2014届高考数学一轮复习 第四章三角函数、解三角形4.1任意角和弧度制及任意角的三角函数精炼 理 新人教A版
高考数学一轮复习 专题4.1 任意角和弧度制及任意角的

第01节 任意角和弧度制及任意角的三角函数【考纲解读】考 点 考纲内容5年统计分析预测 1.任意角的概念、弧度制了解角、角度制与弧度制的概念,掌握弧度与角度的换算.无1.三角函数的定义;2.扇形的面积、弧长及圆心角.3.备考重点: (1) 理解三角函数的定义;(2) 掌握扇形的弧长及面积计算公式.2.三角函数的定义 理解正弦函数、余弦函数、正切函数的定义.无【知识清单】1.象限角及终边相同的角 1.任意角、角的分类:①按旋转方向不同分为正角、负角、零角. ②按终边位置不同分为象限角和轴线角. (2)终边相同的角:终边与角α相同的角可写成α+k ·360°(k ∈Z ). 2.弧度制:①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=l r,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③用“弧度”做单位来度量角的制度叫做弧度制.比值l r与所取的r 的大小无关,仅与角的大小有关.3.弧度与角度的换算:360°=2π弧度;180°=π弧度. 对点练习:下列与9π4的终边相同的角的表达式中正确的是( )A.2k π+45°(k ∈Z )B.k ·360°+94π(k ∈Z )C.k ·360°-315°(k ∈Z )D.kπ+5π4(k ∈Z )【答案】C.确.2.三角函数的定义1.任意角的三角函数定义:设α是一个任意角,角α的终边与单位圆交于点P (x ,y ),那么角α的正弦、余弦、正切分别是:sin α=y ,cos α=x ,tan α=y x,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.2.三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦 3.三角函数线设角α的顶点在坐标原点,始边与x 轴非负半轴重合,终边与单位圆相交于点P ,过P 作PM 垂直于x 轴于M .由三角函数的定义知,点P 的坐标为(cos_α,sin_α),即P (cos_α,sin_α),其中cos α=OM ,sin α=MP ,单位圆与x 轴的正半轴交于点A ,单位圆在A 点的切线与α的终边或其反向延长线相交于点T ,则tan α=AT .我们把有向线段OM 、MP 、AT 叫做α的余弦线、正弦线、正切线.三角函数线有向线段MP 为正弦线有向线段OM 为余弦线有向线段AT 为正切线对点练习:【河南省林州一中2017-2018上学期开学】已知角α终边经过点3122P ⎛⎫⎪ ⎪⎝⎭,则cos α=( ) A.123312±【答案】B【解析】由于31,2r OP x ===,所以由三角函数的定义可得3cos 2x r α==,应选答案B.3. 扇形的弧长及面积公式弧长公式:l =|α|r ,扇形面积公式:S 扇形=12lr =12|α|r 2.对点练习:已知一扇形的圆心角为α,半径为R ,弧长为l. (1)若α=60°,R =10 cm ,求扇形的弧长l ;(2)已知扇形的周长为10 cm ,面积是4 cm 2,求扇形的圆心角;(3)若扇形周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大? 【答案】(1) 10π3(cm).(2)圆心角为12.(3)l =10,α=2.【解析】(1)α=60°=π3 rad ,∴l =α·R=π3×10=10π3(cm).【考点深度剖析】高考对任意角三角函数定义的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求学生深刻认识利用坐标法定义任意角三角函数的背景和目的.纵观近几年的高考试题,主要考查以下两个方面:一是直接利用任意角三角函数的定义求其三角函数值;二是根据任意角三角函数的定义确定终边上一点的坐标.【重点难点突破】考点1 象限角及终边相同的角 【1-1】已知角α=45°,(1)在-720°~0°范围内找出所有与角α终边相同的角β;(2)设集合M=18045,,N=18045,24k k x x k x x k ⎧⎫⎧⎫=⨯+∈=⨯+∈⎨⎬⎨⎬⎩⎭⎩⎭Z Z o o o o ,判断两集合的关系.【答案】(1)β=-675°或β=-315°.(2)M N ⊆. 【解析】(1)所有与角α有相同终边的角可表示为:β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°,得-765°≤k ×360°<-45°,解得-765360≤k <-45360,从而k =-2或k =-1,代入得β=-675°或β=-315°.(2)因为M ={x |x =(2k +1)×45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合; 而集合N ={x |x =(k +1)×45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,从而M N ⊆.【1-2】若sin 0θ>且sin 20θ>,则角θ的终边所在象限是( ) A .第一象限 B .第二象限C .第三象限 D .第四象限【答案】A【1-3】终边在直线y =3x 上的角的集合为________. 【答案】{α|α=k π+π3,k ∈Z }【解析】终边在直线y =3x 上的角的集合为{α|α=k π+π3,k ∈Z }.【1-4】若角α是第二象限角,试确定α2,2α的终边所在位置.【答案】角α2的终边在第三象限或第四象限或y 轴的负半轴上,2α的终边在第一象限或第三象限.【解析】∵角α是第二象限角,∴ 22,2k k k Z ππαππ+<<+∈,(1)4242,k k k Z ππαππ+<<+∈,∴ 角α2的终边在第三象限或第四象限或y 轴的负半轴上.综上所述,2的终边在第一象限或第三象限. 【领悟技法】1.