有限元在电磁场中的应用
电磁场分析 有限元法

第3章新型混合磁极永磁电动机的计算分析方法3.1 前言新型混合磁极永磁电机的计算分析方法是进行本课题研究需要首先解决的问题。
由于新型混合磁极永磁电机是一种全新的电机,没有现成的解析计算公式,且解析计算也难以把握电机的各种非线性的复杂因素,无法准确的计算、分析和研究这种电机。
因此,采用电磁场数值计算方法是必要的选择。
本章阐述了基于有限元法的电磁场计算分析方法、齿磁通计算分析方法和交、直轴电抗的计算分析方法。
3.2 电磁场计算分析方法电机计算方法通常有磁路法和电磁场法。
磁路法的计算精度不高,处理基波时对电机设计具有一定的指导意义。
电磁场法能够处理饱和、谐波、涡流以及齿槽的影响,尤其在计算机普遍应用的今天,磁场法以其精度高等优势得到了广泛的应用。
有限元法是将所考察的连续场分割为有限个单元,然后用函数来表示每个单元的解,在求得代数方程之后再引进边界条件,因为边界条件不进入单个有限单元的方程,所以能够采用同样的函数。
采用电磁场有限元软件对新型混合磁极永磁电机的电磁场进行有限元分析,我们可以得到矢量磁位AZ、磁场强度、磁感应强度等结果和磁力线、等磁位线等曲线,从而了解该电机内部的磁场分布情况。
根据电磁场分析结果,通过绕组与磁场的感应关系即可求得基波绕组和三次谐波绕组的电势波形和大小。
课题组提出了齿磁通法对电机磁场进行计算。
采用齿磁通法计算电机磁场时,需要至少旋转一个齿距下的的磁场情况,因此计算量较大,但能够得到绕组电压值和波形,其精度也较高。
有限元计算分为以下几步:第一、建立有限元模型,确定求解区域。
第二、分配电机材料,铁磁材料与气隙的分配与普通电机分配相似,在分配永磁材料时,需注意永磁材料的矫顽力方向,同时在永磁材料分配应确定永磁材料是径向磁通;文中选定是径向磁通。
第三、网格剖分,选定网格类型,再对六极混合磁极永磁电机有限元模型进行网格剖分。
第四、对电机模型进行施加电流密度,求解得出AZ值。
创建模型:创建一个模型的顺序是由点到线、由线到面,这一部分的工作在Preprocessor的Modeling完成。
有限元法应用举例

核反应堆运行过程中涉及高温、 高压、高辐射等极端条件,热工 水力学分析是确保安全性的重要
环节。
有限元法可以对核反应堆的热工 水力学进行模拟,评估冷却剂流 动、热能传递、压力容器应力分
布等关键参数。
通过模拟分析,可以优化反应堆 设计,提高运行效率,降低事故
风险。
建筑物的能耗模拟与优化
建筑物的能耗是节能减排的重要领域,能耗模拟与优化有助于降低能源消耗和碳排 放。
况,为设备的电磁兼容性设计和优化提供依据。
通过有限元分析,可以评估设备的电磁辐射是否符合相关标准
03
和规定,以及优化设备的天线布局和结构设计等。
高压输电线路的电场分析
高压输电线路在运行过程中会 产生电场和磁场,其强度和分 布情况对环境和人类健康具有 一定影响。
有限元法可以用来分析高压输 电线路的电场分布情况,包括 电场强度的计算和分布规律的 分析等。
通过有限元分析,可以评估高 压输电线路对环境和人类健康 的影响,为线路的规划、设计 和优化提供依据。
07
有限元法应用举例:声学分析
消声室的声学设计
消声室是用于测试和测量声音的特殊 实验室,其内部环境需要极低的噪音 水平。
通过模拟和分析,可以确定最佳的吸 音材料和布局,以及最佳的隔音结构, 以达到最佳的消声效果。
有限元法应用举例
• 有限元法简介 • 有限元法应用领域 • 有限元法应用举例:结构分析 • 有限元法应用举例:流体动力学分析 • 有限元法应用举例:热传导分析 • 有限元法应用举例:电磁场分析 • 有限元法应用举例:声学分析
01
有限元法简介
定义与原理
定义
有限元法是一种数值分析方法,通过将复杂的物理系统离散 化为有限数量的简单单元(或称为元素),并建立数学模型 ,对每个单元进行单独分析,再综合所有单元的信息,得到 整个系统的行为。
有限元分析方法

有限元分析方法有限元分析(Finite Element Analysis, FEA)是一种数值分析方法,用于解决物理问题的近似解。
