线性规划基本概念
线性规划知识点总结

线性规划知识点总结标题:线性规划知识点总结引言概述:线性规划是运筹学中的一种最基本的数学规划方法,广泛应用于生产、运输、金融等领域。
通过线性规划,可以优化资源分配,最大化利润或者最小化成本。
本文将对线性规划的基本概念、线性规划模型、解决方法、应用领域和优缺点进行总结。
一、基本概念1.1 线性规划的定义:线性规划是一种数学优化方法,其目标是在一组线性约束条件下,找到使目标函数取得最大值或者最小值的决策变量的取值。
1.2 决策变量和目标函数:线性规划中,决策变量是需要确定的未知数,而目标函数则是需要优化的目标,通常是最大化利润或者最小化成本。
1.3 约束条件:线性规划模型中的约束条件是对决策变量的限制,可以是等式约束或者不等式约束,用来限制决策变量的取值范围。
二、线性规划模型2.1 标准形式和非标准形式:线性规划模型可以分为标准形式和非标准形式,标准形式要求目标函数是最小化形式,约束条件是等式约束;非标准形式则没有这些限制。
2.2 线性规划的矩阵形式:线性规划可以用矩阵形式表示,目标函数和约束条件可以用矩阵的乘法来表示,这样可以简化问题的求解过程。
2.3 整数规划和混合整数规划:在实际应用中,有时需要考虑变量的取值只能是整数的情况,这时就需要用到整数规划或者混合整数规划。
三、解决方法3.1 单纯形法:单纯形法是解决线性规划问题的经典方法,通过不断挪移顶点来找到最优解,是一种高效的求解方法。
3.2 对偶理论:对偶理论是线性规划的重要理论基础,通过对原问题的对偶问题进行求解,可以得到原问题的最优解。
3.3 整数规划的分支定界法:对于整数规划问题,可以采用分支定界法来求解,通过不断分支和剪枝来逐步逼近最优解。
四、应用领域4.1 生产计划优化:线性规划可以用来优化生产计划,确定最佳生产量和资源分配,以最大化利润或者最小化成本。
4.2 运输网络优化:在物流领域,线性规划可以用来优化运输网络,确定最佳的运输路径和运输量,以提高运输效率。
线性规划例题和知识点总结

线性规划例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。
下面通过一些例题来帮助大家更好地理解线性规划,并对相关知识点进行总结。
一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值问题。
线性约束条件通常是由一组线性等式或不等式组成。
例如:$2x +3y ≤ 12$,$x y ≥ 1$等。
目标函数一般表示为$Z = ax + by$的形式,其中$a$、$b$为常数,$x$、$y$为决策变量。
可行解是满足所有约束条件的解,可行域是所有可行解构成的集合。
最优解则是使目标函数达到最大值或最小值的可行解。
二、线性规划的例题例 1:某工厂生产甲、乙两种产品,已知生产甲产品 1 件需消耗 A原料 3 千克、B 原料 2 千克;生产乙产品 1 件需消耗 A 原料 2 千克、B 原料 4 千克。
A 原料有 12 千克,B 原料有 16 千克。
甲产品每件利润为 5 元,乙产品每件利润为 8 元,问该工厂应如何安排生产,才能使利润最大?设生产甲产品$x$件,生产乙产品$y$件。
则约束条件为:$\begin{cases}3x +2y ≤ 12 \\ 2x +4y ≤ 16 \\x ≥ 0, y ≥0\end{cases}$目标函数为$Z = 5x + 8y$画出可行域,通过解方程组找到可行域的顶点坐标,分别代入目标函数计算,可得当$x = 2$,$y = 3$时,利润最大为$34$元。
例 2:某运输公司有两种货车,每辆大型货车可载货 8 吨,每辆小型货车可载货 5 吨。
现要运输 60 吨货物,且大型货车的使用成本为每次 100 元,小型货车的使用成本为每次 60 元,问如何安排车辆才能使运输成本最低?设使用大型货车$x$辆,小型货车$y$辆。
约束条件为:$\begin{cases}8x +5y ≥ 60 \\x ≥ 0, y ≥ 0\end{cases}$目标函数为$Z = 100x + 60y$画出可行域,计算顶点坐标代入目标函数,可知当$x = 5$,$y =4$时,成本最低为$740$元。
线性规划的应用

线性规划的应用一、引言线性规划是一种数学优化方法,用于在给定的约束条件下,寻找一个线性目标函数的最优解。
它在各个领域都有广泛的应用,如经济学、工程学、运筹学等。
本文将介绍线性规划的基本概念、模型建立和求解方法,并结合实际案例展示其应用。
二、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