对与角α终边相同的角的一般形式α+k ·360°(k ∈Z )的理解;(1)k ∈Z;(2)α任意角;(3)终边相同的角不一定相等,但相等的角终边一定相同.2.利用终边相同角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角3.已知角α的终边位置,确定形如kα,π±α等形式的角终边的方法:先表示角α的范围,再写出kα、π±α等形式的角范围,然后就k 的可能取值讨论所求角的终边位置 【触类旁通】【变式一】如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )【答案】C当t =0时,d =2,排除A 、D ;当t =π4时,d =0,排除B.考点2 三角函数的定义【2-1】已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( )A .-114 B.114 C .-4 D .4【答案】C【解析】由题意可知,cos α=m m 2+9=-45, 又m <0,解得m =-4.【2-2】已知角α的终边与单位圆的交点P ⎝ ⎛⎭⎪⎫x ,32,则tan α=( ) A. 3B .± 3 C.33D .±33【答案】B【解析】由|OP |2=x 2+34=1,得x =±12,tan α=± 3.【2-3】已知角α的终边上有一点P (t ,t 2+1)(t >0),则tan α的最小值为( ) A .1 B .2 C.12D. 2【答案】B【解析】根据已知条件得tan α=t 2+1t =t +1t≥2,当且仅当t =1时,tan α取得最小值2.【2-4】已知角α的终边上一点P 的坐标为⎝⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6B.2π3C.5π3D.11π6 【答案】D【领悟技法】1.已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后利用三角函数的定义求解.2.已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后利用三角函数的定义求解相关的问题.若直线的倾斜角为特殊角,也可直接写出角α的三角函数值. 【触类旁通】【变式一】已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( ) A .(-2,3] B .(-2,3) C .[-2,3)D .[-2,3]【答案】A【解析】 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3.故选A.【变式二】已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.【答案】0【解析】设α终边上任一点为P (k ,-3k ), 则r =k 2+-3k2=10|k |.当k >0时,r =10k , ∴sin α=-3k10k=-310,1cos α=10 k k =10,∴10sin α+3cos α=-310+310=0;当k <0时,r =-10k , ∴sin α=-3k -10k =310,1cos α=-10k k=-10,∴10sin α+3cos α=310-310=0.综上,10sin α+3cos α=0.考点3 扇形的弧长及面积公式【3-1】【2018届黑龙江省齐齐哈尔八中8月月考】若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm . 【答案】833π 【解析】画出图形,如图所示.设扇形的半径为rcm ,由sin60°=6r,得r=43cm , ∴l=n πr 180=2π3×43= 833π cm. 【3-2】已知扇形周长为40,当它的半径和圆心角取何值时,才使扇形面积最大? 【答案】 当r =10,θ=2时,扇形面积最大【领悟技法】(1)弧度制下l =|α|·r ,S =12lr ,此时α为弧度.在角度制下,弧长l =n πr180,扇形面积S =n πr 2360,此时n 为角度,它们之间有着必然的联系.(2)在解决弧长、面积及弓形面积时要注意合理应用圆心角所在的三角形.【触类旁通】【变式一】一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为( ) A.π3 B.2π3 C. 3 D. 2 【答案】C【变式二】一扇形的圆心角为120°,则此扇形的面积与其内切圆的面积之比为________. 【答案】(7+43)∶9【解析】设扇形半径为R ,内切圆半径为r .则(R -r )sin 60°=r , 即R =1+233r .又S 扇=12|α|R 2=12×2π3×R 2=π3R 2=7+439πr 2,∴S 扇πr 2=7+439. 【易错试题常警惕】易错典例:已知角α的终边过点(,2)m m ,0m ≠,求角α的的正弦值、余弦值. 易错分析:学生在做题时容易遗忘0m <的情况. 正确解析:当0m <时,2555,sin ,cos r m αα=-=-=-; 当0m >时,2555,sin ,cos r m αα=-== 温馨提醒:本题主要考察了三角函数的定义以及分类讨论思想方法,这也是高考考查的一个重点.【学科素养提升之思想方法篇】数形结合百般好,隔裂分家万事休——数形结合思想我国著名数学家华罗庚曾说过:"数形结合百般好,隔裂分家万事休。
高考数学一轮总复习教学课件第四章 三角函数、解三角形第1节 任意角和弧度制及任意角的三角函数

任意两个量.
考点三
任意角三角函数的定义及应用
角度一
三角函数定义的应用
[例3] 已知角α的终边上一点P(- ,m)(m≠0),且sin α=
则cos α=
-
,tan α=
-
或
.
,
解析:设 P(x,y).由题意知 x=- ,y=m,
2
2
2
2
所以 r =OP =(- ) +m (O 为坐标原点),
2
(cm ).
cm,求该扇形的面积.
[典例迁移1] (变结论)若本例条件不变,求扇形的弧长及该弧所
在弓形的面积.
