人教新版数学九年级下册《相似》习题含答案

合集下载

人教版九年级下册数学《相似三角形》练习题及答案

人教版九年级下册数学《相似三角形》练习题及答案

27.2 相似三角形一、选择题1..下列语句正确的是( )A.△ABC 和△A′B′C′中,∠B=∠B′=90°,∠A=30°,∠C′=60°, 则⊿ABC 和⊿A′B′C′不相似;B.在⊿ABC 和⊿A′B′C′中,AB=5,BC=7,AC=8,A′C′=16,B′C′=14,A′B ′=10,则⊿ABC ∽⊿A′B′C′;C.两个全等三角形不一定相似;D.所有的菱形都相似2.根据图中尺寸(AB ∥A 1B 1),那么物象长(A 1B 1的长)与物长(AB 的长)之间函数关系的图像大致是( )3.如图,在正三角形ABC 中,D 、E 分别在AC 、AB 上,且AC AD =31,AE =BE ,则有( )(A )△AED ∽△BED (B )△AED ∽△CBD(C )△AED ∽△ABD (D )△BAD ∽△BCD( 3题 ) (4题)4.已知:如图,∠ADE =∠ACD =∠ABC ,图中相似三角形共有( )(A )1对 (B )2对 (C )3对 (D )4对5.三角形三边之比为3:5:7,与它相似的三角形的最长边为21cm,则其余两边之和为( )A.32cmB.24cmC.18cmD.16cm6. 已知⊿ABC ∽⊿A ′B ′C ′,且BC :B ′C ′= AC :A ′C ′,若AC=3,A ′C ′=1.8,则△A ′B ′C ′与△ABC 的相似比是( )。

A. 2:3B. 3:2C. 5:3D. 3:57.可以判定∆ABC ∽'''C B A ∆,的条件是 ( )A 、∠A=∠'C =∠'B B 、''''C A B A AC AB =,且∠A=∠'C C 、''''C A AC B A AB =且∠A=∠'B D 、以上条件都不对8. 已知一次函数y=2x+2与x 轴y 轴交于A 、B 两点,另一直线y=kx+3交x 轴正半轴于E 、交y 轴于F 点,如⊿AOB 与E 、F 、O 三点组成的三角形相似,那么k 值为( )A 1.5B 6C 1.5或6D 以上都不对二、填空题9. 已知一个三角形三边长是6cm ,7.5cm ,9cm ,另一个三角形的三边是8cm ,10cm ,12cm ,则这两个三角形 (填相似或不相似)10. 在1:25000000的中国政区图上,量得福州到北京的距离为6cm ,则福州到北京的实际距离为 km 。

人教版九年级下册数学《第27章相似》单元测试题(含答案解析)

人教版九年级下册数学《第27章相似》单元测试题(含答案解析)

春人教版九年级下册数学第27章相似单元测试题一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣32.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:33.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.85.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm27.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:2510.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m二.填空题(共8小题)11.若=,则=.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为.13.已知==,且a+b﹣2c=6,则a的值.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD 的长为.15.如图,在△ABC中,DE∥BC,=,则=.16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=时,△ABC∽△DEF.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′,B′;点A到原点O的距离是.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD =2,则AB的长是.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.春人教版九年级下册数学第27章相似单元测试题参考答案与试题解析一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣3【分析】先利用x:y:z=1:2:3,y=2x,z=3x,然后消去y与z得到关于x的一元一次方程,再解一次方程即可.【解答】解:∵x:y:z=1:2:3,∴y=2x,z=3x,∴2x+2x﹣9x=﹣15,∴x=3.故选:C.【点评】本题考查了解三元一次方程组:利用代入消元或加减消元把解三元一次方程组的问题转化为解二元一次方程组的问题.2.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:3【分析】由b是a、c的比例中项,根据比例中项的定义,即可求得,又由a:b=3:2,即可求得答案.【解答】解:∵b是a、c的比例中项,∴b2=ac,即,∵a:b=3:2,∴b:c=3:2.故选:C.【点评】此题考查了比例线段以及比例中项的定义.解题的关键是熟记比例中项的定义及其变形.对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,我们就说这四条线段是成比例线段,简称比例线段.3.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个【分析】(1)作出图形,过点A作AD⊥BC于点D,然后求出AD的长度,再在Rt△ACD中,利用锐角的正弦值求出∠C的度数即可;(2)作出图形,根据圆的半径为5,圆心到AB的距离为3作出到直线AB的距离为2的直线,与圆的交点的个数即为所求;(3)根据半圆的圆心角等于180°解答;(4)因为AP是较长的线段还是较短的线段不明确,所以分两种情况讨论求解.【解答】解:(1)如图,过点A作AD⊥BC于点D,∵AB=6,∠B=45°,∴AD=AB sin45°=6×=3,又∵AC=,∴sin∠C===,∴∠C=60°,故本小题正确;(2)如图所示,到直线AB的距离为2的点有3个,故本小题正确;(3)∵半圆的圆心角为180°,∴圆心角是180°的扇形是一个半圆加一条直径,故本小题错误;(4)①若AP是较长线段,则AP2=AB•BP,即AP2=1×(1﹣AP),AP2+AP﹣1=0,解得AP=,②若AP是较短的线段,则AP=1﹣=,故本小题错误.综上所述,正确的命题有(1)(2)共2个.故选:B.【点评】本题考查了黄金分割,垂径定理,圆心角、弧、弦的关系,解直角三角形,作出图形,利用数形结合的思想求解比较关键.4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.8【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.【点评】本题考查了平行线分线段成比例定理的应用,能熟练地运用定理进行计算是解此题的关键,题目比较典型,难度适中,注意:对应成比例.5.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似【分析】根据三角形、矩形相似的判定方法逐个分析,确定正确答案即可.【解答】解:A、两个直角三角形只有一个直角可以确定相等,其他两个角度未知,故A不正确;B、等腰三角形的角度不一定相等,各边也不一定对应成比例,故B不正确;C、两个等腰直角三角形的对应相等,所以两个等腰直角三角形相似,故C正确;D、两个矩形对应角相等,但对应边的比不一定相等,故D不正确;故选:C.【点评】本题考查了相似图形的知识,解题的关键是了解对应角相等,对应边的比相等的图形相似,难度不大.6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm2【分析】设大六边形的面积为xcm2,根据相似多边形的性质列出比例式,计算即可.【解答】解:设大六边形的面积为xcm2,则小六边形的面积为(x﹣28)cm2,∵两个六边形相似,∴=()2,解得,x=64,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.7.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.【点评】本题主要考查相似三角形的性质,解题的关键是掌握相似三角形的对应角相等,对应边的比相等.8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解答】解:当∠ACP=∠B,∠A公共,所以△APC∽△ACB;当∠APC=∠ACB,∠A公共,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∠A公共,所以△APC∽△ACB;当AB•CP=AP•CB,即=,而∠PAC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:25【分析】根据平行四边形的性质可得出CD∥AB,进而可得出△DEF∽△BAF,根据相似三角形的性质结合DE:EC=3:2,即可得出△DEF与△BAF的面积之比,此题得解.【解答】解:∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴==,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得:x=15.故选:C.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.二.填空题(共8小题)11.若=,则=.【分析】根据分比性质,可得答案.【解答】解:由分比性质,得=﹣=﹣2=,∴=,故答案为:.【点评】本题考查了比例的性质,利用了分比性质,用x表示y,是解题关键.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为 4.5.【分析】根据平行线分线段成比例定理得到=,然后把AB、BC、BD的值代入后,利用比例的性质可计算出DE的长.【解答】解:∵l1∥l2∥l3,∴=,即,∴BE=3,∴DE=3+1.5=4.5.故答案为:4.5.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.13.已知==,且a+b﹣2c=6,则a的值10.【分析】设===k,表示出a,b,c,代入a+b﹣3c=求出k的值,即可确定出a的值.【解答】解:设===k,则有a=5k,b=6k,c=4k,代入a+b﹣2c=得:5k+6k﹣8k=6,解得:k=2,则a=10,故答案为:10【点评】此题考查了比例的性质,熟练掌握比例的性质是解本题的关键.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD 的长为.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:∵∠ABC=∠ADB=90°,∠C=∠ABD,∴△ACB∽△ABD,∴,∴AD==cm,故答案为:【点评】本题考查相似三角形的性质与判定,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.15.如图,在△ABC中,DE∥BC,=,则=.【分析】由DE∥BC可得出∠ADE=∠B、∠AED=∠C,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出的值.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴==.故答案为:.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的判定定理证出△ADE∽△ABC是解题的关键16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=76°时,△ABC∽△DEF.【分析】利用两对角相等的三角形相似即可作出判断.【解答】解:∵△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B =34°,∠D=70°,∴∠B=∠E=34°,∴∠C=∠F=76°,故答案为:76°【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′(m,m),B′(n,n);点A到原点O的距离是m.【分析】由于在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,则把点A和点B的坐标都乘以即可得到点A′和点B′的坐标,再利用两点间的距离公式计算点A到原点O的距离.【解答】解:∵A(m,m),B(2n,n),而位似中心为原点,相似比为,∴A′(m,m),B′(n,n);点A到原点O的距离==m.故答案为(m,m),(n,n);m.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD =2,则AB的长是6.【分析】根据题意可知△ABO∽△DCO,根据相似三角形的性质即可求出AB的长度,此题得解.【解答】解:根据题意,可知:△ABO∽△DCO,∴=,即=3,∴AB=6.故答案为:6.【点评】本题考查了相似三角形的应用,利用相似三角形的性质求出AB的长度是解题的关键.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.【分析】设=k,于是得到x=2k,y=3k,z=4k,代入代数式即可得到结论.【解答】解:∵,∴设=k,∴x=2k,y=3k,z=4k,∴(1)==;(2)∵x﹣2y+4z=24,∴2k﹣6k+16k=24,∴k=2,∴x+y+z=2k+3k+4k=9k=18.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)【分析】(1)根据矩形的性质和线段的和差关系得到CD,EF,BC,CF,再代入数据即可求得各线段的比;(2)根据成比例线段的定义写一组即可求解.【解答】解:(1)∵四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2,∴CD=EF=AB=3,BC=AD=6.5,CF=BC﹣BF=4.5,∴==,==,=;(2)成比例线段有=.【点评】本题考查了矩形的性质,比例线段,解决问题的关键是得到CD,EF,BC,CF的值.21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=【分析】先证△BDC∽△B′D′C′得∠ACB=∠A′C′B′,结合∠A=∠A′可证△ABC∽△A'B'C',再利用相似三角形的性质可得答案.【解答】解:∵BD是AC边上的高、B'D'是A'C'的高,∴∠BDC=∠B′D′C′=90°,∴△BDC和△B′D′C′均为直角三角形,∵=,∴△BDC∽△B′D′C′,∴∠ACB=∠A′C′B′,∵∠A=∠A′,∴△ABC∽△A'B'C',∵BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,∴=.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定定理及相似三角形的对应边的比、对应高的比、对应中线的比、对应角平分线的比和周长的比都等于相似比、面积比等于相似比的平方的性质.22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.【分析】(1)证明△DAE∽△BAD,根据相似三角形的性质证明;(2)根据三角形的外角的性质、等腰三角形的性质证明;(3)证明△ADC∽△DEB,根据相似三角形的性质求出BE,代入(1)的结论计算即可.【解答】(1)证明:∵∠ADE=∠C,∠DAE=∠BAD,∴△DAE∽△BAD,∴=,即AD2=AE•AB;(2)∠ADC=∠DAE+∠B,∠BED=∠DAE+∠ADE,∵AB=AC,∴∠B=∠C,∴∠ADC=∠BED;(3)∵∠ADC=∠BED,∠B=∠C,∴△ADC∽△DEB,∴=,即=,解得,BE=2.4,由(1)得,AD2=AE•AB=13,则AD=.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.【分析】由同旁内角互补两直线平行得到AB与CD平行,再利用两直线平行内错角相等,以及对顶角相等得到三角形相似,由相似得比例求出所求即可.【解答】解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴,在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1,在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=,∴==.【点评】此题考查了相似三角形的性质与判定,以及平行线的性质,能利用相似三角形的性质将未知线段的比转化为已知线段的比是解本题的关键.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).【分析】延长OA到A′使OA′=2OA,同样作出点B′、C′,从而得到满足条件的△A′B′C′;反向延长OA到A″使OA″=2OA,同样作出点B″、C″,从而得到满足条件的△A″B″C″.【解答】解:如图所示:△A′B′C′和△A″B″C″.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.【分析】(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明=,由相似三角形的性质列出比例式,计算即可.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵AC2=AB•AD,∴=,∴△ADC∽△ACB;(2)∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,∵点E为AB的中点,∴CE=AE=AB=,∴∠EAC=∠ECA,∴∠DAC=∠EAC,∴∠DAC=∠ECA,∴CE∥AD;∴==,∴=.【点评】本题考查的是直角三角形的性质、平行线的判定、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.【分析】(1)由∠BCD=∠GFD=90°、∠BGC=∠FGD可证得△BGC∽△DGF,即可知,根据AB=BC即可得证;(2)连接BD,由△BGC∽△DGF知,即,根据∠BGD=∠CGF可证△BGD∽△CGF得∠BDG=∠CFG,再由即可得证.【解答】证明:(1)∵四边形ABCD是正方形∴∠BCD=∠ADC=90°,AB=BC,∵BF⊥DE,∴∠GFD=90°,∴∠BCD=∠GFD,∵∠BGC=∠FGD,∴△BGC∽△DGF,∴,∴DG•BC=DF•BG,∵AB=BC,∴DG•AB=DF•BG;(2)如图,连接BD、CF,∵△BGC∽△DGF,∴,∴,又∵∠BGD=∠CGF,∴△BGD∽△CGF,∴∠BDG=∠CFG,∵四边形ABCD是正方形,BD是对角线,∴,∴∠CFG=45°.【点评】本题主要考查相似三角形的判定和性质及正方形的性质,解题的关键是熟练掌握相似三角形的判定和性质.。