它基于将有限元区域(即解释对象)分解成许多简单的几何形状(有限元)并对其进行数值计算的原理。
本文将深入探讨有限元分析的原理、应用和优点。
有限元分析的原理基于弹性力学理论和数值计算方法。
它通过将解释对象分解为有限个简单的几何区域(有限元)和节点,通过节点之间的连接来建立模型。
这些节点周围的解释对象区域称为“单元”,并且通过使用单元的形状函数近似解释对象的形状。
每个单元都有一个与之相连的节点,通过对每个单元的受力进行计算,可以得到整个解释对象的受力分布。
然后,利用一系列运算和迭代,可以计算出解释对象的位移、应力和变形等相关参数。
有限元分析的应用范围广泛,从结构力学、热传导、电磁场分析到流体力学等各个领域。
在结构力学中,它被用于分析各种结构的静力学、动力学和疲劳等性能。
在热传导领域,它可以用于研究物体内部的温度分布和传热性能。
在电磁场分析中,它可用于计算复杂电磁场下的电场、磁场和电磁场耦合问题。
在流体力学中,有限元方法可以解决各种流体流动、热传递和质量转移问题。
有限元分析的优点之一是可以处理各种复杂边界条件和非线性材料特性。
它可以考虑到不同材料的非线性本质,例如弹塑性和接触等问题。
另外,有限元方法还可以适应任意形状和尺寸的几何模型,因此非常适用于复杂工程问题的建模与分析。
有限元分析的使用需要一定的专业知识和经验。
首先,需要将解释对象抽象成几何模型,并进行细分和离散化。
其次,需要选择适当的几何元素和材料模型,以及合适的边界条件和加载方式。
然后,需要定义求解器和数值方法,并使用计算机程序对模型进行计算。
最后,需要对结果进行后处理和验证,以确保其准确性和可靠性。
总的来说,有限元分析是一种强大的工程分析工具,在解决各种物理问题方面有广泛的应用。
它通过将复杂的问题简化为简单的有限元模型,通过数值计算的方法获得近似解。
电磁场问题的有限元分析

ANSYS电磁场分析首先求解出电磁场的磁势和电势, 然后经后处理得到其他电磁场物理量,如磁力线分布、磁 通量密度、电场分布、涡流电场、电感、电容以及系统能 量损失等
● 电力发电机 ● 变压器 ● 电动机 ● 天线辐射 ● 等离子体装置
9.1 电磁场基本理论
(4)ANSYS电磁场分析简介 2. ANSYS电磁场分析方法 (2)建立分析模型。 在建立几何模型后,对求解区域用选定的单元进行划分, 并对划分的单元赋予特性和进行编号。 单元划分的疏密程度要根据具体情况来定,即在电磁 场变化大的区域划分较密,而变化不大的区域可划分得稀 疏些。 (3)施加边界条件和载荷。 (4)求解和后处理。
过滤图形用户界面进入电磁场 分析环境。在ANSYS软件的 Multiphysics模块中,执行:Main Menu>Preferences,在弹出的对话 框中选择多选框“Magnetic-Nodal” 后,单击[OK]。
9.2 二维静态磁场分析
(2)二维静态磁场分析实例 (2) 建立模型 ①生成大圆面:Main Menu>Preprocessor>Modeling>Create>Area >Circle>By Dimensions弹出如对话框,在对 话框中输入大圆的半径“6”.然后单击 [OK]。 ②生成小圆: MainMenu>Preprocessor>Modeling>Create>Areas>Ci rcle>Solid Circle,弹出一个对话框,在“WP X”后面 输入“1”,在“Radius”后面输入“2”,单击[OK], 则生成第第二个圆。 ③布尔操作: MainMenu>Preprocessor>Modeling>Cr eate>Booleans>Overlap>Area,在弹出 对话框后,单击[Pick All]。
时域有限元法在电磁场仿真中的应用

时域有限元法在电磁场仿真中的应用电磁场是以电场和磁场为主体的物理学中的一个重要领域,随着信息技术的发展,电子设备的普及,电磁场仿真技术得到了广泛的应用。
时域有限元法是电磁场仿真中一种重要的计算方法,它具有广泛的应用背景和数据处理能力,在工业、科研等领域中都有较好的应用前景。
