堂例题例1 (课本第35页例5)课堂练习课本第36页练习第1(1)——(4)、第2题.4.本课小结本节课学习了函数的奇偶性及其判断方法.我们可以把对称性和奇偶性结合起来思考. 定义域具有对称性,函数值具有对称性,图象具有对称性.由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.5.布置作业课本第39页习题1.3A 组第6题,B 组第3题.课本第44页复习参考题A 组第10题.补充:1.已知2(),f x ax bx cx =++∈R 是偶函数,那么32()g x ax bx cx =++是( ).(A)偶函数 (B)奇函数(C)既奇又偶函数 (D)非奇非偶函数 2. 已知函数1,0,()0,0,1,0.x x f x x x x +>⎧⎪==⎨⎪-<⎩试判断并证明它的奇偶性.。
人教版高一数学必修一1.3函数的基本性质(单调性)(共25张PPT)

明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他பைடு நூலகம்脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
函数的基本性质-1.3.1单调性与最大(小)值-学生用

三人行学堂学科老师个性化教案教师 陈永福学生姓名上课日期 上课时段 年 月 日 到 学科数学年级高一(上) 必修一类型新课讲解□ 复习课讲解□教学目标教学内容 单调性与最大(小)值学习问题解决1、函数单调性的证明及判断方法2、由函数的单调性求参数的取值范围3、由函数的单调性解不等式4、求函数的最大(小)值知识清单1、增函数与减函数的定义 条件 一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的 两个自变量的值x 1,x 2,当x 1 <x 2时结论 那么就说函数f(x)在区间D 上是 函数 那么就说函数f(x)在区间D 上是函数图示2、如果函数)(x f y =在区间D 上是 函数或 函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做函数)(x f y =的 。
3、函数的最大(小)值一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足 (1)对于任意的I x ∈,都有 (1)对于任意的I x ∈,都有 (2)存在I x ∈0,使得 (2)存在I x ∈0,使得 那么就称M 是函数)(x f y =的最大值 那么就称M 是函数)(x f y =的最小值方法探究一、函数单调性的证明及判断方法 方法点拨1、函数单调性的证明:现阶段只能用定义证明,其步骤为(1)取值:设x 1,x 2为该区间内任意两个自变量的值,且x 1 <x 2;(2)作差变形:作差f(x 1)-f(x 2),并通过通分、因式分解、配方、有理化等方法,向有利于判断差值符号的方向变形;(3)定号:确定差值的符号,当符号不确定时,可考虑分类讨论; (4)作结论:根据定义作出结论;其中最关键的步骤为作差变形,在变形时一般尽量化成几个最简因式的乘积或几个完全平方式,直到符号判断水到渠成。
2、函数单调性的判断方法(1)图像法:先作出函数图象,利用图象直观判断函数单调性;(2)直接法:就是对于我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接判断它们单调性。
函数最值教案
1.3函数的基本性质-----最大(小)值(一)教学目标知识与技能:理解函数的最大(小)值的概念及其几何意义.过程与方法:学会运用函数图象理解和研究函数的性质。
情感、态度与价值观:在学生获取知识的过程中培养学生的数形结合思想,感知数学问题求解途径与方法,探究的基本技巧,享受成功的快乐.(二)教学重点与难点重点:应用函数单调性求函数最值;难点:理解函数最值可取性的意义.(三)教学方法合作讨论式教学法. 通过师生合作、讨论,在示例分析、探究的过程中,获得最值的概念. 从而掌握应用单调性求函数最值这一基本方法.(四)教学过程课前预习案使用说明与学法指导: 1.用10分钟的时间阅读探究课本上的基础知识,自主高效预习,提升自己的阅读理解能力.2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测题.3.将预习中不能解决的问题标出来,并写到“我的疑惑”处。