解:l=α·R= ×10=
S 弓形=S 扇形-S 三角形=
(cm),
2
- ·R ·sin =
2
-
- ×10 × =
的非负半轴重合,若角α和β的终边关于y轴对称,则下列关系式一
定正确的是(
A.α-β=2kπ+
B.α+β=2kπ+
)
(k∈Z)
(k∈Z)
C.α-β=2kπ+π(k∈Z)
D.α+β=2kπ+π(k∈Z)
√
解析:(1)因为π-α是与α关于y轴对称的一个角,
所以β与π-α的终边相同,即β=2kπ+(π-α)(k∈Z),
rad,1°=
,
2.
lr=
|α|·r
高考数学一轮复习第四章三角函数解三角形4.1任意角蝗制及任意角的三角函数课件理

(2)已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α 用集合可表示为_(2_k_π_+__π4_,__2_k_π_+__56_π_)_(k_∈__Z__) . 答案 解析
在[0,2π)内,终边落在阴影部分角的集合为π4,56π, ∴所求角的集合为2kπ+4π,2kπ+56π(k∈Z).
弧度数是 答案 解析
π
π
A.3
B.6
C.-π3
D.-π6
将表的分针拨快应按顺时针方向旋转,为负角,故A、B不正确;
又因为拨快10分钟,故应转过的角为圆周的 1 . 6
即为-16×2π=-π3.
(2)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为
π
π
A.6
B.3
C.3
D. 3
答案
解析
如图,等边三角形ABC是半径为r的圆O的内接三角形,
2.弧度制
(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号
rad表示,读作弧度.正角的弧度数是一个 正数 ,负角的弧度数是一个
负数 ,零角的弧度数是 0 .
π
180
(2)角度制和弧度制的互化:180°= π
rad,1°=180 rad,1 rad=
π
.
1 (3)扇形的弧长公式:l= |α|·r ,扇形的面积公式:S= 2lr =
②若扇形的周长为20,求扇形面积的最大值,并求此时扇形圆心角的 弧度数. 解答
由题意知l+2r=20,即l=20-2r, S=12l·r=12(20-2r)·r=-(r-5)2+25, 当r=5时,S的最大值为25. 当 r=5 时,l=20-2×5=10,α=rl=2(rad). 即扇形面积的最大值为25,此时扇形圆心角的弧度数为2 rad.
高考数学一轮复习 第四章 三角函数 4.1 三角函数的概念、同角三角函数的关系及诱导公式课件 文

∴sin
α= 13 ,则sin α
9
2
=-cos
α= 1
sin2α
= 2 2 3
.
(2)由 sin
α
cos
α
1 5
,
sin2α cos2α 1,
消去cos α整理,得
25sin2α-5sin α-12=0,
解得sin α= 4 或sin α=- 3 .
高考文数
第四章 三角函数
§4.1 三角函数的概念、同角三角函数的关系及诱导公式
知识清单
考点 三角函数的概念、同角三角函数的基本关系及诱导公式 1.象限角
2.终边相同的角
3.弧度制 (1)角度制与弧度制的互化
1°=① 180
180
rad;1 rad=② ° .
(2)弧长及扇形面积公式 弧长公式:③ l=|α|r .
例1 已知角θ的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边
在直线y=2x上,则cos 2θ= ( B )
A.- 4 B.- 3 C. 2 D. 3
5
5
3
4
解题导引
方法一:在角θ的终边上任取一点P,根据直线方程
设出点P的坐标 根据三角函数定义分别
求出sin θ与cos θ 利用二倍角公式求出cos 2θ
5
5
-
2
5 5
=- 3 .
5
综上可得,cos 2θ=- 3 ,故选B.
5
解法二:因为该直线的斜率k=2=tan θ,
所以cos
2θ= ccooss22θθ
高三数学一轮复习 第四章 三角函数、解三角形 4.1任意角和弧度制及任意角的三角函数 新人教B版

5.已知扇形的周长是 6 cm,面积是 2 cm2,则 扇形的圆心角的弧度数是( C ) A.1 B.4 C.1 或 4 D.2 或 4
α=
____3 ____.
解析 ∵α=-23π+2kπ,k∈Z且4π<α<6π, ∴取k=3,即α=-23π+6π=136π.
3.已知点P(tan α,cos α)在第三象限,则角α
的终边在第___二_____象限.
解析 tan α<0且cos α<0,所以α在第二象限.
4.若 α=k·180°+45°(k∈Z),则 α 在( A ) A.第一或第三象限 B.第一或第二象限 C.第二或第四象限 D.第三或第四象限
2.对三角函数的理解要透彻 三角函数也是一种函数,它可以看成是从一个角
(弧度制)的集合到一个比值的集合的函数.也可以 看成是以实数为自变量的函数,定义域为使比值有 意义的角的范围. 如tan α=xy有意义的条件是角α终边上任一点P(x,y) 的横坐标不等于零,也就是角α的终边不能与y轴重 合,故正切函数的定义域为α|α≠kπ+π2,k∈Z.
思维启迪 (1)从终边相同的角的表示入手分 析问题,先表示出所有与角 α 有相同终边的角, 然后列出一个关于 k 的不等式,找出相应的整 数 k,代入求出所求解; (2)可对整数 k 的奇、偶数情况展开讨论. 解 (1)所有与角 α 有相同终边的角可表示为: β=45°+k×360°(k∈Z), 则令-720°≤45°+k×360°≤0°, 得-765°≤k×360°≤-45°, 解得-736650≤k≤-34650,从而 k=-2 或 k=-1, 代入得 β=-675°或 β=-315°.