新人教版九年级数学下册第二十七章相似练习12套附详细解析答案

新人教版九年级数学下册第二十七章相似练习12套附详细解析答案

成功是一段路程,而非终点,所以只要在迈向成功的过程中一切顺利,便是成功。

九年级数学下册第二十七章相似[27.1 第1课时 相似图形]一、选择题1.观察图K -6-1中各组图形,其中相似的图形有()图K -6-1A .3组B .4组C .5组D .6组2.在图K -6-2(b)中,由图K -6-2(a)放大或缩小而得到的图形有()图K -6-2A .0个B .1个C .2个D .3个3.图K -6-4中与图K -6-3相似的图形是链接听课例题归纳总结()图K -6-3成功是一段路程,而非终点,所以只要在迈向成功的过程中一切顺利,便是成功。

图K -6-44.下列关于相似图形的说法错误的是( )A .相似图形的形状一定相同,大小不一定相同B .全等图形是一种特殊的相似图形C .同一个人在平面镜和在哈哈镜中的形象是相似图形D .若甲与乙是相似图形,乙与丙是相似图形,则甲与丙是相似图形二、填空题5.图K -6-5②~⑥中,与图①相似的图形有________(填图形的序号).链接听课例题归纳总结图K -6-56.放大镜下的图形和原来的图形________相似图形;哈哈镜中的图形和原来的图形________相似图形.(填“是”或“不是”)三、解答题7.如图K -6-6是用相似图形设计的图案.成功是一段路程,而非终点,所以只要在迈向成功的过程中一切顺利,便是成功。

图K -6-6(1)想一想:各个图案的基本图形是什么?(2)做一做:自己设计几个漂亮有趣的图案(至少两个).如何将图K -6-7中的图形ABCDE放大,使新图形的各个顶点仍在格点上?图K -6-7详解详析[课堂达标]1.[解析] B 由观察知(a)(b)(c)(e)中的图形是相似图形.故选B.2.[解析] B 由观察知图(b)中的第3个图形与图(a)相似.应选B.[点评] 注意相似的要求是形状相同,这是判断两个图形是不是相似图形的根本标准.3.D 4.C5.③⑤⑥6.[答案] 是不是[解析] 放大镜下的图形与原来的图形形状相同,大小不相等,所以是相似图形;哈哈镜中的图形与原来的图形形状不同,大小也不相等,所以不是相似图形.7.解:(1)各个图案的基本图形分别是直角三角形、正方形、正五边形.(2)答案不唯一,只要是用相似图形做的,都符合要求.如图:[素养提升][解析] 相似图形只要求形状相同,而与位置无关,这样同学们可以有不同的画法,下图中的图形A′B′C′D′E′只是其中的一种.解:答案不唯一,如图所示.[点评]先确定各个顶点在方格图中的位置,然后再依次连接构成新图形.成功是一段路程,而非终点,所以只要在迈向成功的过程中一切顺利,便是成功。

九年级数学下册第二十七章《相似》测试题-人教版(含答案)

九年级数学下册第二十七章《相似》测试题-人教版(含答案)

九年级数学下册第二十七章《相似》测试题-人教版(含答案)一、选择题:本题共10小题,每小题5分,共50分.1.如图,四边形ABCD 和四边形EFGH 相似,则下列角的度数正确的是( )A.81D ∠=︒B.83F ∠=︒C.78G ∠=︒D.91H ∠=︒2.若线段a b c d ,,,成比例,且5cm 2.5cm 8cm a b c ===,,,则d 等于( ) A.2 cmB.4 cmC.5 cmD.6 cm3.已知ABC A B C '''∽,AD 和A D ''是它们的对应中线,若10AD =,6A D ''=,则ABC 与A B C '''的周长比是( )A.3:5B.9:25C.5:3D.25:94.如图,小明为了测量大楼MN 的高度,在离N 点20 m 的A 处放了一个平面镜,小明沿射线NA 的方向后退1.5 m 到C 点,此时从镜子中恰好看到楼顶的M 点,已知小明的眼睛(点B )到地面的高度BC 是1.6 m ,则大楼MN 的高度(精确到0.1 m )约是( )A.18.75 mB.18.8 mC.21.3 mD.19 m5.如图,直线123////l l l ,直线AC 分别交直线1l 、2l 、3l 于点A 、B 、C ,直线DF 分别交直线1l 、2l 、3l 于点D 、E 、F ,直线AC 、DF 交于点P ,则下列结论错误的是( )A.AB DEBC EF= B.PA PDPC PF= C.PA PEPB PF= D.PB ACPE DF=6.如图,下列四个选项中的结论不一定成立的是( )A.COD AOB∽ B.AOC BOD∽ C.DCA BAC∽ D.PCA PBD∽7.如图,在ABC中,ABC C∠=∠,将ABC绕点B逆时针旋转得到DBE,点E在AC上,若3ED=,1EC=,则EB=( )A.3B.32C.312+D.28.如图,点A在第一象限内,AB x⊥轴于点B,以点O为位似中心,把AB缩小为原来的1 2得到A B''(AB与A B''在点O的两侧).若把点O向上平移2个单位长度,得到点O',再以点O'为位似中心,把AB缩小为原来的12得到A B''''(AB与A B''''在点O'的两侧),则A'与A''之间的距离为( )A.2B.2.5C.3D.49.如图,直线////a b c,ABC的边AB被这组平行线截成四等份,ABC的面积为32,则图中阴影四边形DFIG 的面积是( )A.12B.16C.20D.2410.将三角形纸片ABC 按如图所示的方式折叠,使点B 落在边AC 上,记为点B ',折痕为EF .已知6AB AC ==,8BC =,若以点B ',F ,C 为顶点的三角形与ABC 相似,那么BF 的长度是( )A.247B.4C.127或2 D.4或247二、填空题:本题共5小题,每小题5分,共25分.11.如图,在平面直角坐标系中,已知(1,0)A ,(3,0)D ,ABC 与DEF 位似,原点O 是位似中心.若 1.3AB =,则DE =______________.12.如图,在ABC 中,AB AC ≠,D 、E 分别为边AB 、AC 上的点,3AC AD =,3AB AE =,点F 为BC 边上一点,添加一个条件:_____________,可以使得FDB 与ADE 相似.(只需写出一个)13.如图,在Rt ABC 中,904ACB AB ∠=︒=,,点D 、E 分别在边AB 、AC 上,且2,3DB AD AE EC ==,连接BE 、CD ,相交于点O ,则ABO 面积的最大值为________.14.如图,在ABC 中,点D 为AC 边上一点,且12CD AD =,过点D 作//DE BC 交AB 于点E ,连接CE ,过点D 作//DF CE 交AB 于点F .若15AB =,则EF =________.15.如图,在平面直角坐标系中,点A 、B 的坐标分别为()()4,00,4-,,点()3C n ,在第一象限内,连接AC 、BC .已知2BCA CAO ∠=∠,则n =_______________.三、解答题:本题共2小题,第一小题10分,第二小题15分,共25分.16.如图,为了测量一栋楼的高度OE ,小明同学先在操场上的A 处放一面镜子,向后退到B 处,恰好在镜子中看到楼的顶部E ,再将镜子放到C 处,后退到D 处,恰好再次在镜子中看到楼的顶部E (O ,A ,B ,C ,D 在同一条直线上),测得2AC =m, 2.1BD = m ,小明的眼睛距地面的高度BF ,DG 为1.6 m ,试确定楼的高度OE .17.回答下列问题:问题背景 如图(1),已知ABC ADE ∽,求证:ABD ACE ∽;尝试应用 如图(2),在ABC 和ADE 中,90BAC DAE ∠=∠=︒,30ABC ADE ∠=∠=︒,AC 与DE 相交于点F .点D 在BC 边上,3AD BD =DFCF的值; 拓展创新 如图(3),点D 是ABC 内一点,30BAD CBD ∠=∠=︒,90BDC ∠=︒,4AB =,23AC =AD 的长.参考答案1.答案:A 解析:四边形ABCD 和四边形EFGH 相似,78B F ∴∠=∠=︒,118A E ∠=∠=︒,83C G ∠=∠=︒,360781188381D H ∴∠=∠=︒-︒-︒-︒=︒.故选A.2.答案:B 解析:线段a b c d ,,,成比例,a cb d∴=,5cm a =, 2.5cm b =,8cm c =,582.5d∴=,4cm d ∴=,故选B.3.答案:C 解析:ABC A B C '''∽,AD 和A D ''是它们的对应中线,10AD =,6A D ''=,ABC ∴与A B C '''的周长比:10:65:3AD A D ===''.故选C.4.答案:C解析:BC CA ⊥,MN AN ⊥,90C MNA ∴∠=∠=︒.BAC MAN ∠=∠,BCA MNA ∴∽,BC AC MN AN ∴=,即1.6 1.520MN =, 1.620 1.521.3MN ∴=⨯÷≈(m ),即大楼MN 的高度约为21.3 m.故选C. 5.答案:C解析:123////l l l ,AB DE BC EF ∴=,A 中结论正确,不符合题意;PA PDPC PF=,B 中结论正确,不符合题意;PA PD PB PE =,C 中结论错误,符合题意;PB PC PA PE PF PD ==,PB AC PE DF∴=,D 中结论正确,不符合题意.故选C. 6.答案:C解析:OCD OAB ∠=∠,COD AOB ∠=∠, COD AOB ∴∽.ACO BDO ∠=∠,AOC BOD ∠=∠,AOC BOD ∴∽.180PCA ACD ∠+∠=︒,180ACD ABD ∠+∠=︒, PCA PBD ∴∠=∠,又P P ∠=∠,PCA PBD ∴∽.故选C.7.答案:A解析:由旋转可得ABC DBE ≌,BC BE ∴=,3DE AC ==,C BEC ∴∠=∠.又ABC C ∠=∠,ABC BEC ∴∠=∠,又C C ∠=∠,ABC BEC ∴∽,EC BCBC AC∴=,即2BC CE CA =⋅,BC ∴=,BE ∴.故选A.8.答案:C解析:如图,连接A A ''',由题意易知A B ''和A B ''''都与AB 平行,且在同一条直线上,////A A AB OO ''''∴.由题意知,OA B OAB ''∽△△,12OA A B OA AB '''∴==,23OA AA ∴='.//A A OO '''',AO O AA A ''''∴∽△△,23OO OA A A AA '∴=='''',2OO '=,3A A '''∴=.9.答案:B 解析:直线////a b c ,ABC 的边AB 被这组平行线截成四等份,14AD AB ∴=,34AF AB =,ADG ABC ∽,AFI ABC ∽,211()416ADG ABCS S∴==,239()416AFI ABCS S==.ABC 的面积为32,1216ADGABCS S ∴==,91816AFIABCSS ==,18216AFIADGS SS∴=-=-=阴影.故选B.10.答案:D 解析:ABC 沿EF 折叠后点B 和'B 重合,BF B F '∴=.设(0)BF x x =>,则8CF x =-.要使B FC '与ABC 相似,只需B FC C '∠=∠或FB C C '∠=∠.当B FC C '∠=∠时,B FC ABC '∽,B F CF AB BC ∴=',6AB =,8BC =,868x x -∴=,解得247x =,即247BF =;当FB C C ∠'=∠时,FB C ABC '∽,FB FC AB AC ∴=',即866x x-=,解得4x =,即4BF =,故4BF =或247.故选D. 11.答案:3.9 解析:(1,0)A ,(3,0)D ,1OA ∴=,3OD =.ABC 与DEF 位似,//AB DE ∴,ABO DEO ∴∽,AB OA DE OD ∴=,即1.313DE =,解得 3.9DE =.12.答案:A BDF ∠=∠(或A BFD ∠=∠或ADE BFD ∠=∠或ADE BDF ∠=∠或//DF AC 或BD BF AE ED =或BD BFDE AE=) 解析:3AC AD =,3AB AE =,13AD AE AC AB ∴==,又A A ∠=∠,ADE ACB ∴∽,AED B ∴∠=∠. 故要使FDB 与ADE 相似,只需再添加一角相等,或夹角的两边成比例即可. 13.答案:83解析:本题考查平行线分线段成比例、三角形面积公式.如图,过点D 作//DF AE 交BE 于点F ,则21.,2,33DF BD EC DF EC DO AE BA AE ===∴=∴=222,,,33ADO ADC BDO OC DO DC S S S ∴=∴==22,90,33.BDC ABO ABC S S S ACB ︒∴=∠=∴点C 在以AB 为直径的圆上,设圆心为G ,当CG AB ⊥时,ABC 的面积最大,最大面积为1424,2⨯⨯=此时ABO 面积的最大值为284.33⨯=14.答案:103解析://,AD AEDE BC AC AB∴=. 12,23CD AD AD AC =∴=,即23AE AB =. 15,10AB AE =∴=.//,AF AD DF CE AE AC ∴=,即2103AF =,解得203AF =, 则20101033EF AE AF =-=-=.故答案为103. 15.答案:2.8解析:本题考查平面直角坐标系中点的坐标特征、相似三角形的判定与性质如图,过点C 作CD y ⊥轴于点D ,设AC 交y 轴于点E ,//CD x ∴轴, CAO ACD∠∠∴=,又DEC OEA ∠∠=,DEC OEA ∴~,2,BCA CAO BCD ACD ∠∠∠∠=∴=,BD DE ∴=,设BD DE x ==,则42OE x =-DC DE OA OE ∴=即3442xx=-,解得 1.2x =, 242 1.6, 1.2 1.6 2.8OE x n OD DE OE ∴=+=∴==+=+=.16.答案:如图,设E 关于O 的对称点为M ,延长GC 与FA ,易知GC 、FA 的延长线相交于点M ,连接GF 并延长,交OE 于点H .易知//GF AC ,MAC MFG ∴∽, AC MA MOFG MF MH∴==, AC OE OE OEBD MH MO OH OE BF ∴===++, 21.62.1OE OE ∴=+, 32OE ∴=.答:楼的高度OE 为32 m. 17.答案:问题背景 证明:ABC ADE ∽,AB ACAD AE∴=,BAC DAE ∠=∠, AB ADAC AE∴=,BAD CAE ∠=∠, ABD ACE ∴∽.尝试应用连接CE ,设BD t =,则AD =. 易得ADE ABC ∽,AB ACAD AE∴=, AB ADAC AE∴=. 又BAC DAE ∠=∠, BAD CAE ∴∠=∠, ACE ABD ∴∽,CE AC BD AB ∴=,CE ∴=,3ADCE∴==.ADE ABC ∠=∠,ABC ACE ∠=∠,30ACE ADE ∴∠=∠=.又AFD EFC ∠=∠, ADF ECF ∴∽,3DF ADCF CE∴==. 拓展创新 AD.解法提示:过点D 作AD 的垂线交AB 于点M ,连接CM . 易证ADB MDC ∽,AB ADCM MD∴==30DMC DAB ∠=∠=,CM ∴=,90AMC AMD DMC AMD DAB ∠=∠+∠=∠+∠=,AM ∴=,cos AD AM MAD ∴=⋅∠。