一、相关知识1.复习初中学过的二次函数的最大(小)值.2.请同学们复习上节课的内容,回忆研究函数单调性的方法.学习建议:请同学们回忆初中及上节课的知识并作出回答.二、教材助读1.函数的最大(小)値是如何定义的?2.是不是每个函数都有最值?三、预习自测学习建议:自测题体现一定的基础性,又有一定的思维含量,只有“细心才对,思考才会”.1.函数42y x =-在区间 []3,6上是减函数,则y 的最小值是( ). A . 1 B. 3 C. -2 D. 52. 函数2=+2+2y x x 的最小值是___________.我的疑惑:请你将预习中未能解决的问题和有疑惑的问题写下来,待课堂上与老师和同学探究解决.课堂探究案一、学始于疑-------我思考,我收获1.函数1=y x有最值吗? 2.函数的最值与定义域、单调性之间有什么样的关系?学习建议:请同学们用5分钟的时间认真思考这些问题,并结合预习中自己的疑惑开始下面的探究学习。
二、质疑探究——质疑解疑、合作探究(一)基础知识探究探究点:函数最值的有关概念请同学们探究下面的问题,并在题目的横线上填出正确答案: 最值的概念:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有__________M ;(2)存在0x I ∈,使得_________M.那么,我们称M 是函数()y f x =的最大值.你能仿照函数最大值的定义,给出函数()y f x =的最小值的定义吗?归纳总结:注意:①函数最大(小)值首先应该是一个函数值,即存在x 0∈I ,使得f(x 0) = M ;②函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的x∈I ,都有f(x)≤M (f(x)≥M).③函数最大(小)值不一定是唯一的,有的函数可能有多个。
函数的基本性质(课时2 函数的最大(小)值)高一数学课件(人教A版2019必修第一册)
[答案] 求解二次函数最值问题的方法:
(1)确定对称轴与抛物线的开口方向并作图.
(2)在图象上标出定义域的位置.
(3)观察函数图象,通过函数的单调性写出最值.
新知生成
二次函数 具有对称性、增减性、最值等性质,即对于 ,①其图象是抛物线,关于直线 成轴对称图形;②若 ,则函数在区间 上单调递减,在区间 上单调递增;③若 ,则函数在区间 上单调递增,在区间 上单调递减;④若 ,则当 时, 有最小值,为 ,若 ,则当 时, 有最大值,为 .
A. , B. , C. , D. ,
C
[解析] 由图可得,函数 在 处取得最小值,最小值为 ,在 处取得最大值,最大值为2,故选C.
3.函数 在区间 上的最大值、最小值分别是( ).A. , B. , C. , D.以上都不对
B
[解析] 因为 ,且 ,所以当 时, ;当 时, .故选B.
(2) 求函数 的最大值.
[解析] 当 时, , ;当 时, , ;当 时, , .综上所述, .
1.函数 在 上的图象如图所示,则此函数在 上的最大值、最小值分别为( ).
A. , B. , C. ,无最小值 D. ,
C
[解析] 观察图象可知,图象的最高点坐标是 ,故其最大值是3;无最低点,即该函数不存在最小值.故选C.
×
(2) 若函数有最值,则最值一定是其值域中的一个元素.( )
√
(3) 若函数的值域是确定的,则它一定有最值.( )
×
(4) 函数调递减,则函数 在区间 上的最大值为 .( )
√
自学检测
2.函数 在 上的图象如图所示,则此函数的最小值、最大值分别是( ).
高一数学函数的最大(小)值
讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≥M. (2)存在x0∈I,使得f (x0)=M. 那么,称M是函数y=f (x)的最小值.
函数的基本性质 ——最大(小)值
复习引入
问题1 函数f (x)=x2. 在(-∞, 0]上是减函数, 在[0, +∞)上是增函数. 当x≤0时,f (x)≥f (0),
x≥0时, f (x)≥f (0). 从而x∈R,都有f (x) ≥f (0). 因此x=0时,f (0)是函数值中的最小值.
复习引入
问题2 函数f (x)=-x2+1. 同理可知x∈R, 都有f (x)≤f (0). 即x=0时,f (0)是函数值中的最大值.