高考数学一轮复习 第四章 三角函数、解三角形 第一节 任意角和弧度制及任意角的三角函数课件 理

所以sin(θ-π)=-sin θ= 4 .
5
考点突破
考点一 角的集合表示及象限角的判断
典例1
(1)设集合M=x
|
x
k 2
180
45, k
Z
,N=
x
|
x
k 4
180
45, k
Z,那么
(
)
A.M=N B.M⊆N C.N⊆M D.M∩N=⌀
(2)终边在直线y= 3 x上的角的集合是 ;
α
(3)已知角α的终边在第二象限,则 2 的终边在第
3 弧度.
答案
3
解析 ∵弦长等于半径长, ∴该弦与两半径构成的三角形为正三角形. 故该弦所对的圆心角的大小为 .
3
4.在-720°~0°范围内所有与45°角终边相同的角为 -675°和-315° .
答案 -675°和-315°
解析 所有与45°角有相同终边的角可表示为45°+k×360°(k∈Z),
第三象限角.由 cos α <0可知cos α,tan α异号,从而可判断角α为第三或第
tan α
四象限角.综上可知,角α为第三象限角.
1-2 本例(3)中,若把第二象限改为第三象限,则结果如何?
解析 由角α终边在第三象限,可知π+2kπ<α< 3 +2kπ,k∈Z,所以 +kπ<
2
2
α < 3 +kπ,k∈Z.
∴终边在直线y= x上的角的集合为 α α= +kπ,k∈Z .
(3)因为角α的终边在第二象限,所以
α < +kπ,k∈Z.
22
+k·2π<α<π+k·2π,k∈Z,所以 +kπ<
高考数学一轮复习 第四篇 三角函数与解三角形 专题4.1 角与弧度制、三角函数的概念练习(含解析)-
专题4.1 角与弧度制、三角函数的概念【考试要求】1.了解任意角的概念和弧度制,能进行弧度与角度的互化,体会引入弧度制的必要性;2.借助单位圆理解三角函数(正弦、余弦、正切)的定义.【知识梳理】1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角. (3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式角α的弧度数公式|α|=l r (弧长用l 表示) 角度与弧度的换算1°=π180 rad ;1 rad =⎝ ⎛⎭⎪⎫180π° 弧长公式弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=y x(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.【微点提醒】1.若α∈⎝⎛⎭⎪⎫0,π2,则tan α>α>sin α. 2.角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.象限角的集合4.轴线角的集合【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)小于90°的角是锐角.( )(2)锐角是第一象限角,反之亦然.( )(3)将表的分针拨快5分钟,则分针转过的角度是30°.( )(4)相等的角终边一定相同,终边相同的角也一定相等.( )【答案】 (1)× (2)× (3)× (4)×【解析】 (1)锐角的取值X 围是⎝ ⎛⎭⎪⎫0,π2.(2)第一象限角不一定是锐角.(3)顺时针旋转得到的角是负角.(4)终边相同的角不一定相等.【教材衍化】2.(必修4P12例2改编)已知角α的终边过点P (8m ,3),且cos α=-45,则m 的值为()A.-12B.12C.-32D.32【答案】 A【解析】 由题意得m <0且8m(8m )2+32=-45,解得m =-12. 3.(必修4P4例1改编)在-720°~0°X 围内,所有与角α=45°终边相同的角β构成的集合为________.【答案】 {-675°,-315°}【解析】 所有与角α终边相同的角可表示为:β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ),得-765°≤k ×360°<-45°(k ∈Z ).解得k =-2或k =-1,∴β=-675°或β=-315°.【真题体验】4.(2019·某某模拟)若sin θ·cos θ<0,tan θsin θ>0,则角θ是( ) A.第一象限角 B.第二象限角C.第三象限角D.第四象限角【答案】 D【解析】 由tan θsin θ>0,得1cos θ>0,故cos θ>0.又sin θ·cos θ<0,所以sin θ<0,所以θ为第四象限角.5.(2019·日照一中质检)若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角α∈(0,π)的弧度数为________.【答案】 3【解析】 设圆半径为r ,则其内接正三角形的边长为3r ,所以3r =α·r ,所以α= 3.6.(2019·某某模拟)已知角α的终边在直线y =-x 上,且cos α<0,则tan α=________.【答案】 -1【解析】 如图,由题意知,角α的终边在第二象限,在其上任取一点P (x ,y ),则y =-x ,由三角函数的定义得tan α=y x =-x x=-1.【考点聚焦】 考点一 角的概念及其集合表示 【例1】 (1)若角α是第二象限角,则α2是( ) A.第一象限角 B.第二象限角C.第一或第三象限角D.第二或第四象限角(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________.【答案】 (1)C (2)⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π 【解析】 (1)∵α是第二象限角,∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z . 当k 为偶数时,α2是第一象限角; 当k 为奇数时,α2是第三象限角. (2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π.【规律方法】 1.利用终边相同的角的集合求适合某些条件的角:先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需的角.2.若要确定一个绝对值较大的角所在的象限,一般是先将角化为2k π+α(0≤α<2π)(k ∈Z )的形式,然后再根据α所在的象限予以判断.【训练1】 (1)设集合M =⎩⎨⎧⎭⎬⎫x |x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x |x =k 4·180°+45°,k ∈Z ,那么( ) A.M =N B.M ⊆NC.N ⊆MD.M ∩N =∅(2)已知角α的终边在如图所示阴影表示的X 围内(不包括边界),则角α用集合可表示为________.【答案】 (1)B (2)⎩⎨⎧⎭⎬⎫α|2k π+π4<α<2k π+56π,k ∈Z 【解析】 (1)由于M 中,x =k2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k 4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N . (2)在[0,2π)内,终边落在阴影部分角的集合为⎝ ⎛⎭⎪⎫π4,56π, 所以,所求角的集合为⎩⎨⎧⎭⎬⎫α|2k π+π4<α<2k π+56π,k ∈Z . 