最新人教版初中数学九年级数学下册第二单元《相似》检测(包含答案解析)(1)

最新人教版初中数学九年级数学下册第二单元《相似》检测(包含答案解析)(1)

一、选择题1.如图,D是△ABC的边BC上一点,AC=4,AD=2,∠DAB=∠C.如果△ACD的面积为15,那么△ABD的面积为()A.15 B.10 C.152D.52.如图,在平行四边形ABCD中,:2:1AE BE ,F是AD的中点,射线EF与AC交于点G,与CD的延长线交于点P,则AGGC的值为().A.5:8B.3:8C.3:5D.2:53.下列四个选项中的三角形,与图中的三角形相似的是()A.B.C.D.4.如图,已知D、E分别为AB、AC上的两点,且DE∥BC,AE=2CE,AB=12,则AD的长为()A .4B .6C .5D .8 5.如图,在正方形ABCD 中,E 为BC 中点,3DF FC . 联结AE AF EF 、、.那么下列结果错误的是( )A .ABE △与ECF 相似B .ABE △与AEF 相似C .ABE △与ADF 相似D .AEF 与ECF 相似6.有下列四种说法:其中说法正确的有( )①两个菱形相似;②两个矩形相似;③两个平行四边形相似;④两个正方形相似. A .4个 B .3个 C .2个 D .1个7.如图,△ABC 是等腰直角三角形,∠ACB =90°,点E 、F 分别是边BC 、AC 的中点,P 是AB 上一点,以PF 为一直角边作等腰直角△PFQ ,且∠FPQ =90°,若AB =12,PB =3,则QE 的值为( )A .2B .4C .2D .38.如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°,现给出以下四个结论:①∠A =45°;②AC =AB ;③AE =BE ;④2CE •AB =BC 2,其中正.确.结论有( )A .1个B .2个C .3个D .4个9.如图,地面上点A 处有一只兔子,距它10米的B 处有一根高1.6米的木桩,大树、木桩和兔子刚好在一条直线上.一只老鹰在9.6米高的树顶上刚好看见兔子,则大树C 离木桩B( )米.A .60B .50C .40D .4510.如图,ABC 是等边三角形,被一平行于BC 的矩形所截(即:FG ∥BC),若AB 被截成三等分,则图中阴影部分的面积是ABC 的面积的( )A .19B .29C .13D .4911.如图,在ABCD 中,7AB =,3BC =,ABC ∠的平分线交CD 于点F ,交的延长线于点E ,若2BF =,则线段EF 的长为( )A .4B .3C .83D .7412.已知P 是线段AB 的黄金分割点,且51AB =,则AP 的长为( ). A .2 B 51 C .251D .35二、填空题13.如图所示,在ABC ∆中,4BC =,E ,F 分别是AB ,AC 的中点.(1)线段EF 的长为_____;(2)若动点P 在直线EF 上,CBP ∠的平分线交CE 于点Q ,当点Q 把线段EC 分成的两线段之比是1∶2时,线段EP 、BP 之间的数量关系满足EP BP +=_____.14.在梯形ABCD 中,//AD BC ,两条对角线AC 、BD 相交于点O ,:1:9AOD COB S S =,那么BOC DOC S S =△△:__________.15.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”.如图,P 为AB 的黄金分割点()AP PB >,如果AB 的长度为8cm ,那么AP 的长度是_____________.16.如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB 、AC 于点E ,G ,连接GF ,下列结论中正确的是__________. (填序号)①67.5AGE ∠=︒;②四边形AEFG 是菱形;③2BE OF =;④:21DOG OGEF S S =四边形:△.17.如图,已知CD 为O 的直径,弦AB CD ⊥交CD 于点E ,连接BD ,OB ,AC ,若8AB =,2DE =,则O 的半径为______.18.△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,要使△ABC ∽△DEF ,则△DEF 的第三边长为______.19.如图,在Rt ABC ∆中,90ACB ∠=︒,//CD AB ,ABC ∠的平分线BD 交AC 于点E ,若10AB =,6BC =,则AE =_______.20.若25x y =,则x y y+=____________. 三、解答题21.求证:相似三角形对应边上的角平分线之比等于相似比.要求:①根据给出的ABC 及线段A B '',A '∠(A A ∠'=∠),以线段A B ''为一边,在给出的图形上用尺规作出A B C ''',使得A B C ABC ''''∽△△,不写作法,保留作图痕迹.②在已有的图形上画出一组对应角平分线,并据此写出已知、求证和证明过程.22.如图1,在△ABC 中,AD ⊥BC ,DE ⊥A B ,DF ⊥AC .(1)若AD 2 =BD ·DC ,①求证:∠BAC =90°;②连接EF ,若AB =4,DC =6,求EF .(2)如图2,若AD =4,BD =2,DC =4,求EF .23.如图,在正方形网格中建立平面直角坐标系,已知点()0,0O ,()1,3A -,()4,0B ,连接OA ,OB ,AB .(1)若将OAB 向上平移4个单位长度,再向右平移5个单位长度,得到111O A B △,点O ,A ,B 的对应点分别为1O ,1A ,1B ,画出111O A B △并写出顶点1A 的坐标; (2)画出22OA B △,使22OA B △与OAB 关于原点对称,点A ,B 的对应点分别为2A ,2B ;(3)以点O 为位似中心,在给定的网格中将OAB 放大2倍得到33OA B ,点A ,B 的对应点分别为3A ,3B ,画出33OA B 并直接写出33A B 的长度.24.四边形ABCD 内接于,O AB 是直径,延长AD BC 、交于点E ;若AB BE =.(1)求证:DC DE =(2)若6,43DE CE ==AB 的长.25.阅读下面材料(问题情境)课外兴趣小组活动时,老师提出了如下问题:如图①.在△ABC中,若AB=8,AC=6,求BC边上的中线AD取值范围,小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E,使DE=AD,请根据小明方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是()A.SSS B.SAS C.AAS D.HL(2)由三角形三边的关系可求得AD长的取值范围是()A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7(解后感悟)解题时,条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到一个三角形中.(灵活运用)如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF若EF=4,EC=3,求线段BF的长.26.如图,在△ABC中,AB=AC=10,BC=12,正方形DEFG的顶点D、G分别在AB、AC 上,EF在BC上,AH⊥BC于H,交DG于点M,求正方形DEFG的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先证明△ABD ∽△CBA ,由相似三角形的性质可得:△ABD 的面积:△ACB 的面积为1:4,因为△ACD 的面积为15,进而求出△ABD 的面积.【详解】∵∠DAB =∠C ,∠B =∠B ,∴△ABD ∽△CBA ,∵AC =4,AD =2,∴△ABD 的面积:△ACB 的面积=(AD AC)2=1:4, ∴△ABD 的面积:△ACD 的面积=1:3,∵△ACD 的面积为15,∴△ABD 的面积=5.故选:D .【点睛】 本题考查了相似三角形的判定和性质:相似三角形的面积比等于相似比的平方,是中考常见题型.2.D解析:D【分析】证明AFE △≌△()DFP AAS ,推出=AE DP ,由:2:1AE BE =,设BE k =,2AE k =,推出3AB CD k ==,5PC k =,由//AE BC ,可得AG AE GC CP=的值. 【详解】∵四边形ABCD 是平行四边形,∴//AB PC ,AB CD =,∴AEF P ∠=∠,∵AFE DFP ∠=∠,AF DF =,∴AFE △≌△()DFP AAS ,∴=AE DP ,∵:2:1AE BE =,设BE k =,2AE k =,∴3AB CD k ==,5PC k =,∵//AE BC ,∴2255AG AE k GC CP k ===, 故选:D .【点睛】 本题考查了平行四边形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用已知条件证明三角形全等、利用参数解决问题,属于中考常考题型.3.B解析:B【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为,,所以三边之比为1:2A 、三角形的三边分别为2,,三边之比为3,故本选项错误;B 、三角形的三边分别为2,4,1:2C 、三角形的三边分别为2,32:3D 44,故本选项错误. 故选:B .【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.4.D解析:D【分析】先根据平行线分线段成比例定理得出比例式,代入后得出AD=23AB ,代入求出即可. 【详解】解:∵DE ∥BC , ∴AD AE AB AC=, ∵AE=2CE , ∴2223AE CE AC EC EC ==+ 又AB=12, ∴AD=23AB=8,故选:D .【点睛】本题考查了平行线分线段成比例定理,能根据定理得出正确的比例式是解此题的关键. 5.C解析:C【分析】根据正方形的性质及勾股定理逆定理可以判断△AEF 是直角三角形,再根据三角形相似的判定可以选出结果错误的选项.【详解】解:设正方形边长为1 ,则由已知可得:54AE EF AF ======, ∴222552541616AE EF AF +=+==,∴△AEF 是直角三角形, ∴在RT △ABE 、RT △ECF 、RT △ADF 、RT △AEF 中, ∠B=∠C=∠AEF=∠D ,42,3AB EC AE AD BE CF EF DF ====, ∴RT △ABE 、RT △ECF 、RT △AEF 两两相似,但是△ABE 与 △ADF 不相似,∴A 、B 、D 正确,C 错误,故选C .【点睛】本题考查正方形与三角形相似的综合应用,灵活运用正方形的性质和三角形相似的判定是解题关键.6.D解析:D【分析】直接利用相似图形的判定方法分别判断得出答案.【详解】解:①两个菱形不一定相似,因为对应角不一定相等;②两个矩形不一定相似,因为对应边不一定成比例;③两个平行四边形不一定相似,因为形状不一定相同;④两个正方形相似,正确.故选:D .【点睛】本题考查了相似多边形的判定,正确掌握判定方法是解题的关键.7.C解析:C【分析】取AB 的中点D ,连结FD ,根据等腰直角三角形的性质得到AC=BC=62,∠A=45°,根据三角形中位线定理得到EF ∥AB ,EF=12AB=6,DF=12BC=32,证明△FDP ∽△FEQ ,根据相似三角形的性质列出比例式,代入计算,得到答案.【详解】解:如图,取AB 的中点D ,连结FD ,∵△ABC 为等腰直角三角形,AB=12,∴2∠A=45°,∵点D 、E 、F 分别是△ABC 三边的中点,AB=12,PB=3,∴AD=BD=6,DP=DB-PB=6-3=3,EF 、DF 为△ABC 的中位线,∴EF ∥AB ,EF=12AB=6,DF=122,∠EFP=∠FPD , ∴∠FDA=45°,322DF EF ==, ∴∠DFP+∠DPF=45°,∵△PQF 为等腰直角三角形, ∴∠PFE+∠EFQ=45°,FP=PQ ,∴∠DFP=∠EFQ ,∵△PFQ 是等腰直角三角形, ∴22PF FQ =, ∴DF PF EF FQ =, ∵DF PF EF FQ=,∠DFP=∠EFQ , ∴△FDP ∽△FEQ ,∴2QE EF DP DF ==,即23QE =, 解得,2,故选:C .【点睛】本题考查了等腰直角三角形,相似三角形的判定和性质,根据题意作出辅助线,构造出三角形的中位线是解题的关键.8.B解析:B【分析】连结AD、BE,DE,如图,根据圆周角定理得∠ADB=90°,则AD⊥BC,加上CD=BD,根据等腰三角形的判定即可得到AC=AB;再根据等腰三角形的性质和三角形内角和定理可计算出∠BAC=40°;由AB为直径得到∠AEB=90°,则∠ABE=50°,根据圆周角定理可判断AE BE≠;接着证明△CED∽△CBA,利用相似比得到CD CEAC BC=,然后利用等线段代换即可判断④.【详解】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°.∵CD=BD,∴AD是BC的垂直平分线,∴AC=AB,故②正确;∵AC=AB,∴∠ABC=∠C=70°,∴∠BAC=40°,故①错误;连接BE,DE,∵AB为⊙O的直径,∴∠AEB=90°,∵∠BAC=40°,∴∠ABE=50°,∴∠BAC≠∠ABE,∴AE≠BE,∴AE BE≠,故③错误;∵四边形ABDE是圆内接四边形,∴∠CDE=∠CAB,∴△CDE∽△CAB,∴CD CEAC BC=,∴CE•AC=CD·BC,∴CE•AB=12BC·BC,∴2CE•AB=BC2,故④正确.故选B.【点睛】本题考查了相似三角形的判定和性质,圆周角定理,根据题意作出辅助线,构造出圆周角是解题的关键.9.B解析:B【分析】如图,证明△ABE∽△ACD,根据相似三角形的性质列式求解即可.【详解】解:如图,根据题意得,△ABE∽△ACD,∴AB BEAC CD∵AB=10m,BE=1.6m,CD=9.6m∴10 1.6=9.6AC∴AC=60m∴BC=AC-AB=60-10=50m故选:B.【点睛】此题主要考查了相似三角形的应用,善于观察题目的信息是解题以及学好数学的关键.10.C解析:C【分析】AB被截成三等分,可得AB=3AE,AF=2AE,由EH∥FG∥BC,可得△AEH∽△AFG∽△ABC,则S△AEH:S△AFG:S△ABC=AE2:AF2:AB2,S阴影= S△AFG- S△AEH =13S△ABC.【详解】∵AB被截成三等分,∴AB=3AE,AF=2AE,∵EH∥FG∥BC,∴△AEH ∽△AFG ∽△ABC ,∴S △AEH :S △AFG :S △ABC =AE 2:AF 2:AB 2=AE 2:(2AE )2:(3AE )2=1:4:9,∴S △AEH =19S △ABC , S △AFG =4 S △AEH , S 阴影= S △AFG - S △AEH =3 S △AEH =3×19 S △ABC =13S △ABC . 故选择:C .【点睛】 本题考查阴影部分面积问题,关键是利用相似三角形的面积比等于相似比的平方,找到阴影面积与△AEH 的关系,由△AEH 与△ABC 的关系来转化解决问题.11.C解析:C【分析】平行四边形的对边相等且平行,利用平行四边形的性质以及平行线的基本性质求解.【详解】解:∵平行四边形ABCD∴AD ∥CB ,AD=BC=4.∴∠CBE=∠AEB∵∠ABC 的平分线交AD 于点E∴∠ABE=∠CBE∴∠ABE=∠AEB∴AE=AB=7∴DE=AE-AD=7-3=4.∵AD ∥CB ,∴△DEF ∽△CBF ∴EF DE BF BC= ∴423EF = 即83EF = 故选:C .【点睛】 本题主要考查了平行四边形的性质和相似三角形的性质和判定,掌握相关知识是解题的关键.12.C解析:C【分析】若点P 是靠近点B 的黄金分割点,则12AP AB =,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP .【详解】解:若P 是靠近点B 的黄金分割点,则)111222AP AB ==⨯=;若P 是靠近点A 的黄金分割点,则)111222BP AB ==⨯=,∴121AP AB BP =-=-=;故选:C .【点睛】本题主要考查了黄金分割,熟练掌握黄金分割比为12是解题的关键. 