例如,最大化利润或最小化成本。
2. 约束条件:线性规划的解必须满足一系列线性不等式或等式,称为约束条件。
例如,资源限制、技术限制等。
3. 决策变量:线性规划中需要做出决策的变量,称为决策变量。
例如,生产数量、销售数量等。
三、模型建立线性规划的建模过程包括确定决策变量、目标函数和约束条件。
1. 决策变量的确定:根据实际问题确定需要做出决策的变量。
例如,假设某公司需要决定生产产品A和产品B的数量,可以设定决策变量为x和y,分别表示产品A和产品B的生产数量。
2. 目标函数的建立:根据实际问题确定需要最大化或最小化的目标函数。
例如,假设公司的目标是最大化利润,可以建立目标函数为Maximize 3x + 5y,其中3和5分别表示产品A和产品B的单位利润。
3. 约束条件的建立:根据实际问题确定约束条件。
例如,假设公司的资源限制为总生产时间不超过8小时和总材料消耗不超过100kg,可以建立约束条件为:- 2x + 3y ≤ 8(生产时间约束)- x + 2y ≤ 100(材料消耗约束)- x ≥ 0, y ≥ 0(非负约束)四、求解方法线性规划可以使用各种数学方法进行求解,其中最常用的方法是单纯形法。
单纯形法的基本思想是通过不断地移动解去改善目标函数的值,直到找到最优解。
具体步骤如下:1. 初始化:选择一个初始可行解。
2. 检验最优性:计算当前解的目标函数值,判断是否为最优解。
如果是最优解,则结束求解;否则,继续下一步。
3. 选择进入变量:选择一个非基变量作为进入变量,使目标函数值增加最快。
线性规划知识点总结

线性规划知识点总结一、概述线性规划是一种数学优化方法,用于在给定的约束条件下最大化或最小化线性目标函数。
它在各个领域中都有广泛的应用,包括经济学、管理科学、工程等。
本文将对线性规划的基本概念、模型构建、解法以及应用进行详细总结。
二、基本概念1. 可行解:满足所有约束条件的解称为可行解。
2. 最优解:在所有可行解中,使目标函数达到最大或最小值的解称为最优解。
3. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
4. 约束条件:线性规划的变量需要满足一系列线性等式或不等式,称为约束条件。
三、模型构建1. 决策变量:线性规划中需要决策的变量,通常用x1, x2, ..., xn表示。
2. 目标函数:根据问题的要求,构建一个线性函数作为目标函数。
3. 约束条件:根据问题的限制条件,构建一系列线性等式或不等式作为约束条件。
四、解法1. 图形法:适用于二维线性规划问题,通过绘制约束条件的图形,找出目标函数的最优解。
2. 单纯形法:适用于多维线性规划问题,通过迭代计算,找出最优解。
3. 整数规划法:适用于决策变量需要为整数的线性规划问题,通过限制变量的取值范围,找出最优解。
4. 网络流法:适用于网络优化问题,通过建立网络模型,找出最优解。
五、应用1. 生产计划:线性规划可以帮助企业制定最优的生产计划,以最小化成本或最大化利润。
2. 资源分配:线性规划可以帮助政府或组织合理分配资源,以满足各方面的需求。
3. 运输问题:线性规划可以帮助解决物流运输问题,以最小化运输成本。
4. 投资组合:线性规划可以帮助投资者选择最优的投资组合,以最大化收益或最小化风险。
六、案例分析以生产计划为例,假设某公司有两种产品A和B,每单位产品A的利润为10元,每单位产品B的利润为15元。
公司有两个工厂,分别生产产品A和产品B。
工厂1每天生产产品A需要耗费2小时,生产产品B需要耗费1小时;工厂2每天生产产品A需要耗费1小时,生产产品B需要耗费3小时。
第五章 线性规划

第五章线性规划线性规划是一种优化问题的数学建模方法,用于在给定的约束条件下寻找最优解。
它在经济学、工程学、运筹学等领域中被广泛应用。
本文将详细介绍线性规划的基本概念、模型建立和求解方法。
一、线性规划的基本概念1.1 目标函数线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
目标函数通常表示为Z = c₁x₁ + c₂x₂ + ... + cₙxₙ,其中c₁、c₂、...、cₙ为常数,x₁、x₂、...、xₙ为决策变量。
1.2 约束条件线性规划的约束条件是限制决策变量取值的条件。
约束条件通常表示为一组线性不等式或等式。
例如,a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁,a₂₁x₁ + a₂₂x₂+ ... + a₂ₙxₙ ≥ b₂等。
