什么是耳聋基因检测

合集下载

认识药物性耳聋基因,预防儿童耳聋

认识药物性耳聋基因,预防儿童耳聋

认识药物性耳聋基因预防儿童耳聋16岁的小明听力下降多日,伴耳鸣,无头痛眩晕。

医生对其进行体格检查,发现他的外耳道未见异常分泌物,鼓膜完整,无充血、穿孔,为明确病因,建议其做遗传性耳聋基因检测。

最终检测结果为检出线粒体基因MT-RNR1发生变异,m.1555A >G 均质突变。

该变异提示小明遗传了其母亲的线粒体中存在的耳聋基因,增大了药物导致耳聋的风险。

一、什么是药物性耳聋基因药物性耳聋基因是由线粒体中的DNA 发生基因突变所致,携带这类基因变异的个体对氨基糖苷类药物高度敏感,中小剂量的氨基糖苷类药物就可导致重度或极重度耳聋的发生,所以有“一针致聋”的说法。

这种耳聋被称为药物性耳聋,患者临床表现多为重度和极重度感音神经性耳聋。

通常情况下,氨基糖苷类药物所致的药物性耳聋是由线粒体mtDNA 变异引起的遗传性耳聋,根据是否伴有耳外组织的异常或病变可表现为综合征性(患者伴有神经系统、内分泌系统等其他疾病)或非综合征性(患者只表现出听力损失一种临床表征)。

基于大规模耳聋人群分子流行病学调查,线粒体基因MT-RNR1编码的12S rRNA 上存在m.1555A >G、m.1494C >T 及m.1095T >C 变异,是中国耳聋人群中明确的热点突变,与氨基糖苷类药物所致的药物性耳聋有关。

临床上,氨基糖苷类药物主要具有抗菌作用,包括庆大霉素、卡那霉素、链霉素、妥布霉素、阿米卡星、新霉素、核糖霉素、奈替米星、异帕米星、小诺米星、依替米星、巴龙霉素、大观霉素等。

文/覃明雄 广西贵港市人民医院二、避免“一针致聋”,早发现是关键目前,临床对于药物性耳聋的治疗,除了根据听力受损程度佩戴助听器或进行人工耳蜗植入术等,尚无任何有效的药物治疗手段。

一旦发现听力损失不可逆,便无药可治,而人工耳蜗价格昂贵,所以该疾病的预防大于治疗,及早发现是否携带药物性耳聋基因并严格避免使用氨基糖苷类药物是避免耳聋发生的重要手段。

三、“一针致聋”基因的遗传方式药物性耳聋的遗传模式为母系遗传,因此携带这类基因变异的患者与母系家族成员理论上都是高风险的氨基糖苷类药物敏感个体,但是患者的易感性不同,使用氨基糖苷类药物后的起病时间和听力受损程度也不同,因此不能因为家族中有成员使用药物后未致聋来推断其他家庭成员为非易感者。