二、填空题13.22或8【分析】(1)运用中位线性质求解即可;(2)延长BQ 交射线EF 于M 根据三角形的中位线平行于第三边可得EF ∥BC 根据两直线平行内错角相等可得∠M=∠CBM 再根据角平分线的定义可得∠PBM=∠C解析:2 2或8【分析】(1)运用中位线性质求解即可;(2)延长BQ 交射线EF 于M ,根据三角形的中位线平行于第三边可得EF ∥BC ,根据两直线平行,内错角相等可得∠M=∠CBM ,再根据角平分线的定义可得∠PBM=∠CBM ,从而得到∠M=∠PBM ,根据等角对等边可得BP=PM ,求出EP+BP=EM ,再根据CQ=13CE 求出EQ=2CQ ,然后根据△MEQ 和△BCQ 相似,利用相似三角形对应边成比例列式求解即可.【详解】解:(1)∵E ,F 分别是AB ,AC 的中点 ∴1=2EF BC ∵BC=4∴EF=2;(2)如图,延长BQ 交射线EF 于M ,∵E 、F 分别是AB 、AC 的中点,∴EF ∥BC ,∴∠M=∠CBM ,∵BQ 是∠CBP 的平分线,∴∠PBM=∠CBM ,∴∠M=∠PBM ,∴BP=PM ,∴EP+BP=EP+PM=EM ,∵点Q 把线段EC 分成的两线段之比是1:2,∴CQ=13CE , ∴EQ=2CQ , 由EF ∥BC 得,△MEQ ∽△BCQ , ∴2EM EQ BC CQ==, ∴EM=2BC=2×4=8,即EP+BP=8,当CQ=2EQ 时,同法可得,EM=2,EP+PB=EM=2.故答案为:EP+BP=8或EP+PB=2.故答案为:2;8或2.【点睛】本题考查了三角形中位线定理、相似三角形的判定与性质,角平分线的定义,平行线的性质,延长BQ 构造出相似三角形,求出EP+BP=EM 并得到相似三角形是解题的关键,也是本题的难点.14.3:1【分析】根据在梯形ABCD 中AD ∥BC 易得△AOD ∽△COB 且S △COB :S △AOD=9:1可求=3:1则S △BOC :S △DOC=3:1【详解】解:根据题意AD ∥BC ∴△AOD ∽△COB ∵S △解析:3:1【分析】根据在梯形ABCD 中,AD ∥BC ,易得△AOD ∽△COB ,且S △COB :S △AOD =9:1,可求BO OD=3:1,则S △BOC :S △DOC =3:1.【详解】解:根据题意,AD ∥BC ,∴△AOD ∽△COB ,∵S △AOD :S △COB =1:9, ∴BO OD=3:1, 则S △BOC :S △DOC =3:1,故答案为:3:1.【点睛】本题考查了相似三角形的性质与判定,掌握相似三角形面积的比等于相似比的平方是解题的关键.15.()cm 【分析】利用黄金分割的定义计算出AP 【详解】为的黄金分割点故答案为:()cm 【点睛】此题考查黄金分割的定义黄金分割物体的较大部分等于与整体的解析:(4)cm【分析】利用黄金分割的定义计算出AP .【详解】 P 为AB 的黄金分割点()AP PB >,()84AP AB cm ∴===故答案为:(4)cm.【点睛】. 16.①②③【分析】根据正方形的性质菱形的判定等腰直角三角形的性质相似三角形的性质勾股定理一一判断即可【详解】解:如图∵四边形ABCD 为正方形∴∠AOB=90°∠BAO=∠OAD=∠ODA=45°∵折叠正解析:①②③【分析】根据正方形的性质、菱形的判定、等腰直角三角形的性质,相似三角形的性质,勾股定理一一判断即可.【详解】解:如图∵四边形ABCD 为正方形,∴∠AOB=90°,∠BAO=∠OAD=∠ODA=45°,∵折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的F 重合,∴∠1=∠2=12∠ODA=22.5°,EA=EF ,∠4=∠5,∠EFD=∠EAD=90°, ∴∠3=∠GAD+∠1=45°+22.5°=67.5°,即∠AGE=67.5°;故①正确,∵∠4=90°-∠1=67.5°,∴∠3=∠4=∠5,∴AE=AG=EF ,AG ∥EF ,∴四边形AEFG 为菱形;故②正确,∴GF ∥AB ,EF=GF ,∴∠6=∠7=45°,∴△BEF 和△OGF 都是等腰直角三角形,∴2,2OF ,∴22;故③正确,设OF=a ,则2a ,2a ,∴OB=2+1)a ,∴OD=2+1)a ,DF=DO+OF=(2)a ,∵∠DOG=∠DFE=90°,∴△DOG ∽△DFE ,22(21(),2(22)DOGDFE S DO S DF a ∆∆⎡⎤∴===+ ∴S △DOG :S 四边形OGEF =1:1.故④错误.故答案为①②③【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了正方形和等腰直角三角形的性质. 17.5【分析】设的半径为则由垂径定理得证明根据对应边成比例列式求出r 的值【详解】解:∵∴∵∴∴设的半径为则∵∴∴解得故答案是:5【点睛】本题考查圆的性质和相似三角形的性质和判定解题的关键是掌握圆周角定理解析:5【分析】设O 的半径为r ,则22CE r =-,由垂径定理得142AE BE AB ===,证明AEC DEB ,根据对应边成比例列式求出r 的值.【详解】 解:∵AB CD ⊥,∴90ACE DBE ∠=∠=︒,∵AEC DEB ∠=∠,∴AEC DEB , ∴AE EC DE EB=, 设O 的半径为r ,则22CE r =-,∵AB CD ⊥, ∴142AE BE AB ===, ∴42224r -=,解得=5r . 故答案是:5.【点睛】本题考查圆的性质和相似三角形的性质和判定,解题的关键是掌握圆周角定理和垂径定理,以及相似三角形对应边成比例的性质.18.35【分析】根据△ABC ∽△DEF 得到结合△ABC 的三边长分别为762△DEF 的两边分别为13可以得到△DEF 的两边13分别与△ABC 的两边26是对应边得到两三角形相似比为可以求出△DEF 的第三边【解析:3.5【分析】根据△ABC ∽△DEF ,得到AB AC BC DE DF EF==,结合△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,可以得到△DEF 的两边1、3分别与△ABC 的两边2,6是对应边,得到两三角形相似比为12,可以求出△DEF 的第三边. 【详解】解:∵要使△ABC ∽△DEF ,需AB AC BC DE DF EF==, ∵△ABC 的三边长分别为7、6、2,△DEF 的两边分别为1、3,∴△DEF 的两边1、3分别与△ABC 的两边2,6是对应边,∴两三角形相似比为12,∴△DEF 的第三边长为:7×12=3.5. 故答案为:3.5.【点睛】 本题考查了相似三角形的性质,根据两三角形相似,结合两三角形的线段长求出相似比是解题的关键.19.5【分析】首先由勾股定理求出AC 再证明得到进而列方程求解即可【详解】解析:5【分析】首先由勾股定理求出AC ,再证明~ABE CDE ∆∆,得到AB AE CD CE=,进而列方程求解即可.【详解】 90ACB ∠=︒,10AB =,6BC =,8AC ∴==,∴设AE x =,则8CE x =-, BD 平分ABC ∠,ABD DBC ∴∠=∠,又//AB CD ,ABD BDC ∴∠=∠,DBC BDC ∴∠=∠,6BC CD ∴==,//AB CD ,∴~ABE CDE ∆∆,AB AE CD CE∴= 1068x x∴=- 解得5x =,5AE ∴=故答案为:5.【点睛】此题主要考查了相似三角形和判定与性质,熟练掌握并能灵活运用相似三角形和判定与性质定理是解答此题的关键.20.【分析】由根据比例的性质即可求得的值【详解】解:∵∴=故答案为:【点睛】此题考查了比例的性质此题比较简单注意熟记比例变形解析:75 【分析】 由25x y =,根据比例的性质,即可求得x y y+的值. 【详解】 解:∵25x y = ∴x y y +=2+57=55. 故答案为:75. 【点睛】此题考查了比例的性质,此题比较简单,注意熟记比例变形.三、解答题21.(1)见解析;(2)见解析【分析】(1)根据相似三角形的判定,只需作出∠Bˊ=∠B 即可得到A B C ''';(2)先根据题意写出已知、求证,再根据相似三角形的性质和角平分线定义可证得ACD A C D '''∠=∠,进而可证得ACD A C D '''∽△△,则有CD AC C D A C=''''=k . 【详解】解:(1)如图所示,A B C '''即为所求.(2)已知:如图,ABC A B C '''∽△△,相似比为k ,CD 、C D ''分别平分ACB ∠,A C B '''∠,求证:CD AC k C D A C ==''''. 证明:∵ABC A B C '''∆∆∽,∴A A '∠=∠,ACB A C B '''∠=∠,AC k A C =''∵CD 、C D ''分别平分ACB ∠,A C B '''∠, ∴12ACD ACB ∠=∠,12A B C C D A '∠∠'='''', ∴ACD A C D '''∠=∠,∵A A '∠=∠,∴ACD A C D '''∽△△, ∴CD AC k C D A C ==''''. 【点睛】 本题考查了基本尺规作图-作与已知角相等的角、相似三角形的判定与性质,解答的关键是熟练掌握相似三角形的判定与性质,注意文字叙述性命题的证明格式.22.(1)①见解析;②2【分析】 (1)①依据∠ADB =∠CDA =90°,BD AD AD CD=,即可得到△ABD ∽△CAD ,再根据相似三角形的性质,即可得到∠BAC =90°; ②先判定四边形AEDF 是矩形,得出EF =AD ,再根据射影定理可得BD =2,最后根据勾股定理,求得Rt △ABD 中,AD EF =(2)根据勾股定理得到AC =AB =AE AF AC AB =,∠EAF =∠CAB ,即可判定△AEF ∽△ACB ,进而得出=EF AF BC AB ,即可得到EF =5. 【详解】(1)①证明:∵AD ⊥BC ,∴∠ADB =∠CDA =90°.∵AD 2 =BD ·DC , ∴BD AD AD CD=. ∴△ABD ∽ △CAD .∴∠BAD =∠C .又∵∠B +∠BAD =90° ,∴∠B +∠C =90°.∴∠BAC = 90°.②∵DE ⊥AB ,DF ⊥AC ,∠BAC =90°.∴∠EAF =∠AED =∠AFD =90°.∴四边形AEDF 是矩形.∴EF =AD .∵∠BAC =90°,AD ⊥BC ,∴AB 2=BD ⋅BC .∵AB =4,DC =6,即42=BD ⋅(BD +6).解得BD =2.∴Rt △ABD中,AD∴EF=(2)∵在Rt △ABD 中,AD =4,BD =2,∴AB =∵AD =4,DC =4,DF ⊥AC ,∴AC=.∴AF =12AC = ∵DE ⊥AB ,DF ⊥AC ,AD ⊥BC ,∴AD 2=AE ⋅AB ,AD 2=AF ⋅AC .∴AE ⋅AB =AF ⋅AC . 即AE AF AC AB=. 又∵∠EAF =∠CAB ,∴△AEF ∽△ACB . ∴=EF AF BC AB .∴6EF =.解得EF =5. 【点睛】本题主要考查了相似三角形的判定与性质,解题时注意:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,或依据基本图形对图形进行分解、组合.23.(1)作图见解析,()16,1A ;(2)作图见解析;(3)作图见解析,33A B 的长度为【分析】(1)先根据平移作图画出点111,,O A B ,再顺次连接即可得111O A B △,然后根据点坐标的平移变换规律即可得点1A 的坐标;(2)先根据关于原点对称的点坐标变换规律得出点22,A B 的坐标,再画出点22,A B ,然后顺次连接点22,,O A B 即可得;(3)先根据位似的性质得出33,A B 的坐标,再画出点33,A B ,然后顺次连接点33,,O A B 即可得33OA B ,最后利用两点之间的距离公式即可得33A B 的长度.【详解】(1)先画出点111,,O A B ,再顺次连接即可得111O A B △,如图所示:由点坐标的平移变换规律得:()115,34A +-+,即()16,1A ;(2)关于原点对称的点坐标变换规律:横、纵坐标均互为相反数,()()1,3,4,0A B -,()()221,3,4,0A B ∴--,先画出点22,A B ,再顺次连接点22,,O A B 即可得22OA B △,如图所示:(3)()()1,3,4,0A B -,()()3312,32,42,02A B ⨯-⨯⨯⨯∴,即()()332,6,8,0A B -, 2332(82)(06)62A B ∴=-++=, 先画出点33,A B ,再顺次连接点33,,O A B 即可得33OA B ,如图所示:【点睛】本题考查了平移作图、关于原点对称的点坐标变换规律、位似画图等知识点,熟练掌握各画图方法和点坐标的变换规律是解题关键.24.(1)见详解;(2)63【分析】(1)根据四边形ABCD 内接于O ,∠BCD+∠ECD=180°,得出∠BAD=∠ECD ,再根据AB=EB,可得∠BED=∠ECD,即可得证;(2)连接OD,先求出AE,然后证明△BAE∽△DCE,根据CEAE=DEBE,即CE AE =DEBC+CE,求出BC,即可求出答案.【详解】(1)∵四边形ABCD内接于O,∴∠BAD+∠BCD=180°,∵∠BCD+∠ECD=180°,∴∠BAD=∠ECD,∵AB=EB,∴∠BAD=∠BED,∴∠BED=∠ECD,∴DC=DE;(2)连接OD,∵OA=OD,∴∠OAD=∠ODA,又∵∠BAE=∠E,∴∠ODA=∠E,∴OD∥BE,∵O是AB中点,∴D为AE中点,∴DA=DE=6,∴AE=12,∵∠BAD=∠ECD,∠E=∠E,∴△BAE∽△DCE,∴CEAE =DE BE,∴CEAE =DEBC+CE,43BC+43解得BC=23∴BE=BC+CE=63,∴AB=BE=63.【点睛】本题考查了等腰三角形的性质,圆的内接四边形的性质,相似三角形的判定和性质,中位线的性质,掌握这些知识点灵活运用是解题关键.25.(1)B;(2)C;应用:7.【分析】(1)由已知AD是△ABC的中线,和作图延长AD到点E,使DE=AD,CD=BD, ∠ADC=∠EDB, AD=DE得到△ADC≌△EDB(SAS) 即可,(2) 由△ADC≌△EDB,则BE=AC=6,AE=2AD,AB=8,在ΔABE中,AB-BE<AE<AB+BE,即则2<2AD<14即可,【灵活运用】延长AD到G,使DG=AD,连接BG,由(1)知△ADC≌△GDB,BG=AC=AE+EC=7∠G=∠DAC可以判定BG∥AC,由∠BFG=∠AFE,得ΔGBF∽ΔAEF,由性质BG BF.AE EF【详解】(1)由已知AD是△ABC的中线,和作图延长AD到点E,使DE=AD,CD=BD, ∠ADC=∠EDB, AD=DE得到△ADC≌△EDB(SAS)故选择:B,(2) 由△ADC≌△EDB,则BE=AC=6,AE=2AD,AB=8,在ΔABE中,AB-BE<AE<AB+BE,即AB-BE=8-6=2,AB+BE=14,则2<2AD<14,1<AD<7故选择:C,灵活运用延长AD到G,使DG=AD,连接BG,由(1)知△ADC≌△GDB,BG=AC=AE+EC=7,∠G=∠DAC,BG∥AC,∠BFG=∠AFE,ΔGBF∽ΔAEF,BG BF AE EF =, 744BF =, BF=7.【点睛】本题考查中线加倍问题,由中线加倍,利用SAS 推出三角形全等,把问题转化为三角形中的问题,用三角形的三边关系,确定取值范围,由△ADC ≌△GDB ,∠G=∠DAC 可以判定BG ∥AC ,由∠BFG=∠AFE ,得ΔGBF ∽ΔAEF ,用相似三角形的性质解决问题. 26.23.04【分析】根据正方形的性质得到DG ∥BC ,推出△ADG ∽△ABC ,利用相似三角形对应边上高的比等于相似比,列方程求解即可.【详解】解:设正方形DEFG 的边长为x ,DE =DG =x .∵四边形DEFG 为正方形 ∴DG ∥BC ,∠DEC =90︒∴△ADG ∽△ABC∴12AM AH DG x BC == 又∵ AB =AC =10,BC =12,AH ⊥BC ∴ BH =12BC =6,∠DEC =∠AHC =90︒ 在Rt △ABH 中,根据勾股定理得AH 22221068AB BH -=-=∴AM =AH -MH =AH -DE =8-x∴88AM x AH -= ∴8128x x -=,解得x =4.8∴S正方形DEFG=x2=23.04【点睛】本题考查了相似三角形的判定与性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.。