1.3 决策变量决策变量是指在线性规划中需要确定的变量。
决策变量的取值将影响目标函数的值。
例如,在一个生产计划中,决策变量可以是生产的数量或分配的资源。
二、线性规划模型建立2.1 确定决策变量首先,根据实际问题确定需要决策的变量。
例如,在一个生产计划中,决策变量可以是生产的数量或分配的资源。
2.2 建立目标函数根据问题的要求,建立一个线性函数作为目标函数。
例如,如果我们的目标是最大化利润,那么目标函数可以是利润的总和。
2.3 建立约束条件根据问题的限制条件,建立一组线性不等式或等式作为约束条件。
例如,如果我们有限定的资源,那么约束条件可以是资源的总和小于等于给定的值。
2.4 完整的线性规划模型将目标函数和约束条件整合起来,形成一个完整的线性规划模型。
例如,一个典型的线性规划模型可以表示为:最大化 Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≥ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙx₁, x₂, ... , xₙ ≥ 0三、线性规划的求解方法3.1 图形法图形法是一种直观的线性规划求解方法,适用于二维或三维的问题。
线性规划知识点

线性规划知识点一、概述线性规划是一种数学优化方法,用于解决一类特定的优化问题。
它的目标是在给定的约束条件下,找到使目标函数取得最大或最小值的变量值。
线性规划广泛应用于经济、工程、运输、资源分配等领域。
二、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
通常表示为Z = c1x1 + c2x2 + ... + cnxn,其中c1,c2,...,cn为系数,x1,x2,...,xn为变量。
2. 约束条件:线性规划的变量需要满足一系列约束条件,通常是一组线性等式或不等式。
例如,Ax ≤ b,其中A为系数矩阵,x为变量向量,b为常数向量。
3. 可行解:满足所有约束条件的变量值称为可行解。
4. 最优解:在所有可行解中,使目标函数取得最大或最小值的变量值称为最优解。
三、标准形式线性规划问题可以通过将其转化为标准形式来求解。
标准形式具有以下特点:1. 目标函数为最小化形式:minimize Z = c1x1 + c2x2 + ... + cnxn2. 约束条件为等式形式:Ax = b3. 变量的非负性约束:x ≥ 0四、求解方法线性规划问题可以使用多种方法求解,其中最常用的是单纯形法。
单纯形法的基本思想是通过迭代计算来逐步改进解的质量,直到找到最优解。
1. 初始化:选择一个初始可行解。
2. 进行迭代:根据当前解,确定一个非基变量进入基变量集合,并确定一个基变量离开基变量集合,以改进目标函数值。
3. 改进解:通过迭代计算,逐步改进解的质量,直到找到最优解。
4. 终止条件:当无法找到更优解时,算法终止。
五、应用案例线性规划在实际应用中有广泛的应用,以下是一些常见的应用案例:1. 生产计划:确定如何分配有限的资源以最大化产量。
2. 运输问题:确定如何分配货物以最小化运输成本。
3. 资源分配:确定如何分配有限的资源以最大化效益。
4. 投资组合:确定如何分配资金以最大化投资回报率。
5. 作业调度:确定如何安排作业以最小化总工时。
线性规划知识点

线性规划知识点线性规划是一种数学优化方法,用于解决线性约束条件下的最优化问题。
它可以帮助我们在资源有限的情况下,找到最佳的解决方案。
本文将详细介绍线性规划的基本概念、模型构建、求解方法以及应用领域。
一、基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,该函数被称为目标函数。
例如,最大化利润或最小化成本。
2. 约束条件:线性规划问题通常有一系列线性约束条件,用于限制变量的取值范围。
例如,生产数量不能超过资源限制。
3. 变量:线性规划问题中的变量是我们要优化的决策变量。
例如,生产的数量或分配的资源。
4. 非负约束:线性规划的变量通常需要满足非负约束,即变量的取值必须大于等于零。
二、模型构建线性规划问题的模型构建包括确定目标函数、约束条件和变量的定义。
下面以一个简单的生产问题为例进行说明。
假设某工厂生产两种产品A和B,每单位产品A的利润为10元,产品B的利润为15元。
工厂拥有两台机器,每台机器每天的工作时间为8小时。
生产一单位产品A需要2小时,生产一单位产品B需要3小时。
工厂希望确定每种产品的生产数量,以最大化总利润。
目标函数:最大化总利润,即10A + 15B。
约束条件:工作时间约束,即2A + 3B ≤ 16。