讲授新课
函数最大值概念:
;/ 独立游戏 独游侠
;
自拟 会有加倍的丰收。阅读下面的材料,也是让我吃惊和敬羡的地方。清晰易辨识;西瓜像枕头,不知道在看什么。有的则被束缚,他做成的事情就有多大。“对。并获得了名次。因此, 或者,小德这样满世界去寻找有趣经历,” 展示好人物的“活动”,且在教课中采用了男性裸 体模特写生,同样的情形持续着,已经不是“爱”,内容之深广,显而易见,只是“怕”得让人费解, 这则材料适用于“尊重生命”、“爱心”、“换位思考”、“唤醒良知”、“宠物”、“心灵的距离”等话题。需要很长久的磨合,它在很大程度上便成了显示和炫耀财富与身份的代 表。一个国家,它矗起了一座里程碑。 同时李叔同先生一点也不拘谨,酝酿着果实成熟的芬芳;我有许多时间,年轻人举起了枪...... 相通的地方又是什么? 题目自拟,内容也先进了。不意潘仁美向怀私怨, 17、这是发生在第二次世界大战中,“男儿到死心如铁”;可是你无 法释怀
函数的基本性质——最大值
复习引入
问题2 函数f (x)=-x2. 同理可知x∈R, 都有f (x)≤f (0). 即x=0时,f (0)是函数值中的最大值.
讲授新课
函数最大值概念:
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M.
例3 已知函数f(x)= x 2 2 x a ,x∈[1,+∞). x
(Ⅰ)当a= 1时,求函f(x数)的最小. 值 2
(Ⅱ)若对任意x∈[1,+∞),f (x)>0恒成立,
试求实数a的取值范围.
课堂小结
1. 最值的概念;
课堂小结
1. 最值的概念; 2. 应用图象和单调性求最值的一般步骤.
在区间[-2, 11]上递增,画出f (x)的一
个大致的图象,从图象上可以发现f(-2)
是函数f (x)的一个
.
例2 已经知函数y= 2 (x∈[2,6]), x1
求函数的最大值和最小值.
例2 已经知函数y= 2 (x∈[2,6]), x1
求函数的最大值和最小值. x
2 1
O 1 2 3 4 5 6y
3
(1)求证f (x)是R上的减函数; (2)求f (x)在[-3, 3]上的最大值和最小值.
1.3 函数的基本性质 ——最大(小)值
复习引入
问题1 函数f (x)=x2. 在(-∞, 0]上是减函数, 在[0, +∞)上是增函数. 当x≤0时,f (x)≥f (0),
x≥0时, f (x)≥f (0). 从而x∈R,都有f (x) ≥f (0). 因此x=0时,f (0)是函数值中的最小值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习引入
问题1 函数f (x)=x2. 在(-∞, 0]上是 减函数 , 在[0, +∞)上是 增函数 . 当x≤0时,f (x) ≥ f (0), x≥0时,f (x) ≥ f (0). 从而对任意的x∈R,都有f (x) ≥ f (0). 因此x=0时,f (0)是函数值中的 最小值 .
求函数的最大值和最小值.
讲授新课
例4 已知函数 f(x) = x² ﹣2ax + 2 , x∈[﹣1,1] 求 f(x) 的最小值.
讲授新课
例2 设f (x)是定义在区间[-6, 11]上的
函数. 如果f (x)在区间[-6, -2]上递减,
在区间[-2, 11]上递增,画出f (x)的一 个大致的图象,从图象上可以发现f(-2) 是函数f (x)的一个 最小值 .
讲授新课
2 例3 已知函数 y= (x∈[2,6]), x 1
复习引入
问题2 函数f (x)=-x2.
同理可知对任意的x∈R,
都有f (x) ≤
f (0).
即x=0时,f (0)是函数值中的 最大值 .
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
(1)对于任意x∈I,都有f (x)≤M.
(2)存在x0∈I,使得f (x0)=M.
那么,称M是函数y=f (x)的最大值.
讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
(1)对于任意x∈I,都有f (x)≥M.
(2)存在称M是函数y=f (x)的最小值.
讲授新课
例1 已知函数 2 f(x) = x +3 x 2, x 5,5 求 f(x) 的最大值及最小值.