人教版九年级数学下《第二十七章相似》单元练习题(含答案)

人教版九年级数学下《第二十七章相似》单元练习题(含答案)

第二十七章《相似》单元练习题一、选择题1.下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比D.位似图形的周长之比等于位似比的平方2.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC 的面积比为()A. 1∶3B. 1∶4C. 1∶8D. 1∶93.△ABC的三边之比为3∶4∶5,与其相似的△DEF的最短边是9 cm,则其最长边的长是() A. 5 cmB. 10 cmC. 15 cmD. 30 cm4.若矩形ABCD∽矩形EFGH,相似比为2∶3,已知AB=3 cm,BC=5 cm,则矩形EFGH的周长是()A. 16 cmB. 12 cmC. 24 cmD. 36 cm5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使△ABC∽△CAD,只要CD等于()A.B.C.D.6.如图,已知在正方形网格中的两个格点三角形是位似形,它们的位似中心是()A.点AB.点BC.点CD.点D7.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为()A. 1.25尺B. 57.5尺C. 6.25尺D. 56.5尺8.已知A、B两地的实际距离AB=5 km,画在图上的距离A′B′=2 cm,则图上的距离与实际距离的比是()A. 2∶5B. 1∶2 500C. 250 000∶1D. 1∶250 000二、填空题9.如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上.若线段AB=2 cm,则线段BC=________ cm.10.已知:如图,A′B′∥AB,A′C′∥AC,AA′的延长线交于BC于点D,△ABC与△A′B′C′是__________图形,其中____________点是位似中心.11.已知△ABC∽△A′B′C′,且S△ABC∶S△A′B′C′=16∶9,若AB=4,则A′B′=__________.12.已知△ABC∽△DEF,=,且AD为BC边上的中线,DG为EF边上的中线,则AD∶DG =__________.13.如图,以O为位似中心,将边长为256的正方形OABC依次作位似变换,经第一次变化后得正方形OA1B1C1,其边长OA1缩小为OA的,经第二次变化后得正方形OA2B2C2,其边长OA2缩小为OA1的,经第三次变化后得正方形OA3B3C3,其边长OA3缩小为OA2的,…,依次规律,经第n次变化后,所得正方形OAnBnCn的边长为正方形OABC边长的倒数,则n=________.14.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=__________.15.若a∶b∶c=1∶3∶2,且a+b+c=24,则a+b-c=________.16.如图,用放大镜将图形放大,应属于哪一种变换:______________(请选填:对称变换、平移变换、旋转变换、相似变换).三、解答题17.有一个测量弹跳力的体育器材,如图所示,竖杆AC、BD的长度分别为200厘米、300厘米,CD=300厘米.现有一人站在斜杆AB下方的点E处,直立、单手上举时中指指尖(点F)到地面的高度为EF,屈膝尽力跳起时,中指指尖刚好触到斜杆AB上的点G处,此时,就将EG与EF的差值y(厘米)作为此人此次的弹跳成绩.(1)设CE=x(厘米),EF=a(厘米),求出由x和a表示y的计算公式;(2)现有一男生,站在某一位置尽力跳起时,刚好触到斜杆.已知该同学弹跳时站的位置为x=150厘米,且a=205厘米.若规定y≥50,弹跳成绩为优;40≤y<50时,弹跳成绩为良;30≤y<40时,弹跳成绩为及格,那么该生弹跳成绩处于什么水平?18.已知MN∥EF∥BC,点A、D为直线MN上的两动点,AD=a,BC=b,AE∶ED=m∶n;(1)当点A、D重合,即a=0时(如图1),试求EF.(用含m,n,b的代数式表示)(2)请直接应用(1)的结论解决下面问题:当A、D不重合,即a≠0,①如图2这种情况时,试求EF.(用含a,b,m,n的代数式表示)图1图2图3②如图3这种情况时,试猜想EF与a、b之间有何种数量关系?并证明你的猜想.19.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m的空地,其他三侧内墙各保留1 m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288 m2?解:设矩形蔬菜种植区域的宽为x_m,则长为2x m,根据题意,得x·2x=288.解这个方程,得x1=-12(不合题意,舍去),x2=12,所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植区域的面积是288 m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样?(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.20.如图⊙O的内接△ABC中,外角∠ACF的角平分线与⊙O相交于D点,DP⊥AC,垂足为P,DH⊥BF,垂足为H.问:(1)∠PDC与∠HDC是否相等,为什么?(2)图中有哪几组相等的线段?(3)当△ABC满足什么条件时,△CPD∽△CBA,为什么?21.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′的顶点都在格点上.(1)求证:△ABC∽A′B′C′;(2)A′B′C′与△ABC是位似图形吗?如果是,在图形上画出位似中心并求出位似比.第二十七章《相似》单元练习题答案解析1.【答案】C【解析】∵分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC 放大或缩小后的图形,∴A错误.∵位似图形是特殊的相似形,满足相似形的性质,∴B,D错误,正确的是C.故选C.2.【答案】D【解析】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴==,∴==,∴△A′B′C′与△ABC的相似比为1∶3,∴△A′B′C′与△ABC的面积的比1∶9,故选D.3.【答案】C【解析】∵△ABC和△DEF相似,∴△DEF的三边之比为3∶4∶5,∴△DEF的最短边和最长边的比为3∶5,设最长边为x,则3∶5=9∶x,解得x=15,∴△DEF的最长边为15 cm,故选C.4.【答案】C【解析】∵AB=3 cm,BC=5 cm,∴矩形ABCD的周长=2×(3+5)=16 cm,∵矩形ABCD∽矩形EFGH,相似比为2∶3,∴矩形ABCD与矩形EFGH的周长比2∶3,∴矩形EFGH的周长为24 cm,故选C.5.【答案】A【解析】假设△ABC∽△CAD,∴=,即CD==,∴要使△ABC∽△CAD,只要CD等于,故选A.6.【答案】A【解析】如图,位似中心为点A.故选A.7.【答案】B【解析】依题意有△ABF∽△ADE,∴AB∶AD=BF∶DE,即5∶AD=0.4∶5,解得AD=62.5,BD=AD-AB=62.5-5=57.5尺.故选B.8.【答案】D【解析】∵5千米=500 000厘米,∴比例尺=2∶500 000=1∶250 000;故选D.9.【答案】6【解析】如图,过点A作AE⊥CE于点E,交BD于点D,∵练习本中的横格线都平行,且相邻两条横格线间的距离都相等,∴=,即=,∴BC=6 cm.10.【答案】位似O【解析】∵A′B′∥AB,A′C′∥AC,∴∠A′B′C′=∠B,∠A′C′B′=∠C,∴△A′B′C′∽△ABC,∵AA′的延长线交于BC于点D,∴△ABC与△A′B′C′是位似图形,其中O点是位似中心.11.【答案】3【解析】∵△ABC∽△A′B′C′,且S△ABC∶S△A′B″C′=16∶9,∴AB∶A′B′=4∶3,∵AB=4,∴A′B′=3.12.【答案】【解析】∵△ABC∽△DEF,∴BC∶EF=AD∶DG,∵=,∴BC∶EF=3∶2,∴AD∶DG=3∶2.13.【答案】16【解析】由图形的变化规律可得×256=,解得n=16.14.【答案】【解析】∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为.15.【答案】8【解析】∵a∶b∶c=1∶3∶2,∴设a=k,则b=3k,c=2k,又∵a+b+c=24,∴k+3k+2k=24,∴k=4,∴a+b-c=k+3k-2k=2k=2×4=8.16.【答案】相似变换【解析】由一个图形到另一个图形,在改变的过程中形状不变,大小产生变化,属于相似变化.17.【答案】解(1)过A作AM⊥BD于点M,交GE于N.∵AC⊥CD,GE⊥CD,∴四边形ACEN为矩形,∴NE=AC,又∵AC=200,EF=a,FG=y,∴GN=GE-NE=a+y-200,∵DM=AC=200,∴BM=BD-DM=300-200=100,又∵GN∥BD,∴△ANG∽△AMB,∴=,即=,∴y=x-a+200;(2)当x=150 cm,a=205 cm时,y=×150-205+200=45( cm),y=45>40.故该生弹跳成绩处于良好水平.【解析】(1)利用相似三角形的判定与性质得出△ANG∽△AMB,进而得出=,即可得出答案;(2)当x=150 cm,a=205 cm时,直接代入(1)中所求得出即可.18.【答案】解(1)∵EF∥BC,∴△AEF∽△ABC,∴=,∵=,∴=,又BC=b,∴=,∴EF=;(2)①如图2,连接BD,与EF交于点H,由(1)知,HF=,EH=,∵EF=EH+HF,∴EF=;②猜想:EF=,证明:连接DE,并延长DE交BC于G,由已知,得BG=,EF=,∵GC=BC-BG,∴EF=(BC-BG)==.【解析】(1)由EF∥BC,即可证得△AEF∽△ABC,根据相似三角形的对应边成比例,即可证得=,根据比例变形,即可求得EF的值;(2)①连接BD,与EF交于点H,由(1)知,HF=,EH=,又由EF=EH+HF,即可求得EF的值;②连接DE,并延长DE交BC于G,根据平行线分线段成比例定理,即可求得BG的长,又由EF=与GC=BC-BG,即可求得EF的值.19.【答案】解(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由.在“设矩形蔬菜种植区域的宽为x m,则长为2x m.”前补充以下过程:设温室的宽为x m,则长为2x m.则矩形蔬菜种植区域的宽为(x-1-1)m,长为(2x-3-1)m.∵==2,∴矩形蔬菜种植区域的长与宽之比为2∶1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要=,即=,即=,即2AB-2(b+d)=2AB-(a+c),∴a+c=2(b+d),即=2.【解析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由,所以应设矩形蔬菜种植区域的宽为x m,则长为2x m,然后由题意得==2,矩形蔬菜种植区域的长与宽之比为2∶1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得=,即=,然后利用比例的性质,即可求得答案.20.【答案】解(1)相等.理由如下:∵CD为∠ACF的角平分线(已知),∴∠DCP=∠DCH,DP⊥AC,DH⊥BF.∴∠DPC=∠DHC=90°.∴∠PDC=∠HDC.(2)PC=HC,DP=DH,AP=BH,AD=BD.(3)∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.∵∠CPD=90°,∴∠ABC=90°.∵CD为∠ACF的角平分线,∠PCD=∠DCF=∠ACB,∴∠ACB=60°.∴∠ABC=90°且∠ACB=60°时,△CPD∽△CBA.【解析】(1)根据角平分线与垂线的性质证明角相等;(2)发现全等三角形,根据全等三角形的对应边相等证明出线段相等;(3)根据其中一个是直角三角形得到AC必须是直径.再根据另一对角对应相等,结合利用平角发现必须都是60°才可.21.【答案】(1)证明∵AB=,BC=,AC=2,A′B′=2,B′C′=2,A′C′=4,∴==,∴△ABC∽A′B′C′;(2)解如图所示:两三角形对应点的连线相交于一点,故A′B′C′与△ABC是位似图形,O即为位似中心,位似比为2.【解析】(1)分别求出三角形各边长,进而得出答案;(2)利用位似图形的性质得出答案.。