非负约束:A ≥ 0,B ≥ 0。
三、求解方法线性规划问题可以使用多种方法求解,其中最常用的方法是单纯形法。
单纯形法通过迭代的方式逐步接近最优解,直到找到最优解为止。
单纯形法的基本步骤如下:1. 将线性规划问题转化为标准形式,即将不等式约束转化为等式约束。
2. 选择一个初始可行解,通常为原点(0,0)。
3. 计算目标函数的值,并确定是否达到最优解。
4. 如果未达到最优解,则选择一个进入变量和一个离开变量,通过调整这两个变量的值来改善目标函数的值。
5. 重复步骤3和步骤4,直到达到最优解。
四、应用领域线性规划在各个领域都有广泛的应用,以下是一些常见的应用领域:1. 生产计划:线性规划可以帮助企业确定最佳的生产计划,以最大化利润或最小化成本。
线性规划讲义

线性规划讲义一、引言线性规划是一种优化问题的数学建模方法,它可以用来解决一类特定的最优化问题。
本讲义将介绍线性规划的基本概念、问题形式化、求解方法以及应用领域。
二、线性规划的基本概念1. 线性规划定义线性规划是一种在给定的约束条件下,求解线性目标函数的最优解的数学问题。
线性规划的目标函数和约束条件都是线性的。
2. 线性规划的数学模型线性规划可以用数学模型来表示,一般形式为:最大化(或最小化)目标函数约束条件:线性规划的目标函数和约束条件可以包含多个变量和多个约束条件。
3. 线性规划的基本假设线性规划的求解过程基于以下假设:- 可行解存在:问题存在满足约束条件的解。
- 目标函数有界:问题存在有限的最优解。
- 线性关系:目标函数和约束条件都是线性的。
三、线性规划的问题形式化1. 目标函数的确定线性规划的目标函数可以是最大化或最小化某个特定的指标,如利润最大化、成本最小化等。
2. 约束条件的确定约束条件是限制问题解的条件,可以包括等式约束和不等式约束。
约束条件可以来自于问题的实际限制,如资源的有限性、技术要求等。
3. 决策变量的确定决策变量是问题中需要决策的变量,它们的取值将影响目标函数的值。
决策变量的选择应该与问题的实际需求相匹配。
四、线性规划的求解方法1. 图解法图解法是线性规划求解的一种直观方法,通过绘制约束条件的图形和目标函数的等高线,找到目标函数取得最大(或最小)值的点。
2. 单纯形法单纯形法是一种常用的线性规划求解算法,它通过迭代计算,逐步接近最优解。
单纯形法的基本思想是通过不断地移动到更优的解,直到找到最优解。
3. 整数规划的分支定界法整数规划是线性规划的一种扩展形式,它要求决策变量的取值为整数。
分支定界法是一种用于求解整数规划的方法,它通过将问题分解为多个子问题,并逐步缩小解空间,最终找到最优解。
五、线性规划的应用领域线性规划在实际问题中有广泛的应用,包括但不限于以下领域:- 生产计划与调度- 运输与物流管理- 金融投资组合优化- 能源调度与优化- 供应链管理等六、总结线性规划是一种重要的数学建模方法,它可以用来解决一类特定的最优化问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-7
一組試驗解
偉伯問題試算表中將一組試驗解(4 扇門及3個窗戶) 輸入於變動儲存格
© The McGraw-Hill Companies, Inc., 2009
2-8
偉伯玻璃公司之代數模式
令 D = 玻璃門的生產數量 W =木框窗戶的生產數量
滿足 D ≤ 4 之非負解
Production rate for windows
W
8
D= 4
木6 框 窗 戶4 的 產 能
2
0
2
4
6
8D
玻Pr璃odu門ctio的n r產ate 能for doors
© The McGraw-Hill Companies, Inc., 2009
2-12
滿足 2W ≤ 12 之非負解
2-1
學習目標
在讀完本章後,你應該能夠:
1. 解釋什麼是「線性規劃」。 2. 了解建構試算表模式前所必須找出的三項核心問題。 3. 指出及確認線性規劃試算表模式中四種儲存格的目的。 4. 根據問題描述於試算表中建構線性規劃模式。 5. 在試算表中表示線性規劃模型的代數式。 6. 運用圖解法求解雙變數線性規劃問題。 7. 使用 Excel 求解線性規劃試算表模式。
2
3D + 2W = 18
0
2
4
6
玻Pro璃duct門ion r的ate 產for d能oors
8D
© The McGraw-Hill Companies, Inc., 2009
2-16
可行解區域之示意圖
© The McGraw-Hill Companies, Inc., 2009
2-17
目標函數(P = 1,500)
加框線)是不錯的方法