孕妇耳聋基因筛查实施方案

孕妇耳聋基因筛查实施方案

孕妇耳聋基因筛查实施方案孕妇耳聋基因筛查是指通过对孕妇进行基因检测,以筛查是否携带耳聋相关基因突变,从而预防或减少新生儿耳聋的发生。

目前,孕妇耳聋基因筛查已成为一项重要的生育保健措施,对于提高新生儿的健康水平和生活质量具有重要意义。

下面将介绍孕妇耳聋基因筛查的实施方案。

一、孕前咨询和知情同意在怀孕前,孕妇应及早进行孕前咨询,了解耳聋基因筛查的相关知识和意义。

医生应向孕妇详细介绍耳聋基因筛查的目的、方法、风险和可能的结果,让孕妇充分了解,并签署知情同意书。

二、基因检测孕妇在孕前3个月进行基因检测,可选择血液样本或唾液样本进行检测。

基因检测的方法主要包括PCR扩增、基因芯片检测等,通过对孕妇的基因进行分析,筛查是否存在耳聋相关基因突变。

三、结果解读和咨询基因检测结果出来后,医生应向孕妇解读检测结果,说明检测结果的意义和可能的影响。

对于携带耳聋相关基因突变的孕妇,医生应进行耳聋风险评估,并提供相应的遗传咨询和干预措施。

四、遗传咨询和干预对于携带耳聋相关基因突变的孕妇,医生应进行遗传咨询,详细介绍耳聋的遗传规律和风险,帮助孕妇了解可能的遗传风险,提供生育建议和遗传咨询,指导孕妇进行生育决策。

五、生育干预针对携带耳聋相关基因突变的孕妇,可以采取一些生育干预措施,如胎儿耳聋基因筛查、胎儿超声检查、羊水穿刺术等,及时发现和干预可能存在的胎儿耳聋风险。

六、产后随访和干预对于携带耳聋相关基因突变的孕妇所生的婴儿,医生应进行产后随访和干预,定期进行婴儿听力筛查,及时发现和干预可能存在的耳聋风险,提供相应的康复和治疗措施。

七、宣传和普及加强对孕妇耳聋基因筛查的宣传和普及工作,提高孕妇对耳聋基因筛查的认识和重视程度,促进孕妇积极参与耳聋基因筛查,提高新生儿的健康水平和生活质量。

总之,孕妇耳聋基因筛查是一项重要的生育保健措施,对于预防和减少新生儿耳聋具有重要意义。

通过完善的实施方案和措施,可以有效提高孕妇的知晓率和参与率,降低新生儿耳聋的发生率,促进新生儿健康成长。

耳聋基因检测

耳聋基因检测

自愿选择, 知情同意
受检人群
检测医院
初筛 TEOAE/DPOAE
结果不通过

结果通过
复筛(TEOAE/DPOAE )+AABR/ABR 阈值)筛选听力异常
基因检测流程
采取最少3个采血斑
知情同意、自愿选择
5个工作日
临床检验中心 耳聋基因检测
检测医院确诊 出具确诊报告
随访 检测结果正常
出具检测报告
检测结果为杂合突 变或纯合突变
Mohr-Tranebjaerg 综 合 TIMM8A 征
特雷彻-柯林斯综合征 TCOF1 ( Treacher Collins syndrome)
Alport综合征(遗传性 COL4A3,COL4A4,C
肾炎)
OL4A5
Wolfram综合征1型
WFS1
单个耳聋基因全测序
检测基因
GJB2 GJB3 SLC26A4 测序采用sanger法,在以下情况可建议进行单
氨基糖甙类药 物性致聋,无
法逆反
GJB3
538C>T 547G>A
1p33-p35 缝隙连接蛋白 Connexin 31 常染色体显性遗 传。我国本土克 隆和鉴定的第一 个耳聋致病基因
适用人群
新生儿 婚前、孕前和产前人群 各种原因不明的耳聋,包括先天性聋
和后天性聋人群 听力正常,但有耳聋家族史的人群
筛查案例
一家9口人,6人是耳聋
佛山家系为3代遗传的耳聋家系,现有家系成员9人,其中6名为 耳聋患者,除由于婚姻关系成为该家系成员的2名耳聋患者外, 剩余的4名患者均为母系家庭成员。
家系基因
12SrRNA A1555G
GJB2 235delc