人教版数学九年级下册数学:第27章 相似 专题练习(附答案)

人教版数学九年级下册数学:第27章  相似  专题练习(附答案)

专题1 相似三角形的基本模型模型1 A 字型及其变形(1)如图1,公共角所对的边平行(DE ∥BC),则△ADE ∽△ABC ;(2)如图2,公共角的对边不平行,且有另一组角相等(∠AED =∠ABC 或∠ADE =∠ACB),则△AED ∽△ABC.【例1】 如图,在△ABC 中,AB =5,D ,E 分别是边AC 和AB 上的点,且∠ADE =∠B ,DE =2,求AD ·BC 的值.解:∵∠ADE =∠B ,∠EAD =∠CAB , ∴△ADE ∽△ABC. ∴DE BC =AD AB. ∴AD ·BC =DE ·AB. 又∵DE =2,AB =5, ∴AD ·BC =2×5=10.1.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,AE =3,AC =5,BC =10,则BF 的长为 .2.如图,在锐角△ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC.模型2 X字型及其变形(1)如图1,对顶角的对边平行(AB∥CD),则△ABO∽△DCO;(2)如图2,对顶角的对边不平行,且有另一对角相等(∠B=∠D或∠A=∠C),则△ABO∽△CDO.【例2】如图,在四边形ABCD中,AB∥CD,对角线AC与BD相交于点O.求证:△ABO∽△CDO.证明:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC.∴△ABO∽△CDO.【补充设问】△AOD与△BOC相似吗?试说明理由.解:△AOD 与△BOC 不相似. 理由如下:∵∠AOD =∠COB , 要使△AOD 与△BOC 相似, ∴当满足DO CO =AO BO 或DO BO =AOCO时,即DO ·BO =AO ·CO 或DO ·CO =AO ·BO 时,△AOD 与△BOC 相似.由已证可知△ABO ∽△CDO ,∴AO CO =BO DO, 即AO ·DO =BO ·CO ,不满足证明△AOD 与△BOC 相似的条件. ∴△AOD 与△BOC 不相似.【变式】 如图,在四边形ABDC 中,若AB 不平行于CD ,∠ABC =∠ADC ,则图中的相似三角形有△COD ∽△AOB ,△AOC ∽△BOD .3.如图,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于点E ,对角线BD 交AG 于点F ,已知FG =2,则线段AE 的长度为( )A .6B .8C .10D .124.将一副三角尺如图所示叠放在一起,则BEEC的值是 .5.如图,已知∠ADE =∠ACB ,BD =8,CE =4,CF =2,求DF 的长.模型3 子母型若两个三角形有一个公共角和一条公共边,且有另一对角相等,则这两个三角形相似.如图,若∠ACD =∠B ,则△ACD ∽△ABC ,从而可得结论:AC 2=AD ·AB.【例3】 如图,P 是△ABC 的边AB 上的一点.(1)如果∠ACP =∠B ,△ACP 与△ABC 是否相似?为什么?(2)如果AP AC =AC AB ,△ACP 与△ABC 是否相似?为什么?如果AC CP =BCAC呢?解:(1)△ACP ∽△ABC.理由如下: ∵∠ACP =∠ABC , ∠PAC =∠CAB , ∴△ACP ∽△ABC.(2)AP AC =ACAB 时,△ACP ∽△ABC.理由如下:∵∠PAC =∠CAB ,且AP AC =ACAB ,∴△ACP ∽△ABC.由AC CP =BCAC不能得到△ACP 与△ABC 相似. ∵AC 与CP 的夹角为∠ACP ,BC 与AC 的夹角为∠ACB , 而∠ACP 与∠ACB 不相等,∴由AC CP =BCAC不能得到△ACP 与△ABC 相似.6.如图,在△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段AC 的长为( )A .4B .4 2C .6D .4 37.如图,在△ABC 中,D 为AB 边上一点,且∠BCD =∠A ,若BC =22,AB =3,则BD 的长为 .模型4 双垂直型直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.如图,Rt △ABC 中,CD 为斜边AB 上的高,则有△ACD ∽△ABC ∽△CBD ,从而可得结论:CD 2=BD ·AD ,BC 2=BD ·AB ,AC 2=AD ·AB.【例4】 如图,在△ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D. (1)请指出图中所有的相似三角形;(2)你能得出AD2=BD·DC吗?解:(1)△BAD∽△BCA∽△ACD.(2)能得出AD2=BD·DC.理由如下:∵∠BAC=90°,∴∠BAD+∠DAC=90°.∵AD⊥BC,∴∠DAC+∠ACD=90°,∠BDA=∠ADC=90°.∴∠BAD=∠ACD.又∵∠BDA=∠ADC,∴△BAD∽△ACD.∴ADCD=BDAD,即AD2=BD·DC.8.如图,在Rt△ABC中,CD⊥AB,D为垂足,且AD=3,AC=35,则斜边AB的长为() A.3 6B.15C.9 5D.3+3 59.如图,在△ABC中,∠ACB=90°,CD是斜边AB上的高,AD=9,BD=4,那么CD=,AC=.模型5 一线三等角型(1)如图1,AB⊥BC,CD⊥BC,AP⊥PD,垂足分别为B,C,P,且三个垂足在同一直线上,则有△ABP∽△PCD(此图又叫作“三垂图”).(2)如图2,∠B=∠APD=∠C,且B,P,C在同一直线上,则①△ABP∽△PCD;②连接AD,当点P为BC的中点时,△ABP∽△PCD∽△APD.【例5】如图,在正方形ABCD中,E为边AD上的点,点F在边CD上,且CF=3FD,∠BEF =90°.(1)求证:△ABE∽△DEF;(2)若AB=4,延长EF交BC的延长线于点G,求BG的长.解:(1)证明:∵四边形ABCD为正方形,∴∠A=∠D=90°.∴∠ABE+∠AEB=90°.又∵∠BEF=90°,∴∠AEB+∠DEF=90°.∴∠ABE=∠DEF.∴△ABE∽△DEF.(2)∵AB=BC=CD=AD=4,CF=3FD,∴DF =1,CF =3. ∵△ABE ∽△DEF , ∴AE DF =AB DE ,即4-DE 1=4DE . ∴DE =2.又∵ED ∥CG ,∴△EDF ∽△GCF. ∴ED GC =DFCF.∴GC =6. ∴BG =BC +CG =10.10.如图,在等腰△ABC 中,点E ,F ,O 分别是腰AB ,AC 及底BC 边上任意一点,且∠EOF =∠B =∠C.求证:OE ·FC =FO ·OB.1.如图,在矩形ABCD 中,作DF ⊥AC ,垂足为F ,延长DF 交AB 于点E ,在图中一定和△DFC 相似的三角形有 个.2.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一条直线上,且AB=2,BC=1,连接AI,交FG于点Q,则QI=.3.【分类讨论思想】如图,在△ABC中,AC=6,AB=4,点D,A在直线BC同侧,且∠ACD =∠ABC,CD=2,点E是线段BC延长线上的动点.若△DCE和△ABC相似,则线段CE的长为.4.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D,F分别在边AB,AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.专题2 相似三角形的性质与判定类型1 利用相似三角形求线段长1.如图,在△ABC 中,AB =6,点D 是AB 的中点,过点D 作DE ∥BC ,交AC 于点E ,点M 在DE 上,且ME =13DM.当AM ⊥BM 时,则BC 的长为 .2.如图,已知菱形BEDF 内接于△ABC ,点E ,D ,F 分别在AB ,AC 和BC 上.若AB =15 cm ,BC =12 cm ,则菱形的边长为 cm.3.如图,在△ABC 中,AB =AC ,点D ,E 分别在边BC ,AB 上,且∠ADE =∠B.如果DE ∶AD =2∶5,BD =3,那么AC = .4.如图,在Rt △ABC 中,∠ABC =90°,AB =3,BC =4,在Rt △MPN 中,∠MPN =90°,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当PE =2PF 时,AP = .5.如图,在△ABC 中,点D 是BA 边延长线上一点,过点D 作DE ∥BC ,交CA 的延长线于点E ,点F 是DE 延长线上一点,连接AF. (1)如果AD AB =23,DE =6,求边BC 的长;(2)如果∠FAE =∠B ,FA =6,FE =4,求DF 的长.类型2 利用相似三角形求角度6.如图,A ,B ,C ,P 四点均在边长为1的小正方形网格格点上,则∠BAC 的度数是 .7.如图,在等腰△ABC 中,AB =AC ,D 为CB 延长线上一点,E 为BC 延长线上一点,且AB 2=BD ·CE.若∠BAC =40°,则∠DAE = . 类型3 利用相似三角形求比值8.如图,AB ∥DC ,AC 与BD 交于点E ,EF ∥DC 交BC 于点F ,CE =5,CF =4,AE =BC ,则DCAB 等于( )A.23B.14C.13D.359.如图,D ,E 分别是△ABC 的边AB ,BC 上的点,且DE ∥AC ,AE ,CD 相交于点O.若S △DOE ∶S △COA =1∶25,则S △BDE 与S △CDE 的比是( )A .1∶3B .1∶4C .1∶5D .1∶2510.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,过点A 作EA ⊥CA 交DB 的延长线于点E.若AB =3,BC =4,则AOAE的值为 .类型4 利用相似三角形证明等积式与比例式11.如图,在△ABC 中,D ,E 分别是AB ,AC 上的点,且BD =2AD ,CE =2AE.求证: (1)△ADE ∽△ABC ; (2)DF ·BF =EF ·CF.12.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,E 为AC 的中点,ED ,CB 的延长线交于点F.求证:DF CF =BCAC.类型5 利用相似求点的坐标13.如图,在平面直角坐标系xOy 中,A(-4,0),B(0,2),连接AB 并延长到点C ,连接CO.若△COB ∽△CAO ,则点C 的坐标为( )A .(1,52)B .(43,83)C .(5,25)D .(3,23)14.如图,已知直线y =-12x +2与x 轴交于点A ,与y 轴交于点B ,在x 轴上有一点C ,使B ,O ,C 三点构成的三角形与△AOB 相似,则点C 的坐标为专题3 圆与相似1.如图,⊙O 是△ABC 的外接圆,已知AD 平分∠BAC 交⊙O 于点D ,交BC 边于点E ,AD =5,BD =2,则DE 的长为( )A.35B.425 C.225 D.452.如图,已知⊙O 是等腰Rt △ABC 的外接圆,D 是AC ︵上一点,BD 交AC 于点E.若BC =4,AD =45,则AE 的长是( ) A .3 B .2 C .1 D .1.23.如图,⊙O 的两弦AB ,CD 交于点P ,连接AC ,BD ,得S △ACP ∶S △DBP =16∶9,则AC ∶BD = .4.如图,已知AB 是⊙O 的直径,C 是⊙O 上一点,∠ACB 的平分线交⊙O 于点D ,作PD ∥AB ,交CA 的延长线于点P ,连接AD ,BD.求证: (1)PD 是⊙O 的切线; (2)△PAD ∽△DBC.5.如图,以△ABC的边AC为直径的⊙O交AB边于点M,交BC边于点N,连接AN,过点C 的切线交AB的延长线于点P,∠BCP=∠BAN.求证:(1)△ABC为等腰三角形;(2)AM·CP=AN·CB.6.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.(1)求证:AC是⊙O的切线;(2)已知⊙O的半径为2.5,BE=4,求BC,AD的长.参考答案:专题1 相似三角形的基本模型1. 4.2.证明:∵AF ⊥DE ,AG ⊥BC ,∴∠AFE =∠AGC =90°. ∵∠EAF =∠GAC , ∴∠AEF =∠ACG. 又∵∠DAE =∠BAC , ∴△ADE ∽△ABC.3.D4.35.解:∵∠ADE =∠ACB ,∴180°-∠ADE =180°-∠ACB , 即∠BDF =∠ECF. 又∵∠BFD =∠EFC , ∴△BDF ∽△ECF. ∴BD EC =DF CF ,即84=DF 2. ∴DF =4. 6.B7.83. 8.B910.证明:∵∠EOC =∠EOF +∠FOC ,∠EOC =∠B +∠BEO ,∠EOF =∠B , ∴∠FOC =∠OEB. 又∵∠B =∠C , ∴△BOE ∽△CFO. ∴OE OF =OB FC, 即OE ·FC =FO ·OB.1. 5 . 2.43. 3.43或3. 4.解:(1)证明:∵AB =AC , ∴∠B =∠C.∵∠BDE =180°-∠B -∠DEB ,∠CEF =180°-∠DEF -∠DEB ,且∠DEF =∠B , ∴∠BDE =∠CEF. ∴△BDE ∽△CEF.(2)∵△BDE ∽△CEF ,∴BE CF =DEEF .∵点E 是BC 的中点,∴BE =CE.∴CE CF =DE EF .∴CE DE =CF EF. ∵∠DEF =∠B =∠C ,∴△DEF ∽△ECF. ∴∠DFE =∠CFE ,即FE 平分∠DFC.专题2 相似三角形的性质与判定1.8. 2.203.3.152.4.3.5.解:(1)∵DE ∥BC , ∴△ADE ∽△ABC. ∴AD AB =DE BC .∴23=6BC . ∴BC =9.(2)∵∠FAE =∠B ,∠B =∠D , ∴∠FAE =∠D. 又∵∠F =∠F , ∴△FAE ∽△FDA. ∴FE FA =FA DF . ∴DF =FA2FE=9.6.135°. 7.110°. 8.B 9.B 10.724.11.证明:(1)∵BD =2AD ,CE =2AE ,∴AB =3AD ,AC =3AE. ∴AD AB =AE AC =13. ∵∠A =∠A , ∴△ADE ∽△ABC. (2)∵AD AB =AE AC =13,∴DE ∥BC. ∴△DEF ∽△CBF. ∴DF CF =EF BF. ∴DF ·BF =EF ·CF.12.证明:∵∠ACB =90°,CD ⊥AB ,∴∠A +∠ACD =∠ACD +∠BCD ,∠ACB =∠BDC =90°. ∴∠A =∠BCD. ∴△ABC ∽△CBD. ∴BC BD =AC CD ,即BC AC =BD CD . 又∵E 为AC 的中点,∴AE =CE =ED.∴∠A =∠EDA.∵∠EDA =∠BDF ,∴∠FCD =∠BDF.又∵∠F 为公共角,∴△FDB ∽△FCD.∴DF CF =BD CD. ∴DF CF =BC AC. 13.B14. (-4,0)或(4,0)或(-1,0)或(1,0).专题3 圆与相似1.D2.C3.4∶3.4.证明:(1)连接OD.∵∠DCA =∠DCB ,∴AD ︵=BD ︵.∴OD ⊥AB.∵AB∥PD,∴OD⊥PD.∵点D在⊙O上,OD为⊙O的半径,∴PD是⊙O的切线.(2)∵∠PAD+∠CAD=180°,∠DBC+∠CAD=180°,∴∠PAD=∠DBC.由(1)可得:∠PDA=∠BCD=45°,∴△PAD∽△DBC.5.证明:(1)∵AC为⊙O的直径,∴∠ANC=90°.∵PC是⊙O的切线,∴∠BCP=∠CAN.∵∠BCP=∠BAN,∴∠BAN=∠CAN.又∵AN⊥BC,∴AB=AC.∴△ABC为等腰三角形.(2)连接MN∵△ABC为等腰三角形,AB=AC,∴∠ABC=∠ACB.∵∠PBC+∠ABC=∠AMN+∠ACN=180°,∴∠PBC=∠AMN.由(1)知∠BCP=∠BAN,∴△BPC∽△MNA.∴CBAM =CPAN,即AM·CP=AN·CB.6.解:(1)证明:连接OE ,∵OB =OE ,∴∠OBE =∠OEB.∵BE 平分∠ABC ,∠OBE =∠EBC.∴∠OEB =∠EBC.∴OE ∥BC. 又∵∠C =90°,∴∠OEA =90°,即AC ⊥OE.又∵OE 是⊙O 的半径,∴AC 是⊙O 的切线.(2)在△BCE 与△BED 中,∵∠C =∠BED =90°,∠EBC =∠DBE ,∴△BCE ∽△BED.∴BE BD =BC BE ,即BC =BE 2BD. ∵BE =4,BD 是⊙O 的直径,即BD =5,∴BC =165. 又∵OE ∥BC ,∴AO AB =OE BC .∵AO =AD +2.5,AB =AD +5,∴AD +2.5AD +5=2.5165. 解得AD =457.。