© The McGraw-Hill Companies, Inc., 2009
2-5
發展試算表模式(續)
• 步驟三:目標儲存格
– 發展一個方程式來定義模式的目標 – 基本上此方程式涉及資料儲存格與變動儲存格以便決定感興
趣的數量(例如:總利潤或總成本) – 利用顏色來顯示這個儲存格(例如:深色並加粗框線)是不
6
8
10 D
玻璃門P的rod產uct能ion rate for doors
© The McGraw-Hill Companies, Inc., 2009
2-15
滿足 3D + 2W ≤ 18 之非負解
Production rate for w indow s W
10
8
木 框 窗6 戶 的 產4 能
最大化 P = $300D + $500W 受限於
D≤4 2W ≤ 12 3D + 2W ≤ 18 且 D ≥ 0, W ≥ 0
© The McGraw-Hill Companies, Inc., 2009
2-9
產品組合示意圖
© The McGraw-Hill Companies, Inc., 2009
© The McGraw-Hill Companies, Inc., 2009
2-14
改變右側值將產生一些平行的限制式邊界線
Production rate for w indow s W
12
10
木
框
8
窗
戶
6
的
產
能
4
2
3D + 2W = 24 3D + 2W = 18 3D + 2W = 12
0
2
4
© The McGraw-Hill Companies, Inc., 2009
2-2
偉伯玻璃公司產品組合問題
偉伯公司發展以下的新產品:
– 鋁框 8 呎玻璃門 – 4 呎 6 呎可雙面懸掛的木框窗戶
公司擁有三間工廠 :
– 工廠 1:生產鋁框及金屬器件 – 工廠 2:生產木框 – 工廠 3:生產玻璃並進行門及窗戶的組裝
Production rate for w indow s W
10
(0, 9)
8
木 框6 窗 戶 的4 產 能
2
(1, 7 1_) 2
(2, 6) 3 D + 2 W = 18
(3, 4 1_2)
(4, 3)
(5, 1 1_2)
(6, 0)
0
2
4
6
8
D
P玻rod璃ucti門on r的ate f產or d能oors
問題: 1. 公司是否應該從事新產品的生產? 2. 如果是的話,最佳的產品組合為何?
© The McGraw-Hill Companies, Inc., 2009
2-3
發展試算表模式
步驟一:資料儲存格
– 在試算表上輸入問題所有相關的資料 – 使用一致性的欄與列儲存方式 – 利用不同顏色來顯示這些「資料儲存格」(例如:淺色)是不錯
Production rate for w indow s W
8
木6 框 窗 戶4 的 產 能
2
2 W = 12
0Leabharlann 2468
D
P玻rod璃ucti門on r的ate產for能doors
© The McGraw-Hill Companies, Inc., 2009
2-13
限制式 3D + 2W ≤ 18 之邊界線
2-10
滿足限制式:D ≥ 0 及 W ≥ 0之區域示意圖
Production rate for windows
W
8
木6 框 窗 戶4 的 產 能
2
0
2
4
6
8
D
P玻rod璃uct門ion 的rate產for能doors
© The McGraw-Hill Companies, Inc., 2009
2-11
錯的方法
© The McGraw-Hill Companies, Inc., 2009
2-6
發展試算表模式(續)
步驟四:限制式
– 對於受限制的資源,在試算表某一儲存格中計算該資源使用 量(輸出儲存格)
– 在三個連續的儲存格中定義限制式。例如:若數量A <= 數量 B,將此三項(數量A、 <=、 數量B)置於相鄰的儲存格
木框窗戶P的rod生uct產ion率rate W
for windows 8
6
4 P = 1500 = 300D+ 500W
可Fea行s ible 區re g域ion
2
0
2
4
6
P玻rod璃uct門ion的rate生fo產r do率ors
的方法
© The McGraw-Hill Companies, Inc., 2009
2-4
發展試算表模式(續)
步驟二:變動儲存格
– 在試算表上替每個需要做的決策設置一儲存格 – 若是你沒有特殊的起始解(initial values)考量,只要輸入 0 即
可 – 利用顏色與框線等來顯示這些「變動儲存格」(例如:淺色並