考点二 弧度制及其应用【例2】 (经典母题)已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10 cm ,求扇形的面积. 【答案】见解析【解析】由已知得α=π3,R =10, ∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2). 【迁移探究1】 若例题条件不变,求扇形的弧长及该弧所在弓形的面积.【答案】见解析【解析】l =α·R =π3×10=10π3(cm), S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2). 【迁移探究2】 若例题条件改为:“若扇形周长为20 cm”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【答案】见解析【解析】由已知得,l +2R =20,即l =20-2R (0<R <10).所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25, 所以当R =5 cm 时,S 取得最大值25 cm 2,此时l =10 cm ,α=2 rad.【规律方法】1.应用弧度制解决问题的方法:(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度;(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.2.求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量.【训练2】 (一题多解)(2019·某某质检)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2),弧田(如图)由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为2π3,半径等于4米的弧田,按照上述经验公式计算所得弧田面积约是( )A.6平方米B.9平方米C.12平方米D.15平方米【答案】 B【解析】 法一 如图,由题意可得∠AOB =2π3,OA =4,在Rt△AOD 中,可得∠AOD =π3,∠DAO =π6,OD =12AO =12×4=2,于是矢=4-2=2.由AD =AO ·sin π3=4×32=23,得弦AB =2AD =4 3. 所以弧田面积=12(弦×矢+矢2)=12×(43×2+22)=43+2≈9(平方米). 法二 由已知,可得扇形的面积S 1=12r 2θ=12×42×2π3=16π3,△AOB 的面积S 2=12×OA ×OB ×sin ∠AOB=12×4×4×sin 2π3=4 3. 故弧田的面积S =S 1-S 2=16π3-43≈9(平方米). 考点三 三角函数的概念【例3】 (1)在平面直角坐标系中,若角α的终边经过点P ⎝⎛⎭⎪⎫sin π3,cos π3,则sin(π+α)=( ) A.-32B.-12C.12D.32(2)若sin αtan α<0,且cos αtan α<0,则角α是( ) A.第一象限角 B.第二象限角C.第三象限角D.第四象限角【答案】 (1)B (2)C【解析】 (1)易知sin π3=32,cos π3=12,则P ⎝ ⎛⎭⎪⎫32,12. 由三角函数的定义可得sin α=12⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫122=12, 则sin(π+α)=-sin α=-12. (2)由sin αtan α<0可知sin α,tan α异号,则α为第二或第三象限角;由cos αtan α<0可知cos α,tan α异号,则α为第三或第四象限角.综上可知,α为第三象限角.【规律方法】 1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.三角函数线的应用问题的求解思路确定单位圆与角的终边的交点,作出所需要的三角函数线,然后求解.【训练3】 (1)(2019·某某一中月考)如图,在平面直角坐标系xOy 中,角α,β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A ,B 两点,若点A ,B 的坐标分别为⎝ ⎛⎭⎪⎫35,45和⎝ ⎛⎭⎪⎫-45,35,则cos(α+β)的值为( )A.-2425B.-725C.0D.2425(2)满足cos α≤-12的角α的集合为________. 【答案】 (1)A (2)⎩⎨⎧⎭⎬⎫α|2k π+23π≤α≤2k π+43π,k ∈Z 【解析】 (1)由三角函数的定义可得cos α=35,sin α=45,cos β=-45,sin β=35. 所以cos(α+β)=cos αcos β-sin αsin β=-2425. (2)作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的X 围,故满足条件的角α的集合为⎩⎨⎧α⎪⎪⎪⎭⎬⎫2k π+23π≤α≤2k π+43π,k ∈Z .【反思与感悟】1.在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点.|OP |=r 一定是正值.2.在解决简单的三角不等式时,利用单位圆及三角函数线是体现数学直观想象核心素养.【易错防X 】1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.相等的角终边相同,但终边相同的角不一定相等.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.【分层训练】【基础巩固题组】(建议用时:35分钟)一、选择题1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-315°是第一象限角.其中正确的命题有( )A.1个B.2个C.3个D.4个【答案】 C【解析】 -3π4是第三象限角,故①错误.4π3=π+π3,从而4π3是第三象限角,②正确.-400°=-360°-40°,从而③正确.-315°=-360°+45°,从而④正确.2.下列与9π4的终边相同的角的表达式中正确的是( ) A.2k π+45°(k ∈Z ) B.k ·360°+94π(k ∈Z ) C.k ·360°-315°(k ∈Z ) D.k π+5π4(k ∈Z ) 【答案】 C【解析】 与9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,排除A ,B ,易知D 错误,C 正确.3.(2019·某某区模拟)已知角α的终边经过点(m ,3m ),若α=7π3,则m 的值为( ) A.27 B.127C.9 D.19【答案】 B【解析】 ∵tan 7π3=3m m=m -16=3,∴m -1=33=27, ∴m =127,故选B.4.