耳聋基因检测的项目有哪些

耳聋基因检测的项目有哪些
耳聋基因检测的项目有哪些

核子基因科技 微信号:hezijiyinDNA
耳聋基因检测的项目有哪些
新生儿常见耳聋基因检测采用飞行时间质谱 检测技术,对新生儿抽取微量血液,在基因 水平上对常见耳聋基因进行检测。
耳聋基因检测的项目有哪些
耳聋基因检测通过用一定强度的激光照射样品与基质形成的共 结晶薄膜,基质从激光中吸收能量,样品解吸附,基质-样品之 间发生电荷转移使得样品分子电离,电离的样品在电场作用下 加速飞过飞行管道,根据到达检测器的飞行时间不同而被检测, 即测定离子的质量电荷之比(M/Z)与离子的飞行时间成正比 来检测离子,并测得样品的分子量,进而推知突变位点。
耳聋基因检测的技术
飞行时间质谱仪: 利用目标序列捕获与高通量测序技术,对外周血样本DNA中遗传性耳聋的 相关基因目标区域进行测序和生物信息分析,获取该区域基因变异信息, 并对可疑致病突变进行验证,该方法能够检测到的遗传性耳聋包括常染色 体隐性(显性)非综合征性耳聋、线粒体遗传性耳聋等各种类型综合征性 的耳聋,可检测到包括GJB2、GJB3、线粒体基因等在内的84个基因的全部 突变位点,为临床诊断和突变筛查做出参考依据。

检测耳聋基因实验报告

检测耳聋基因实验报告

检测耳聋基因实验报告研究背景耳聋是一种常见的感知器官缺陷,影响着全球数百万人口的听觉能力。

据世界卫生组织的数据,约有4660万人在全球范围内患有严重的耳聋问题,其中大部分是由遗传因素引起的。

因此,了解耳聋的遗传基础对于预防和治疗耳聋至关重要。

本实验旨在检测耳聋相关基因的存在,以帮助进一步了解耳聋的遗传机制。

实验设计样本收集本实验中,我们收集了100个来自不同地区、不同年龄和性别的样本,其中包括耳聋患者和正常人群。

所有的样本采集工作均在伦理审查委员会的指导下进行,并征得了每个受试者的知情同意。

DNA提取我们从每个受试者的全血样本中提取了DNA。

采用常规的DNA提取方法,包括细胞裂解、蛋白质沉淀、DNA沉淀等步骤,最终获得高质量的DNA样本。

耳聋相关基因检测根据文献研究和数据库查询,我们选择了九个与耳聋相关的常见基因进行检测,包括GJB2、GJB3、SLC26A4、MYO7A、USH1C、CDH23、PCDH15、TMC1和TECTA。

使用聚合酶链式反应(PCR)扩增这些基因的特定区域,并进行限制性内切酶切割试验或测序分析,以检测这些基因的突变。

实验结果经过耳聋相关基因的筛选和检测,我们获得了以下结果:基因突变类型突变频率突变位点:-: :-: :-: ::GJB2 缺失3% c.35delGGJB3 基因敲除1% 多个位点SLC26A4 缺失5% c.2168delAMYO7A 点突变2% c.101T>CUSH1C 插入突变1% c.2167_2168insACDH23 缺失4% c.6326delGPCDH15 缺失2% c.3165delCTMC1 点突变3% c.1001G>ATECTA 点突变1% c.546C>T结果表明,在100个受试者中,GJB2、SLC26A4、CDH23和TMC1这四个基因的突变频率较高,分别为3%、5%、4%和3%。

而其他基因的突变频率较低,不超过2%。

耳聋基因检测 - 2

耳聋基因检测 - 2

遵循常染色体隐性遗传模式
在不同人群均具有显著的高发病率
临床表现:绝大多数为先天性重度、
极重度耳聋
2
常见的致聋基因及位点
GJB3基因特点
GJB3基因是我国本土克隆的第一个遗传疾病基因
临床症状主要与GJB3突变基因的外显度有关,表现为正 常听力、轻度耳聋、中度耳聋、重度耳聋及极重度耳聋等
荧光探针法 飞行时间质谱法
测序法
耳聋基因检测常用方法比较
方法
主要设备
检测时间 所需步骤
特点
DNA测序法
PCR仪,测序仪 >10H
核酸提取、PCR,金标准,操作繁琐,需
电泳、纯化、测 要专门培训,结果判读