一、时域有限元法时域有限元法(Time Domain Finite Element Method,TDFEM)是求解电磁问题的一种数值计算方法,它将待求解物理量在时间域上进行离散化,并将物理区域分解成简单的有限元网格,并在每个网格中按类似于积分的方法计算待求解物理量,然后通过矩阵运算求解物理场的传递规律。
在时域有限元法中,时间离散化是最基本的步骤,通常采用离散飞秒差分法(FDTD)或插值布尔法(FIT)进行时间离散化。
离散化后求解待求解物理量后,用物理区域建立有限元模型,然后在每个节点上建立方程组,通过矩阵计算得到待求解物理量。
二、时域有限元法在电磁场的仿真中的应用1、电磁兼容性的仿真电磁兼容性是指在电磁环境下电子设备的互相干扰问题和他们对电磁环境的影响问题。
时域有限元法可以用来仿真电磁兼容性问题中的电磁辐射和敏感问题。
利用时域有限元法可以对电子系统进行电磁辐射仿真,以评估其在电磁环境中的辐射情况。
例如,对于飞机上的雷达系统,可以使用时域有限元法来模拟雷达在不同状态下的辐射情况,评估其对周围电子设备的影响。
2、电磁场的散射问题当电磁波遇到物体时,会发生反射,折射,散射等现象,时域有限元法可以用来解决这些散射问题,例如雷达电磁波在目标上的散射问题,船舶上的雷达系统散射问题等。
采用时域有限元法可以解决不规则形状目标的散射问题,为目标的检测和识别提供有用的参考。
3、电磁波的传播问题时域有限元法可以用来模拟电磁波在不同介质中的传播过程,例如无线通信,雷达系统等。
利用时域有限元法可以对不同介质中的电磁波传播进行仿真,以评估电磁波在介质中的传输性能,为优化电磁波传输提供有用的参考。
电磁场计算中的有限元方法教程

电磁场计算中的有限元方法教程引言电磁场计算是电磁学领域中重要的研究内容之一,广泛应用于电气工程、通信工程、电子技术等领域。
而有限元方法(Finite Element Method,简称FEM)是一种常用的数值计算技术,可以解决电磁场计算中的复杂问题。
本文将介绍有限元方法在电磁场计算中的基本原理、步骤和应用。
一、有限元方法简介有限元方法是一种通过将待求解区域划分成有限数量的小单元,利用单元上的近似函数构造整个区域上的解的数值计算方法。
有限元方法的基本思想是在每个小单元内近似解以建立一个代数方程组,通过将这些方程组联立得到整个区域上的解。
有限元方法具有处理复杂几何形状、边界条件变化和非线性问题的优势,因此被广泛应用于工程和科学计算中。
二、电磁场方程建立在电磁场计算中,关键是建立合适的电磁场方程。
常见的电磁场方程包括静电场方程、恒定磁场方程、麦克斯韦方程等。
根据具体情况选择适用的方程,并根据材料的性质和边界条件确定相应的方程形式。
三、有限元网格划分有限元方法需要将计算区域划分为有限数量的小单元。
在电磁场计算中,通常采用三角形或四边形单元来进行划分,这取决于计算区域的几何形状和分辨率要求。
划分过程需要考虑电场变化的特点和计算精度的需求,合理划分网格对精确计算电磁场起着重要的作用。
四、有限元方程的建立有限元网格划分完成后,需要建立相应的有限元方程组。
以求解静电场问题为例,我们可以利用能量最小原理、偏微分方程等方法建立有限元方程组。
有限元方程组的建立需要考虑电场的连续性、边界条件和材料特性等。
五、有限元方程求解有限元方程组的求解是求解电磁场分布的核心任务。
根据具体的方程形式和计算区域的几何形状,可以采用直接法、迭代法、近似法等方法来求解方程。
在电磁场计算中,常用的求解算法包括高斯消元法、迭代法、有限元法和有限差分法等。
六、计算结果的后处理在得到有限元方法计算的电磁场分布结果后,需要进行相应的后处理,进行数据分析和可视化。
有限元法在电磁计算中的应用

有限元法在电磁计算中的应用有限元法是计算机模拟中的一种常用的数学方法,应用广泛,在
电磁计算中也有重要的应用。
有限元法在电磁计算中的使用有若干特点:
一是有限元法求解的构造更加简单,从而节省了计算的时间。
有
限元法利用计算机对复杂的形状进行抽象并将物体分割成许多面元单元,每个单元都有一个精确的表达式来表示本身,然后将它们组合成
一个复杂的形状,使得计算问题被大大简化了。