人教版数学九年级下学期第27章《相似》测试卷含答案

人教版数学九年级下学期第27章《相似》测试卷含答案

人教版数学九年级下学期第27章《相似》测试卷(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知:线段a、b,且,则下列说法错误的是( )A.a=2cm,b=3cm B.a=2k,b=3k(k≠0)C.3a=2b D.2.下列命题正确的是()A.有一个角对应相等的平行四边形都相似B.对应边成比例的两个平行四边形相似C.有一个角对应相等的两个等腰梯形相似D.有一个角对应相等的菱形是相似多边形3.如果(其中顶点、、依次与顶点、、对应),那么下列等式中不一定成立的是()A.B.∠B=∠E C.D.4.在比例尺为1∶8 000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,那么矩形运动场的实际尺寸应为( )A.80 m×160 m B.8 m×16 m C.800 m×160 m D.80 m×800 m5.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.(-1, 2)B.(-9, 18)C.(-9, 18)或(9, -18) D.(-1, 2)或(1, -2)6.如图,点O是△ABC内任一点,点D,E,F分别为OA,OB,OC的中点,则图中相似三角形有( ) A.1对B.2对C.3对D.4对7.已知:如图,在中,,则下列等式成立的是( )A .B .C .D .8.如图,在平行四边形中,是上的一点,直线与的延长线交于点,并与交于点,下列式子中错误的是( )A .B .C .D .9.如图,在中,是边上一点,连接,给出下列条件:①;②;③;④.其中单独能够判定的个数是( )A . 1个B . 2个C . 3个D . 4个 10.点是线段的黄金分割点,且,下列命题:,中正确的有( )A . 1个B . 2个C . 3个D . 4个二、填空题(每小题3分,共30分) 11.如图,在△ABC 中,DE ∥BC ,23AD DB =,则DEBC = .12. 如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点 记为H ;AD 的中点E 的对应点记为G. 若GFH ∆∽GBF ∆,则AD =______ ____.13.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD 的长为 .14.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O , 若S △DOE :S △COA =1:25,则S △BDE 与S △CDE 的比=___________.15.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA=10cm ,OA′=20cm,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .16.把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为 17.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则AM1+AN1= .18.如图,在菱形ABCD 中,E 是BC 边上的点,AE 交BD 于点F ,若EC=2BE ,则BFFD的值是 .19.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是米.2.244 1.520.如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC 边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF ;⑤△AEB是正三角形.其中正确结论的序号是.三、解答题(共60分)21.(本题6分)如图,在△ABC中,D是AB上一点,且∠ACD=∠B,已知AD=8cm,BD=4cm,求AC的长.22.(本题6分)如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和格点O,按要求画出格点△A1B1C1和格点△A2B2C2.(1)将△ABC绕O点顺时针旋转90°,得到△A1B1C1;(2)以A1为一个顶点,在网格内画格点△A1B2C2,使得△A1B1C1∽△A1B2C2,且相似比为1:2.23.(本题6分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.24.(本题8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.25.(本题7分)为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.26.(本题8分)如图,正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,如图位置依次摆放,已知点C1,C2,C3…,C n在直线y=x上,点A1的坐标为(1,0).(1)写出正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,的位似中心坐标;(2)正方形A4A3B4C4四个顶点的坐标.27.(本题8分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•A C;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.28.(本题11分) (1)、问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)、探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)、应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.答案(测试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.已知:线段a、b,且,则下列说法错误的是( )A.a=2cm,b=3cm B.a=2k,b=3k(k≠0)C.3a=2b D.【答案】A【解析】选项A,两条线段的比,没有长度单位,它与所采用的长度单位无关,选项A错误;选项B,,根据等比性质,a=2k,b=3k(k≠0),选项B正确;选项C,,根据比例的基本性质可得3a=2b,选项C正确;选项D,,根据比例的基本性质可得a=b,选项D正确.故选A.2.下列命题正确的是()A.有一个角对应相等的平行四边形都相似B.对应边成比例的两个平行四边形相似C.有一个角对应相等的两个等腰梯形相似D.有一个角对应相等的菱形是相似多边形【答案】D3.如果(其中顶点、、依次与顶点、、对应),那么下列等式中不一定成立的是()A.B.∠B=∠E C.D.【答案】C【解析】△ABC∽△DEF,故:A.∠A=∠D正确,故本选项错误;B.∠B=∠E正确,故本选项错误;C.AB=DE不一定成立,故本选项正确;D.正确,故本选项错误.故选C.4.在比例尺为1∶8 000的某学校地图上,矩形运动场的图上尺寸是1 cm×2 cm,那么矩形运动场的实际尺寸应为( )A.80 m×160 m B.8 m×16 m C.800 m×160 m D.80 m×800 m【答案】A解得y=16000(cm)=160(m)∴矩形运动场的实际尺寸是80m×160m.故选A.5.如图,在平面直角坐标系中,已知点,,以原点为位似中心,相似比为,把缩小,则点的对应点的坐标是()A.(-1, 2)B.(-9, 18)C.(-9, 18)或(9, -18) D.(-1, 2)或(1, -2)【答案】D6.如图,点O是△ABC内任一点,点D,E,F分别为OA,OB,OC的中点,则图中相似三角形有( )A.1对B.2对C.3对D.4对【答案】D【解析】因为点D,E,F分别为OA,OB,OC的中点,所以DE是△AOB的中位线,DF是△AOC的中位线,EF是△BOC的中位线,所以DE//AB,DF//AC,EF//BC,所以△DOE∽△AOD,△DOF∽△AOC,△EOF∽△BOC,因为DE是△AOB的中位线,DF是△AOC的中位线,EF是△BOC的中位线,所以,,所以,所以△DEF∽△ABC,因此有四对相似三角形,故选D.7.已知:如图,在中,,则下列等式成立的是()A.B.C.D.【答案】C8.如图,在平行四边形中,是上的一点,直线与的延长线交于点,并与交于点,下列式子中错误的是()A.B.C.D.【答案】D【解析】∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BE,∵CG∥AE,∴四边形AGCF是平行四边形,△BCG∽△BEA,△CEF∽△BEA,∴,,CF=AG,∴DF=BG,,∴选项A、B正确;∵AD∥BE,∴,∴,∴选项C正确,D不正确;故选D.9.如图,在中,是边上一点,连接,给出下列条件:①;②;③;④.其中单独能够判定的个数是()A.1个B.2个C.3个D.4个【答案】B10.点是线段的黄金分割点,且,下列命题:,中正确的有()A.1个B.2个C.3个D.4个【答案】B二、填空题(每小题3分,共30分) 11.如图,在△ABC 中,DE ∥BC ,23AD DB =,则DEBC = .【答案】25【解析】根据AD:DB=2:3可得:AD:AB=2:5,∵DE ∥BC ,∴△ADE ∽△ABC ,∴25DE AD BC AB . 12. 如图,直角三角形ABC 中,︒=∠90ACB ,10=AB , 6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点 记为H ;AD 的中点E 的对应点记为G. 若GFH ∆∽GBF ∆,则AD =______ ____.【答案】3.2 【解析】利用勾股定理列式求出AC=8,设AD=2x ,得到AE=DE=DE 1=A 1E 1=x ,然后求出BE 1=10-3x ,再利用相似三角形对应边成比例列式求出DF=32x ,然后利用勾股定理列式求出E 1F=132x ,然后根据相似三角形对应边成比例列式求解得到x=85,从而可得AD 的长为2×85=165=3.2. 13.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD的长为 .【答案】23.14.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥A C,AE、CD相交于点O,若S△DO E:S△COA=1:25,则S△BDE与S△CDE的比=___________.【答案】1:4【解析】根据S△DOE:S△COA=1:25可得:DE:AC=1:5,则BE:BC=1:4,即BE:CE=1:4,△BDE和△CDE是登高三角形,则S△BDE:S△CDE=BE:EC=1:4.15.如图,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E′,已知OA=10cm,OA′=20cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是.【答案】1:2【解析】由五边形ABCDE与五边形A′B′C′D′E′位似,可得五边形ABCDE∽五边形A′B′C′D′E′,又由OA=10cm,OA′=20cm,即可求得其相似比为1:2,根据相似多边形的周长的比等于其相似比,即可求得答案为五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比为:OA :OA′=1:2.16.把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为 【答案】152【解析】设原矩形的长为x ,宽为y ,则剩下的矩形的长为y ,宽为(x -y),根据矩形相似可求出比值. 17.如图,菱形ABCD 的边长为1,直线l 过点C ,交AB 的延长线于M ,交AD 的延长线于N ,则AM1+AN1= .【答案】1.18.如图,在菱形ABCD 中,E 是BC 边上的点,AE 交BD 于点F ,若EC=2BE ,则BFFD的值是 .【答案】13【解析】根据菱形的性质得出AD=BC ,AD ∥BC ,求出AD=3BE ,根据相似三角形的判定得出△AFD ∽△EFB ,根据相似得出比例式BF BE DF AD =,代入求出即可求得结果为13. 19.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.41.52.24【答案】3.08 【解析】根据三角形相似的性质可得:x24.25.144=+,则x=3.08 20.如图,在矩形ABCD 中,AB=2,AD=,在边CD 上有一点E ,使EB 平分∠AEC.若P 为BC 边上一点,且BP=2CP ,连接EP 并延长交AB 的延长线于F .给出以下五个结论: ①点B 平分线段AF ;②PF=DE ;③∠BEF=∠FEC;④S 矩形ABCD =4S △BPF ;⑤△AEB 是正三角形.其中正确结论的序号是.【答案】①②③⑤在Rt△BPF 中,BF=2,由勾股定理可求得PF=22BF BP +=22343⎛⎫+ ⎪ ⎪⎝⎭=433,∵DE=1,∴PF=433DE ,故②正确;在Rt△BCE 中,EC=1,BC=3,由勾股定理可求得BE=2,∴BE=BF,∴∠BEF=∠F,又∵AB∥CD,∴∠FEC=∠F,∴∠BEF=∠FEC, 故③正确;∵AB=2,AD=3,∴S 矩形ABCD =AB×AD=2×3=23,∵BF=2,BP=433,∴S △BPF =12BF×BP=12×2×433=433, ∴4S △BPF =1633,∴S 矩形ABCD =≠4S △BPF ,故④不正确; 由上可知AB=AE=BE=2,∴△AEB 为正三角形,故⑤正确; 综上可知正确的结论为:①②③⑤.故答案为:①②③⑤. 三、解答题(共60分)21.(本题6分)如图,在△ABC 中,D 是AB 上一点,且∠ACD=∠B,已知AD=8cm ,BD=4cm ,求AC 的长.【答案】4622.(本题6分)如图,在边长为1 的小正方形组成的网格中,给出了格点△ABC (顶点是网格线的交点)和格点O ,按要求画出格点△A 1B 1C 1和格点△A 2B 2C 2. (1)将△ABC 绕O 点顺时针旋转90°,得到△A 1B 1C 1;(2)以A 1为一个顶点,在网格内画格点△A 1B 2C 2,使得△A 1B 1C 1∽△A 1B 2C 2,且相似比为1:2.【答案】(1)图形见解析;(2)图形见解析.【解析】(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A1B2C2,即为所求.23.(本题6分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.【答案】4.【解析】∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴BD DEAB AC,∴DE=BD ACAB⋅=8714⨯=4.24.(本题8分)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【答案】(1)证明见解析;(2) AD=3525.(本题7分)为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一根标杆、皮尺,设计如图所示的测量方案.已知测量同学眼睛A、标杆顶端F、树的顶端E在同一直线上,此同学眼睛距地面1.6米,标杆高为3.2米,且BC=2米,CD=6米,求树ED的高.【答案】8米【解析】如图,过A作AH垂直ED,垂足为H,交线段FC与G,由题知,FG//EH, △AFG∽△AEH,FG AG EH AH=又因为AG=BC=2,AH=BD=2+6=8,FG=FC-GC=3.2 -1.6=1.6,所以1.628EH=,EH=6.4,∴ED=EH+HD=6.4+1.6=8 树ED的高为8米26.(本题8分)如图,正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,如图位置依次摆放,已知点C1,C2,C3…,C n在直线y=x上,点A1的坐标为(1,0).(1)写出正方形A1A2B1C1,A2A3B2C2,…A n a n+1B n C n,的位似中心坐标;(2)正方形A4A3B4C4四个顶点的坐标.【答案】(1)(0,0);(2)A4(8,0),A5(16,0),B4(16,8),C4(8,8).27.(本题8分)如图,在△ABC中,BE平分∠ABC交AC于点E,过点E作ED∥BC交AB于点D.(1)求证:AE•BC=BD•AC;(2)如果S△ADE=3,S△BDE=2,DE=6,求BC的长.【答案】(1)证明见解析;(2) BC=10.28.(本题11分) (1)、问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)、探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)、应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.【答案】(1)证明见解析;(2)证明见解析;(3) t=1秒或5秒.【解析】(1)、如图1 ∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°,∴∠ADP =∠BPC ∴△ADP∽△BPC.∴ADBP=APBC.即AD·BC=AP·BP.(2)结论AD·BC=AP·BP 仍成立.理由:如图2,∵∠BPD=∠DPC+∠BPC,又∵∠BPD=∠A+∠ADP,∴∠DPC+∠BPC =∠A+∠ADP,∵∠DPC =∠A=θ,∴∠BPC =∠ADP ,又∵∠A=∠B=θ,∴△ADP∽△BPC,∴ADBP=APBC.,∴AD·BC=AP·BP.(3)如图3,过点D作DE⊥AB于点E,∵AD=BD=5,AB=6,∴AE=BE=3,由勾股定理得DE=4,∴DC=DE=4,∴BC=5-4=1,又∵AD=BD,∴∠A=∠B,由已知,∠DPC =∠A,∴∠DPC =∠A=∠B,由(1)、(2)可得:AD·BC=AP·BP,又AP=t,BP=6-t,∴t(6-t)=5×1,解得t1=1,t2=5,∴t的值为1秒或5秒.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初中数学九年级第二十七章-相似-及习题-含答案第二十七章相似本章小结小结1 本章概述本章内容是对三角形知识的进一步认识,是通过许多生活中的具体实例来研究相似图形.在全等三角形的基础上,总结出相似三角形的判定方法和性质,使学过的知识得到巩固和提高.在学习过程中,通过大量的实践活动来探索三角形相似的条件,并应用相似三角形的性质及判定方法来研究和解决实际问题.在研究相似三角形的基础上学习位似图形,知道位似变换是特殊的相似变换.小结2 本章学习重难点【本章重点】通过具体实例认识图形的相似,探索相似图形的性质,掌握相似多边形的对应角相等,对应边成比例,面积的比等于相似比的平方.了解两个三角形相似的概念,探索两个三角形相似的条件.【本章难点】通过具体实例观察和认识生活中物体的相似,利用图形的相似解决一些实际问题.【学习本章应注意的问题】通过生活中的实例认识物体和图形的相似,探索并认识相似图形的特征,掌握相似多边形的对应角相等,对应边成比例以及面积的比与相似比的关系,能利用相似三角形的性质解决一些简单的实际问题,了解图形的位似,能利用位似将一个图形放大或缩小,会建立坐标系描述点的位置,并能表示出点的坐标.小结3 中考透视图形的相似在中考中主要考查:(1)了解比例的基本性质,了解线段的比及成比例线段.(2)认识相似图形,了解相似多边形的对应角相等,对应边成比例,面积比等于相似比的平方.(3)了解两个三角形相似的概念,掌握两个三角形相似的条件,能利用图形的相似解决一些实际问题.(4)了解图形的位似,能利用位似将一个图形放大或缩小.相似是平面几何中重要的内容,在近几年的中考中题量有所增加,分值有所增大,且题型新颖,如阅读题、开放题、探究题等.由于相似图形应用广泛,且与三角形、平行四边形联系紧密,估计在今后中考的填空题、选择题中将会注重相似三角形的判定与性质等基础知识的考查,并在解答题中加大知识的横向与纵向联系.具体考查的知识点有相似三角形的判定、相似三角形的性质、相似三角形的实际应用、图形的放大与缩小等.知识网络结构图专题总结及应用一、知识性专题专题1 比例线段【专题解读】解决有关比例线段的问题时,常常利用三角形相似来求解.例1 如图27-96所示,A,B,D,E四点在⊙O上,AE,BD的延长线相交于点C,AE=8,OC=12,∠EDC=∠BAO.(1)求证CD CE AC CB=;(2)计算CD·CB的值,并指出CB的取值范围.分析利用△CDE∽△CAB,可证明CD CE AC CB=.证明:(1)∵∠EDC=∠BAO,∠C=∠C,∴△CDE∽△CAB,∴CD CE AC CB=.解:(2)∵AE=8,OC=12,∴AC=12+4=16,CE=12-4=8.又∵CD CE AC CB=,∴CD·CB=AC·CE=16×8=128.连接OB,在△OBC中,OB=12AE=4,OC=12,∴8<BC<16.【解题策略】将证CD CEAC CB=转化为证明△CDE∽△CAB.专题2 乘积式或比例式的证明【专题解读】证明形如22a cb d=,33a cb d=或abcdef=1的式子,常将其转化为若干个比例式之积来解决.如要证22a cb d=,可设法证a cb x=,a xb d=,然后将两式相乘即可,这里寻找线段x便是证题的关键。