已知点M 在角θ终边的反向延长线上,且|OM |=2,则点M 的坐标为( )A.(2cos θ,2sin θ)B.(-2cos θ,2sin θ)C.(-2cos θ,-2sin θ)D.(2cos θ,-2sin θ)【答案】 C【解析】 由题意知,M 的坐标为(2cos(π+θ),2sin(π+θ)),即(-2cos θ,-2sin θ).5.设θ是第三象限角,且⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】 B【解析】 由θ是第三象限角,知θ2为第二或第四象限角,∵⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0,综上知θ2为第二象限角.6.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=() A.-45B.-35C.35D.45【答案】 B【解析】 由题意知,tan θ=2,即sin θ=2cos θ.将其代入sin 2θ+cos 2θ=1中可得cos 2θ=15,故cos 2θ=2cos 2θ-1=-35.7.(2019·潍坊一模)若角α的终边过点A (2,1),则sin ⎝ ⎛⎭⎪⎫32π-α=( )A.-255 B.-55C.55D.255【答案】 A【解析】 由三角函数定义,cos α=25=255,则sin ⎝ ⎛⎭⎪⎫32π-α=-cos α=-255.8.已知角α的终边上一点P 的坐标为⎝ ⎛⎭⎪⎫sin 2π3,cos 2π3,则角α的最小正值为( )A.5π6B.2π3C.5π3D.11π6【答案】 D【解析】 由题意知点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32,故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6. 二、填空题9.(2019·某某徐汇区调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于________. 【答案】 3【解析】 由题意知m >0且sin θ=m 16+m 2=35,解得m =3. 10.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________. 【答案】 π3【解析】 设扇形半径为r ,弧长为l , 则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2.11.(2019·某某调研)设α是第二象限角,P (x ,4)为其终边上的一点,且cos α=15x ,则tan α=________.【答案】 -43【解析】 因为α是第二象限角,所以cos α=15x <0,即x <0. 又cos α=15x =x x 2+16, 解得x =-3,所以tan α=4x =-43. 12.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值X 围是________.【答案】 (-2,3]【解析】 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴-2<a ≤3. 【能力提升题组】(建议用时:15分钟)13.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是( )A.1B.2C.3D.4【答案】 A【解析】 举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知只有③正确.14.(2018·全国Ⅰ卷)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( )A.15B.55C.255D.1 【答案】 B 【解析】 由题意可知tan α=b -a 2-1=b -a , 又cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-(b -a )21+(b -a )2=23, ∴5(b -a )2=1,得(b -a )2=15,则|b -a |=55. 15.函数y =2sin x -1的定义域为________.【答案】 ⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z )【解析】 ∵2sin x -1≥0,∴sin x ≥12. 由三角函数线画出x 满足条件的终边X 围(如图阴影所示).∴x ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ).16.已知sin α<0,tan α>0.(1)求角α的集合;(2)求α2的终边所在的象限; (3)试判断tan α2sin α2cos α2的符号. 【答案】见解析【解析】(1)由sin α<0,知α在第三、四象限或y 轴的负半轴上; 由tan α>0,知α在第一、三象限,故角α在第三象限,其集合为⎩⎨⎧⎭⎬⎫α|2k π+π<α<2k π+3π2,k ∈Z . (2)由(1)知2k π+π<α<2k π+3π2,k ∈Z , 故k π+π2<α2<k π+3π4,k ∈Z ,故α2的终边在第二、四象限. (3)当α2在第二象限时,tan α2<0,sin α2>0,cos α2<0, 所以tan α2sin α2cos α2取正号;当α2在第四象限时,tan α2<0, sin α2<0,cos α2>0,所以tan α2sin α2cos α2也取正号. 综上,tan α2sin α2cos α2取正号. 【新高考创新预测】17.(多填题)某时钟的秒针端点A 到中心点O 的距离为5 cm ,秒针均匀地绕点O 旋转,当时间t =0时,点A 与钟面上标12的点B 重合,将A ,B 两点的距离d (单位:cm)表示成t (单位:s)的函数,则d =________(其中t ∈[0,60]);d 的最大值为________cm.【答案】 10sin πt 6010 【解析】 根据题意,得∠AOB =t 60×2π=πt 30,故d =2×5sin ∠AOB 2=10sin πt 60(t ∈[0,60]).∵t ∈[0,60],∴πt 60∈[0,π],当t =30时,d 最大为10 cm.。
高三理数一轮复习 第四章 三角函数、解三角形4.1 任意角、弧度制及任意角的三角函数
-23-
(2)由题意,得 sin x≥√23,作直线 y=√23交单位圆于 A,B 两点,连 接 OA,OB,则 OA 与 OB 围成的区域(图中阴影部分)即为角 x 的终
Байду номын сангаас
边的范围,故满足条件的角 x 的集合为
������
2������π
+
π 3
≤
������
≤ 2������π +
2π 3
,������∈Z
考点1
考点2
考点3
-18-
(3)方法一(角的集合表示):
∵2kπ+π<α<2kπ+32π(k∈Z),
∴kπ+π2
<
������ 2
<kπ+34π
(k∈Z).