二是有限元法可以有效地求解复杂的体系,可以很好地反映出物
体各块间构造上的相互关系。
有限元法将形状分割成尽可能多的小块,对复杂的体系来说,这种抽象是关键的,因为这能让电磁学家更深入
地探索电磁体系的内在机理。
此外,有限元法有很高的精确度,可以
得出准确的结果,这对于电磁计算也是非常重要的。
三是有限元法可以用于处理电磁场的多物质问题。
在电磁物理中,有许多非雷诺物质,即受到多物质影响的物质,具有复杂的相互作用,如耦合物质物理法则。
有限元法具有量化构造和经验修正两个大的优
点,可以有效地处理多物质问题,为研究复杂的电磁场提供有效的支持。
有限元法是一种相对简单的计算方法,应用于电磁计算中也是非常重要的。
它具有构造简单、计算准确度高、能处理复杂物质问题等优点,是电磁计算中经常使用的有效方法。
基于有限元的电磁场仿真与数值计算

鼠笼异步电动机磁场的有限元分析摘要鼠笼异步电动机具有结构简单、价格低廉、运行可靠、效率较高、维修方便等一系列的优点,在国民经济中得到广泛的应用。
工业、农业、交通运输、国防工程以及日常生活中都大量使用鼠笼异步电动机。
随着大功率电子技术的发展,异步电动机变频调速得到越来越广泛的应用,使得鼠笼异步电动机在一些高性能传动领域也得到使用。
鼠笼异步电动机可靠性高,但由于种种原因,其故障仍时有发生。
由于电动机结构设计不合理,制造时存在缺陷,是造成故障的原因之一。
对电机内部的电磁场进行正确的磁路分析,是电机设计不可或缺的步骤。
利用有限元法对电机内部磁场进行数值分析,可以保证磁路分析的准确性。
本文利用Ansys Maxwell软件,建立了鼠笼式异步电机的物理模型,并结合数学模型和边界条件,完成了对鼠笼式异步电动机的磁场仿真,得到了物理模型剖分图,磁力线和磁通分布图,为电机的进一步设计研究提供了依据。
关键词:Ansys Maxwell;鼠笼式异步电机;有限元分析一、前言当电机运行时,在它的内部空间,包括铜与铁所占的空间区域,存在着电磁场,这个电磁场是由定、转子电流所产生的。
电机中电磁场在不同媒介中的分布、变化及与电流的交链情况,决定了电机的运行状态与性能。
因此,研究电机中的电磁场对分析和设计电机具有重要的意义。
在对应用于交流传动的异步电机进行电磁场的分析计算时,传统的计算方法因建立在磁场简化和实验修正的经验参数的基础之上,其计算精度就往往不能满足要求。
如果从电磁场的理论着手,研究场的分布,再根据课题的要求进行计算,就有可能得到满意的结果。
电机电磁场的计算方法大致可以分为解析法、图解法、模拟法和数值计算法。
数值解法是将所求电磁场的区域剖分成有限多的网格或单元,通过数学上的处理,建立以网格或单元上各节点的求解函数值为未知量的代数方程组。
由于电子计算机的应用日益普遍,所以电机电磁场的数值解法得到了很大发展,它的适用范围超过了所有其它的解法,并能达到足够的精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的计算,即将无穷维自由度问题转化为有限个自由度的问题。 结点场量计算的思路如下:描述电磁场规律的是些偏微分方程, 首先找出与之相应的泛函,这样偏微分方程的边值问题就成了求泛函 的极值问题。场域被分成有限单元后,整个场域的泛函就是各单元泛 函之和。在引入插值函数并用结点场量表示单元内任一点的场量后, 泛函近似转化为多元函数,变分极值近似转化为多元函数的极值。在 对场量取偏导并令之为零后,得到的方程是代数方程。每个单元建立 一个方程,在整个求解区域中则有一个代数方程组,计及边界条件后 解此方程组就可求出各结点场量。在此过程中,并不要求每个单元中 的插值函数满足整个场域的边界条件,所以可以很容易的确定。由于
2 1 J ( ) (9) dV V 2
•
• 这就是第一、第二类边界条件下的拉普拉斯方程所对应的泛函。将 式(7)代入式(9),然后进行求导运算可得
•
(10)
• 这就是拉普拉斯方程的三角单元矩阵特征式