复杂
限制性内切酶法 PCR仪,电泳仪 约4H ARMS-PCR法
基因芯片法
P扫C描R仪仪,杂交仪,约5H
荧光PCR法
PDS基因突变 检测 试剂盒
SLC26A4:IVS7-2A>G、1174A>T、、 1229C>T、2168A>G ;
检测位点 (10个)
通量低
厦门致善
GJB2:35delG、167delT、176-
191del16、235delC、299-300delAT
; GJB3:538C>T、547G>A;
12SrRNA:1494C>T、1555A>G;
微阵列 芯片法
微阵列 芯片法
优缺点
检测位点少 (9个) 专用仪器 价格高 耗时长
检测位点 (15个) 专用仪器
价格高 耗时长
凯普
GJB2:35delG、176-191del16、235delC、299-
耳聋易感基因检测 试剂盒

遗传性耳聋基因检测与筛查 2

遗传性耳聋基因检测与筛查 2

遗传性耳聋
由于基因和染色体异常所致的 耳聋。这种疾病是由父母的遗 传物质发生了改变传给后代而 引起的耳聋,并且在子孙后代
中以一定数量出现。
综合征型耳聋
Syndromic hearing loss , SHL 除耳聋外,还伴随有其它组织
器官的病变。
非综合征型耳聋
Non-syndromic hearing loss , NSHL
shape of bony structures such as the cochlea and vestibular aqueduct .
Transport iodide ions out of certain cells
Transport:
Ions(chloride , iodide , bicarbonate ,)
耳聋比例:第二常见耳聋基因, SLC26A4基因突变占 全部遗传性耳聋的14%。
遗传方式: SLC26A4基因突变引起非综合征型和综合征 型耳聋PDS综合征均常染性色体隐遗传(DFNB4),大部分 DFNB4 和综合征性耳聋PDS综合征都伴有大前庭水管扩 大,并且PDS综合征还伴有甲状腺病变。
突变相关病症:这是一种先天性内耳发育畸形,出生时患 儿听力可以正常,但头部外伤、噪声、感染等诱因就可致 患儿听力急剧下降甚至全聋。
• 1846年Thomson发表的下颌骨-面颅骨发育不全综合征最早报道了综 合征型听力损失
• 1882年,Politzer首次描述了X-连锁遗传的听力损失 • 1995年发现第一个非综合征型听力损失基因后的近十年来,这一领域出
现了飞速的进展 • 2004年,王秋菊博士发现了一个Y-连锁遗传的听力损失家系,从而进一步
丰富了遗传性听力损失的理论内容

耳聋基因!听力障碍的主要原因,我们可以检测

耳聋基因!听力障碍的主要原因,我们可以检测

耳聋基因!听力障碍的主要原因,我们可以检测我国是世界上耳聋人数最多的国家,携带耳聋基因突变的人群达到7000-8000万,每年还新出生3万余名聋儿,防聋治聋工作任务艰巨。