例2 如图27-97所示,在等腰三角形ABC中,过A作AD⊥BC,过C作CE⊥AB,又作DF⊥CE,FG⊥AD,求证23 FG BD AG AD=.分析欲证23FG BDAG AD=,可将其分成三个比例式BD FGAD x=,BD yAD AG=,BD xAD y=,再将三式相乘即可.不难得知x就是CD,而线段y在原图中没有,由相似关系可延长FG交AB于K,则y就是GK,只要证明BD GDAD GK=就可以了.证明:延长FG交AB于K,连接DK,∵DF⊥EC,BE⊥EC,∴DF∥BE,∵AB=AC,AD⊥BC,∴BD=DC,∴EF=C F.∵FG∥BC,∴∠1=∠2,∴Rt△FDC≌Rt△E K F,∴K F=DC,∠3=∠4,∴四边形K FCD是平行四边形,∴∠2=∠5,∴∠EKD=∠3+∠5=∠4+∠2=90°,∴DK⊥AB,∴DF∥AB,∴∠BAD=∠FDG,∴Rt△ADB∽Rt△DGF,∴BD FGAD GD=.①∵GK∥BD,∴△AKG∽△ABD,∴BD KGAD AG=.②在△ABD中,∠ADB=90°,DK⊥AB,∴△ADB∽△AKD.又△AKD∽△KGD,△ADB∽△KGD,∴BD CDAD KG=.③由①×②×③,得33BD FG AD AG=.例3 如图27-98所示,在△ABC中,已知∠A:∠B:∠C=1:2:4,求证111 AB AC BC+=.分析原式等价于BC BCAB AC+=1,也就是BC AC BCAB AC-=,在CA上取一点D,使CD=BC,原式就变成BC ADAB AC=,要证明这个比例式,需要构造相似三角形,为此作∠ACB的平分线CE,交AB于点E,连接DE,显然有△BCE≌△DCE,从而易证AD=DE=CE,于是只需证BC CEAB AC=即可.证明:∵∠A:∠B:∠C=1:2:4,∴设∠A=x,则∠B=2x,∠C=4x作CE平分∠BCA,交AB于E,在AC边上取一点D,使CD=CB,连接DE,∴△DCE≌△BCE,∴∠CDE=∠B=2x,∠DEC=∠BEC=3x,又∠CDE=∠A+∠DEA,∴∠DEA=x,∴AD=DE,又∵DE=EC,∴AD=CE.在△ABC和△ACE中,∠CAB=∠CAE,∠ACE=∠B=2x,∴△ABC∽△ACE,∴BC CE AB AC=,即BC AD AC CD AC BC AB AC AC AC--===,∴BC AC BCAB AC AC=-,∴BC BCAB AC+=1即111 AB AC BC+=.二、规律方法专题专题3:相似三角形的性质【专题解读】相似三角形是初中数学重要的内容之一,其应用广泛,可以证明线段相等、平行、垂直,也可以计算图形的面积及线段的比值等,解题的关键是识别(或构造)相似三角形的基本图形.例4 如图27-99所不,在△ABC中,看DE∥BC,12ADBD=,DE=4cm,则BC的长为( )A.8 cm B.12 cm C.11 cm D.10 cm分析由DE∥BC,可得△ADE∽△ABC,DE ADBC AB=.因为12ADBD=,所以13ADAB=,所以13DEBC=.因为DE=4 cm,所以BC=12 cm故选B.例5 如图27-100所示,在△ABC中,AB=BC=12 cm,∠ABC=80°,BD是∠ABC的平分线,DE∥BC.(1)求∠EDB的度数;(2)求DE的长.分析(1)由DE∥BC,得∠EDB=∠DBC=12∠ABC,可求∠EDB.(2)由DE∥BC,得△ADE△ACB,则DE AEBC AB=,再证出BE=DE,可求DE.解:(1)∵DE∥BC,∴∠EDB=∠DBC.∵BD平分∠ABC,∴∠DBC=12∠ABC=12×80°=40°,∴∠EDB=40°.(2)∵BD平分∠ABC,∴∠ABD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴BE=DE.∵DE∥BC,∴△ADE∽△ACB,∴DE AE AB BE AB DE BC AB AB AB--===.∴121212DE DE-=,∴DE=6 cm【解题策略】将比例式中的AE转化为AB-DE,逐步由未知转化为已知,建立关于DE的关系式来求解.例6 如图27-101所示,点D,E在BC上,且FD∥AB,FE∥AC,求证△ABC∽△FDE.分析由已知可证∠FDE=∠B,∠FED=∠C,从而可证△ABC∽△FDE.证明:∵FD∥AB,FE∥AC,∴∠FDE=∠B,∠FED=∠C,∴△ABC∽△FDE.例7 (08·无锡)如图27-102所示,已知点正是矩形ABCD的边CD上一点,BF ⊥AE于点F,求证△ABF∽△EAD.分析由矩形的性质可知∠BAD=∠D=90°,再由BF⊥AE可证∠AFB=∠D和∠DAE =∠FBA,从而证明△ABF∽△EAD.证明:在矩形ABCD中,∠BAD=∠D=90°,∵BF⊥AE,∴∠AF B=∠D=90°,∴∠ABF+∠BAE=90°.又∵∠DAE+∠BAE=∠BAD=90°,∴∠ABF=∠EAD,∴△ABF∽△EAD,三、思想方法专题专题4 分类讨论思想【专题解读】分类讨论思想是一种重要的数学思想,我们在研究问题的解法时,应把可能出现的各种情况都加以考虑,这样才能全面、严谨地思考问题.例8 在△ABC中,AB>BC>AC,D是AC的中点,过点D作直线l,使截得的三角形与原三角形相似,这样的直线l有条.分析如图27-103所示,过点D作AB的平行线,或过点D作DF∥BC,或作∠CDH =∠B,或作∠ADG=∠B,故填4.专题5 建模思想【专题解读】本章建模思想多用于将实际问题转化为几何图形,然后根据相似的性质解决问题.例9 如图27-104所示,小明想用皮尺测量池塘A,B间的距离,但现有皮尺无法直接测量池塘A,B间的距离,学习有关的数学知识后,他想出了一个主意,先在地面上取一个可以直接到达A,B两点的点O,连接OA,OB,分别在OA,OB上取中点C,D,连接CD,并测得CD=a,由此他知道A,B间的距离是( )A.12a B.2a C.a D.3a分析∵D,C分别为OB,OA的中点,∴CD是△ABO的中位线,∴CD=12AB,∴AB=2CD=2a.故选D.【解题策略】 此题将所求问题转化为三角形中位线的问题来解决.例10 如图27-105所示,九年级(1)班课外活动小组利用标杆测量学校旗杆的高度,已知标杆高度CD =3 m ,标杆与旗杆的水平距离BD =15 m ,人的眼睛与地面的高度EF =1.6 m ,人与标杆CD 的水平距离DF =2 m ,求旗杆AB 的高度.分析 利用相似三角形得比例式,构建线段关系求线段长.解:因为CD ⊥FB ,AB ⊥FB ,所以CD ∥AB ,所以△CGE ∽△AHE ,所以CG EG AH EH =, 即CD EF FD AH FD BD-=+, 所以3 1.62215AH -=+,解得AH =11.9, 所以AB =AH +HB =AH +EF =11.9+1.6=13.5(m).故旗杆AB 的高度为13.5 m .专题6 转化思想【专题解读】 本章中的转化思想主要用于解决一些比例线段的问题.例11 如图27-106所示,已知E 为ABCD 的边CD 延长线上的一点,连接BE 交AC 于O ,交AD 于F .求证BO 2=OF ·OE . 分析 要证BO 2=OF ·OE ,只需证OF OB OB OE=,而OB ,OE ,OF 在一条直线上,因此不能通过三角形相似证得,于是想到要用中间比,而由已知可证△AOF ∽△COB 和△AOB ∽△COE ,即有OF AO OB OC =,OB AO OE OC =,从而得证. 证明:在ABCD 中,AB ∥CE ,AD ∥BC ,∴△AOF ∽△COB ,△AOB ∽△COE ,∴AO OF OC OB =,AO OB OC OE =, ∴OF OB OB OE=, ∴OB 2=OF ·OE .例12 在△ABC 和△DEF 中,AB =2DE ,AC =2DF ,∠A =∠D ,如果△ABC 的周长是16,面积是12,那么△DEF 的周长、面积依次为 ( )A .8,3B .8,6C .4,3D .4,6分析 由AB =2DE ,AC =2DF ,∠A =∠D ,得△ABC ∽△DEF ,且相似比为2,则41ABC DEF S S =△△,所以S △DEF =124=3,△DEF 的周长为162=8.故选A . 例13 已知△ABC 与△DEF 相似且面积比为4:25,则△ABC 与△DEF 的相似比为 .分析 利用相似三角形的性质求解.故填2:5.例14 已知△ABC ∽△A ′B ′C ′,且S △ABC :S △A ′B ′C ′=1:2,则AB :A ′B ′= .分析 根据相似三角形面积比等于相似比的平方,且S △ABC :S △A ′B ′C ′=1:2,得AB :A ′B ′=1:2.故填1:2.2011中考真题精选1. (2010广东,3,3分)将左下图中的箭头缩小到原来的21,得到的图形是( )考点:相似图形分析:根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.解答:解:∵图中的箭头要缩小到原来的错误!未找到引用源。

相关文档
最新文档