• (5)集合单元特性得到表示整个解域性质的矩阵方程式。为了求得 全系统模型的特性,就必须“集合”全部单元的特性,然后求泛函的 极值,导出联立代数方程组(又称有限元方程)。“集合”所依据的 原理是:在一些单元相互连接的结点处,要求所有包括此结点的单元 在该结点处的场变量相同。(4)和(5)步可一并由计算机来完成。 • (6)求解有限元方程。这首先要考虑边界条件,然后由计算机解出 未知结点的场变量值,通过这些结点值就能求出场内任一点的场量值 。 • 总之,有限元法是从变分原理出发,通过区域划分和分片插值找出形 状函数,在通过“集合”把变分问题近似转化为多元函数的极值问题 。
1 2 1) ( J = -2f d - ds s 2
其中, 表示电位 的梯度, 表示求解域体积,s为其表面积,f为常数
(2)对求解域的连续域进行离散,即按一定方式将场域剖分为有限个单 元体。若求解的是平面场,则可以用三角形、矩形、曲线四边形等单
(x 3) (x,y) =1 2 3 y + 4 xy
•
(4)求出单元特征式。当选定单元形状和场变量模型后,就可确定表示单元 特性的矩阵公式。例如,平面场中若选定三角形单元来分割,它的场变量模 型由(2)式表示,其中系数 与三角形的三个顶点处的坐标极点及电位值有 关。若令三角形ijm【见图1(a)】的三个顶点的函数值分别为 、 i • 和 ,则有
• 因它在理论上以变分原理为基础,这既保障了方法的收敛性,同时又 保持了系数矩阵的对称正定性。另一方面,它在处理技巧上,又吸取 和发展了有限差分法对定义域离散处理的灵活性和边界的适应性,同 时还保持了差分法中系数矩阵的稀疏性,这就大大计省了计算机容量 。
谢谢!
整个计算过程都是代数运算,故可由计算机进行。正因如此,有限元 法成了求解电磁场边值的一种简单有效的方法。
有限元法解题的一般步骤
用有限元求解实际问题的步骤大致如下: (1)找出与被求解的边值问题相应的泛函。目前,电磁场中常遇到的一些偏微分 方程相应的泛函均已被找到,例如与泊松方程 2 相应的泛函(对第二类边 =-f 界条件)为
有限元法在电磁场分析中的应用
有限元法简介
有限元法是一种数值计算方法,最初用于力学领域,六十年代中期开 始用于电磁场计算 。目前在电磁场分析中,有限元法是较先进的方法之 一。这种方法以变分原理为依据,具有牢固的数学基础。 在实际的电磁场中,场是连续的,空间无限多个点的每一点都有确 定的的场量(即具有数学上所称的无穷维自由度)。而有限元法是将场域 划分为有限个单元,用一个简单的函数作为场变量模型(又称插值函 数),构成每个单元中场的试探解。有限元法可以将单元中任一点的待 求量 ,用该单元边界与其他单元边界的交点 (在有限元法中称为结点) 上的场量值表示 。因此,整个场的计算可归结为有限个结点上场量的
j
m
•
( 4)
• 解式(4)可得 •
6)
• 表示为ijm三角形面积。将式(5)代入式(4)经整理可得
•
(x,y) =Nii( +N 6) j j +Nmm
• 其中
•
(7 )
• • • •
式(8)称为三结点三角单元的形状函数(也称内插函数或基函数)。至此 ,可用已知结点的场景及形状函数来表示单元中未知点场量。 若令式(1)中f=0,对于第一、第二类边界条件,则式(1)变为
•
如平面场域中若用三角形【见图1(a)】,作为基本单元,当单元中每个结点 的自由度为1时,则线性场变量模型为
•
• • •
式中, 代表单元内任意一点的场量, x、y为该点的坐标, 为系数 (x, y) 若用双线性元的矩形单元【见图1(b)】为基本单元,则场变量模型为:
(x,y) =1 x 3 y+4 y (2 2)
元去分割(见图1)。对于三维空间场,单元的形状可以是四面体、长 方体、任意六面体等(见图2)。不论是平面场还是空间场,对于同 一求解域可以用不同类型的单元去分割。究竟场域如何剖分及结点如 何编号等,需要根据场域及边界的具体形状、结构、计算机容量、计 算速度和求解的精度等因素来确定。
(3)选择场变量模型。因为多项式容易进行微积分运算,故目前大多采 用多项式作为场变量模型来近似地表示真实的场分析。多项式的项数 由单元上结点的数目及每个结点的未知量的性质、数目等因素所决定 。