研究表明有将近70%的耳聋致病原因由遗传因素引起。

已确定的耳聋基因多达200多种,而GJB2、SLC26A4、mtDNA12S rRNA引起的耳聋在耳聋致病原因中高达40%。

GJB2基因突变是最常见的致聋因素,可导致先天性重度、极重度聋。

SLC26A4基因突变是第二大致聋因素,可引起大前庭导水管综合征性耳聋。

由mtDNA12S rRNA A1555G和C1494T突变所导致的耳聋占1.87%。

耳聋遗传方式多样,有常染色体隐性,常染色体显性,伴性遗传等,临床上以常染色体隐性遗传多见。

GJB2、SLC26A4大部分病例表现为隐性遗传,即单个杂合不引起听力障碍,纯合或者复合杂合才表现出听力障碍。

正常听力人群中有5-6%的人有这两个基因的携带,如果夫妻双方都为携带状态,那么生育的孩子有25%的风险为纯合或者复合杂合,即表现为听力障碍。

mtDNA12S rRNA为氨基糖苷类抗生素敏感基因,有该基因突变的人群对氨基糖苷类的抗生素尤其敏感,如果接受了这类抗生素的注射,往往表现为“一针致聋”。

该基因是母系遗传,如果孕妇筛查出有该基因的突变,所生育的孩子均携带该基因的突变,以后应终身避免使用该类抗生素,所以该基因的筛查有强烈的预警作用。

我们常常遇到一对听力正常的夫妻带着一个听力障碍的孩子来咨询,为什么我们夫妻二人家里没有耳聋家族史也会生育出一个听力异常的孩子?这种情况经过基因检测,多数能检测出GJB2或者SLC26A4基因的杂合突变。

明确了基因缺陷的夫妻在生育二胎的时候就可以在怀孕16周的时候进行羊水穿刺产前诊断,通过对胎儿基因型的检测来预知二胎的听力情况。

理论上有相同致聋基因携带的夫妻每生育一胎,胎儿的患病风险为1/4,听力正常但有单杂合携带的风险为1/2,完全正常的概率为1/4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是耳聋基因检测
我国有两千多万聋哑人,其中遗传性耳聋占50%以上。

遗传性耳聋多为隐性遗传病,即夫妻双方均为携带者时,自身听力正常,但子女有25%的机会为聋儿;而仅当夫妻中一方为携带者时,子女听力不受影响。

目前正常人群中携带遗传性耳聋突变基因的比例是5-6%,因此听力正常的夫妻生出聋儿的现象时有发生,新生儿中耳聋发病率已达1-3‰。

遗传性耳聋的发生与基因突变有关,目前已发现与耳聋相关的基因至少有200—300个,相关突变位点达1000个以上,这给临床检测聋病易感基因带来了很大的困难。

而对中国人而言,80%的先天性耳聋患者其致病基因为:GJB2基因235delC、SLC26A4基因919-2 A>G、线粒体12Sr RNA基因1555A>G和1494C>T。

进行这四种基因的检测,可以明确大部分遗传性耳聋的原因。

进行耳聋基因检测,对于个人、家庭及下一代都十分重要。

(1)避免“一针聋”:
原本听力正常的人,在使用抗生素药物后,出现听力下降或者耳聋俗称“一针聋”。

既往人们不知道是什么原因引起,现已经明确是由携带线粒体基因被氨基糖甙类药物损伤所致。

抗生素用于预防感染和抗炎治疗,氨基糖甙类抗生素如庆大霉素、链霉素、丁胺卡拉霉素等,因其价格便宜和疗效好的原因,在临床被广泛应用,用药途径包括静脉、肌肉和局部,抗生素都均有一定的副作用,氨基糖甙类抗生素可导致耳聋,其中一部分患者(线粒体DNA A1555G基因突变)对上述药物极其敏感,少剂量短时应用此类抗生素后也有可能发生耳聋,所谓“一针致聋”。

在用药前进行耳聋基因检测是非常必要的。

除了明确耳聋的病因,尚可指导携带线粒体DNA A1555G基因突变但未发病母亲家族中的亲属用药,避免他们因使用氨基糖甙类药物也发生耳聋的悲剧。

(2)减缓耳聋的发展。

PDS基因突变导致大前庭水管综合征,此类患者应尽量避免头部外伤等原因引起颅压增高,损伤内耳,从而可减缓耳聋的发展;GJB2、GJB3基因突变可导致双侧感音神经性耳聋,部分婴儿出生就会耳聋,还有部分在幼儿或青少年时期发生耳聋。

••••
若孕妇检测结果阳性,提示配偶做耳聋基因检测,如果配偶的结果也为阳性胎儿会有1/4的机会发生耳聋,则需要做产前诊断明确胎儿是否遗传到父母的突变基因。

••••。

相关文档
最新文档