当
k=2n(n∈Z)时,2nπ+π2
<
������ 2
<2nπ+34π
,
������ 2
是第二象限角;
当 k=2n+1(n∈Z)时,2nπ+3π < ������<2nπ+7π , ������是第四象限角.
-12-
知识梳理 双基自测
12345
5.(教材例题改编P13例3)若角θ同时满足sin θ<0,且tan θ<0,则角θ
的终边一定落在第
象限.
关闭
由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y轴的非正半 轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边
.
思考角的终边在一条直线上与在一条射线上有什么不同?已知角
高考数学总复习 第4章 三角函数与解三角形 第1节 任意角和弧度制及任意角的三角函数课件 文 新人教
1 . 设 集 合 M = xx=k2·180°+45°,k∈Z , N =
xx=k4·180°+45°,k∈Z
,那么(
A.M=N
) B.M⊆N
C.N⊆M
D.M∩N=∅
解析:选 B 法一:由于 M=xx=k2·180°+45°,k∈Z={…,
-45°,45°,135°,225°,…},
N=xx=k4·180°+45°,k∈Z
答案:153
[ 典 题 1] (1) 终 边 在 直 线 y = 3 x 上 的 角 的 集 合 为 ________.
(2)若 sin α·tan α<0,且tcaons αα<0,则 α 是第________象限角.
[听前试做] (1)终边在直线 y= 3x 上的角的集合为
(2)由 sin α·tan α<0 可知 sin α,tan α 异号,从而 α 为第二或 第三象限角;由tcaons αα<0,可知 cos α,tan α 异号,从而 α 为第三 或第四象限角.综上,α 为第三象限角.
考纲要求: 1.了解任意角的概念;了解弧度制的概念. 2.能进行弧度与角度的互化. 3.理解任意角的三角函数(正弦、余弦、正切)的定义.
1.角的概念 (1)角的形成 角可以看成平面内一条射线绕着端点从一个位置 旋转 到 另一个位置所成的 图形 .
(2)角的分类
按不旋同转分方类向负零正角角角:::按射按线顺逆没时时有针针旋方方转向向旋旋转转而而成成的的角角 按不终同边分位类置轴象角线限就角角是::第角角几的的象终终限边边角落在在第坐几标象轴限上,这个
3.任意角的三角函数
(1)定义:设 那么 sin α=
α
是一个任意角,它的终边与单位圆交于点 y ,cos α= x ,tan α= xy(x≠0) .
2014届高考江苏专用(理)一轮复习第四章第1讲弧度制与任意角的三角函数
C (2)扇形周长 C=2R+l=2R+αR,∴R= , 2+α 1 2 1 C 2 ∴S 扇= α· = α· R 2 2 2+α C2 1 C2 1 C2 = α· = · ≤ . 2 4+4α+α2 2 4 16 4+α+α C2 当且仅当 α2=4,即 α=2 时,扇形面积有最大值 . 16
程中合理的思维方法是关键.
一、特殊化与一般化的方法
【示例】 (2010· 重庆卷)如图,图中的实 线是由三段圆弧连结而成的一条封 闭曲线 C,各段弧所在的圆经过同一 点 P(点 P 不在 C 上)且半径相等.设 第 i 段弧所对的圆心角为 αi(i=1,2,3), α2+α3 α2+α3 α1 α1 则 cos · cos -sin · sin 3 3 3 3 =________.
解析
π 由- <α<0, cos α>0 且 sin α<0, 得 所以点 P(cos 2
α,sin α)位于第四象限.
答案
四
y 3.若点 A(x,y)是 300° 角终边上异于原点的一点,则x的值 为________. y 解析 x=tan 300° =-tan 60° =- 3.
答案 - 3
4.(2012· 无锡模拟)下列命题:①第二象限角为钝角;②锐 角是第一象限角;③若α是第二象限角,则α+180°是
半径 ①1弧度的角:长度等于_____的圆弧所对的圆心角叫做1 弧度的角
.
负数 ②规定:正角的弧度数为正数,负角的弧度数为_____,零角 l 零 r 的弧度数为____,|α|=____,l 是以角 α 作为圆心角时所对 圆弧的长,r 为半径. l ③用“弧度”作单位来度量角的制度叫做弧度制. 比值r与所 取的 r 的大小无关,仅与角的大小有关.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014届高考一轮复习收尾精炼: 任意角和弧度制及任意角的三角
函数
一、选择题
1.若-π
2
<α<0,则点P (tan α,cos α)位于( ).
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.若α=m ²360°+θ,β=n ²360°-θ(m ,n ∈Z ),则α,β终边的位置关系是( ).
A .重合
B .关于原点对称
C .关于x 轴对称
D .关于y 轴对称
3.若α是第三象限角,则y =⎪
⎪⎪⎪⎪⎪sin α2sin α2+⎪⎪⎪⎪⎪⎪cos α2cos
α2
的值为( ).
A .0
B .2
C .-2
D .2或-2
4.已知点P ⎝
⎛⎭⎪⎫sin 3π
4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ).
A.π4
B.3π4
C.5π4
D.7π4
5.若一个扇形的周长与面积的数值相等,则该扇形所在圆的半径不可能等于( ). A .5 B .2 C .3 D .4
6.一段圆弧的长度等于其圆内接正三角形的边长,则其圆心角的弧度数为( ). A.π3 B.2π
3
C. 3
D. 2 7.(2012上海高考)若S n =sin π7+sin 2π7+…+sin n π7
(n ∈N *
),则在S 1,S 2,…,S 100
中,正数的个数是( ).
A .16
B .72
C .86
D .100 二、填空题
8.已知点P (tan α,cos α)在第三象限,则角α的终边在第__________象限.
9.若角α的终边落在射线y =-x (x ≥0)上,则sin α1-sin 2
α+1-cos 2
α
cos α=__________.
10.若β的终边所在直线经过点P ⎝
⎛⎭⎪⎫cos 3π
4,sin 3π4,则sin β=__________,tan β
=__________.
三、解答题
11.已知角α终边经过点P (x ,-2)(x ≠0),且cos α=3
6
x .求sin α,tan α
的值.
12.已知扇形AOB 的周长为8,
(1)若这个扇形的面积为3,求圆心角的大小;
(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .
参考答案
一、选择题
1.B 解析:∵-π
2
<α<0,
∴tan α<0,cos α>0, ∴点P 在第二象限. 2.C
3.A 解析:∵α是第三象限角, ∴α
2是第二或第四象限角. 当α
2为第二象限角时,y =1+(-1)=0; 当α
2
为第四象限角时,y =-1+1=0. ∴y =0.
4.D 解析:设P 到坐标原点的距离为r ,r =sin
2
3π4+cos 23π
4
=1, 由三角函数的定义,
tan θ=cos
3π4
sin
3π4=-1.
又∵sin 3π4>0,cos 3π
4
<0,
∴P 在第四象限.∴θ=7π
4
.
5.B 解析:设扇形的半径为R ,圆心角为α,则有2R +R α=12R 2α,即2+α=1
2
R α,
整理得R =2+4α,由于4
α
≠0,∴R ≠2.
6.C 解析:设圆的半径为R ,由题意可知:圆内接正三角形的边长为3R ,
∴圆弧长为3R .
∴该圆弧所对圆心角的弧度数为3R
R
= 3.
7.C 解析:由sin
π7=-si n 8π7,sin 2π7=-sin 9π7,…,sin 6π7=-sin 13π7,sin 7π
7
=sin 14π
7
=0,
所以S 13=S 14=0.
同理S 27=S 28=S 41=S 42=S 55=S 56=S 69=S 70=S 83=S 84=S 97=S 98=0, 所以在S 1,S 2,…,S 100中,其余各项均大于0. 故选C. 二、填空题
8.二 解析:由已知⎩⎪⎨⎪
⎧
tan α<0cos α<0
,∴α是第二象限的角.
9.0 解析:由题意,角α的终边在第四象限.∴sin α
1-sin 2
α
+1-cos 2
α
cos α
=
sin α|cos α|+|sin α|cos α=sin αcos α-sin α
cos α
=0.
10.22或-22 -1 解析:因为β的终边所在直线经过点P ⎝
⎛⎭⎪⎫cos 3π4,sin 3π4,所
以β的终边所在直线为y =-x ,则β在第二或第四象限.所以sin β=22或-2
2
,tan
β=-1.
三、解答题
11.解:∵P (x ,-2)(x ≠0),
∴P 到原点的距离r =x 2
+2.
又cos α=3
6
x ,
∴cos α=
x x 2+2=3
6
x . ∵x ≠0,∴x =±10, ∴r =2 3.
当x =10时,P 点坐标为(10,-2),
由三角函数定义,有sin α=-66,tan α=-5
5;
当x =-10时,
P 点坐标为(-10,-2),
∴sin α=-66,tan α=5
5
.
12.解:设扇形AOB 的半径为r ,弧长为l ,圆心角为α, (1)由题意可得⎩⎪⎨⎪
⎧
2r +l =8,1
2
lr =3,
解得⎩
⎪⎨
⎪⎧
r =3,
l =2或⎩
⎪⎨
⎪⎧
r =1,
l =6,
∴α=l r =23或α=l
r
=6.
(2)∵2r +l =8,∴S 扇=12lr =14l ²2r ≤14⎝ ⎛⎭⎪⎫l +2r 22=14³⎝ ⎛⎭
⎪⎫822
=4,当且仅当2r =l ,即
α=l r
=2时,扇形面积取得最大值4.
∴r =2,∴弦长AB =2sin 1³2=4sin 1.。