多项式乘以多项式教学内容

合集下载

多项式乘多项式 优秀教案

多项式乘多项式 优秀教案

多项式乘多项式【教学目标】1.知识与能力目标:理解多项式与多项式的乘法法则,掌握多项式与多项式相乘的运算。

2.过程与方法目标:由求一个长方形的面积的不同方法,引出多项式与多项式的乘法法则,体会数形之间的统一。

3.情感、态度与价值观目标:在探究“法则”的过程中,培养学生观察,概括与抽象的能力。

【教学重难点】重点:多项式与多项式相乘的乘法法则及法则的推导。

难点:在运算中遇到各种细节处理,比如相乘时的符号处理等问题。

【教学过程】一、自主学习(约8分钟)1.问题引入:一个矩形的长为(m+n)米,宽为(a+b)米,则它的面积为米²。

2.结合图形,发现(m+n)(a+b)=3.讨论如何计算:(m+n)(a+b)=?多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的分别乘以另一个多项式的,再把。

注意:每一项必须连同前面的符号相乘。

二、自测(1)(a+b)(c+d)= ;(2)(m+n)(x+y)= ;(3)(m+n)(a-b)= ;(4)(x-1)(y-2)= ;练习(1)(2x+1) (x+3) (2)(m+2n)(m-3n) (3)(a-1)²(4)(2x²-1)(x-4) (5)(x²+3)(2x-5) (6)(3x-1)(2x+1)三、小组合作探究并展示(约5分钟)(1)两项式乘以两项式,结果一定是两项式吗?(2)项数多于两项的多项式乘多项式,能用多项式乘以多项式的法则进行计算吗?(3)二项式乘以三项式,展开是几项式?例:计算)32(222y xy x y x -+-)(四、当堂训练(约12分钟)要求:认真、规范、独立完成习题,注意知识与方法额应用、书写认真,步骤规范,成绩计入小组量化。

(A 组为必做题,做完的同学请举手示意,B 组为选做题)(一)计算1.(3m-n)(m-2n) 2.(2x-3)(x+4) 3.(x+y) 24.(-x+3y+4)(x-y) 5.(x -1)(x²-2x +3) 6.(3a-2)(a-1)+(a+1)(a+2)7.解方程 5x(x+1)=3x ²+2(x 2-5)8.若(x ²+ax +8)(x ²-3x +b )的乘积中不含x ²和x ³项,则a =_______,b =_______。

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标:1. 让学生理解多项式乘以多项式的概念和意义。

2. 让学生掌握多项式乘以多项式的计算方法和步骤。

3. 培养学生运用多项式乘以多项式解决实际问题的能力。

二、教学内容:1. 多项式乘以多项式的概念和意义。

2. 多项式乘以多项式的计算方法和步骤。

3. 多项式乘以多项式在实际问题中的应用。

三、教学重点与难点:1. 教学重点:多项式乘以多项式的计算方法和步骤。

2. 教学难点:多项式乘以多项式在实际问题中的应用。

四、教学方法:1. 采用讲解法,让学生理解多项式乘以多项式的概念和意义。

2. 采用演示法,让学生掌握多项式乘以多项式的计算方法和步骤。

3. 采用案例分析法,培养学生运用多项式乘以多项式解决实际问题的能力。

五、教学过程:1. 引入新课:通过复习多项式的基本概念,引导学生进入多项式乘以多项式的新课。

2. 讲解多项式乘以多项式的概念和意义:解释多项式乘以多项式的定义,让学生理解其意义。

3. 演示多项式乘以多项式的计算方法和步骤:通过示例,让学生掌握多项式乘以多项式的计算方法。

4. 练习与巩固:布置一些练习题,让学生运用所学知识进行计算,巩固所学内容。

5. 案例分析:给出一些实际问题,让学生运用多项式乘以多项式的方法进行解决,培养学生的应用能力。

6. 小结与总结:对本节课的内容进行总结,强调多项式乘以多项式的计算方法和实际应用。

7. 作业布置:布置一些课后作业,巩固所学知识。

六、教学评价:1. 通过课堂讲解和练习,评估学生对多项式乘以多项式的概念和意义的理解程度。

2. 通过计算练习题,评估学生对多项式乘以多项式的计算方法和步骤的掌握情况。

3. 通过案例分析,评估学生运用多项式乘以多项式解决实际问题的能力。

七、教学资源:1. 多项式乘以多项式的教材和教学指导书。

2. 多媒体教学设备,如投影仪和白板。

3. 练习题和案例分析题的资料。

八、教学进度安排:1. 第1周:讲解多项式乘以多项式的概念和意义。

多项式乘以多项式教案

多项式乘以多项式教案

多项式乘以多项式教案教案标题:多项式乘以多项式教案目标:1. 理解多项式的概念和特点;2. 掌握多项式相乘的方法和技巧;3. 能够应用多项式相乘解决实际问题。

教案步骤:一、引入(5分钟)1. 引导学生回顾多项式的定义和基本术语,如项、系数、次数等;2. 提出多项式相乘的问题,激发学生的思考。

二、讲解(15分钟)1. 介绍多项式相乘的基本原理,即将每一项的系数分别相乘,指数相加;2. 通过示例演示多项式相乘的步骤和方法;3. 强调注意项的次数和系数的运算。

三、练习(20分钟)1. 分发练习题,让学生独立完成多项式相乘的计算;2. 引导学生发现规律,总结多项式相乘的技巧和注意事项;3. 鼓励学生解答其他学生的问题,促进合作学习。

四、应用(10分钟)1. 提供实际问题,让学生应用多项式相乘解决;2. 引导学生分析问题,确定解题思路;3. 学生展示解题过程和答案,进行讨论和评价。

五、总结(5分钟)1. 回顾多项式相乘的基本原理和方法;2. 强调多项式相乘在数学和实际问题中的应用;3. 鼓励学生继续探索多项式相乘的相关知识。

教案评估:1. 在练习环节中观察学生的解题过程和答案,评估他们对多项式相乘的掌握程度;2. 在应用环节中观察学生的解题思路和表达能力,评估他们能否将多项式相乘应用于实际问题中;3. 针对学生的表现,及时给予指导和反馈,帮助他们提高。

教案扩展:1. 引导学生探索多项式相乘的性质和规律,拓展他们的数学思维;2. 深入讨论多项式相乘的应用领域,如代数方程、几何问题等;3. 提供更多的练习和挑战,巩固学生的多项式相乘技巧。

注意事项:1. 让学生在实际问题中灵活运用多项式相乘,培养他们的问题解决能力;2. 鼓励学生合作学习,促进彼此之间的交流和学习进步;3. 根据学生的实际情况,适当调整教学内容和难度,保证教学效果。

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生理解多项式乘以多项式的概念和意义。

2. 培养学生掌握多项式乘以多项式的运算方法和技巧。

3. 提高学生解决实际问题的能力,培养学生的数学思维。

二、教学内容1. 多项式乘以多项式的定义和性质。

2. 多项式乘以多项式的运算规则。

3. 多项式乘以多项式的例题解析和练习。

三、教学重点与难点1. 重点:多项式乘以多项式的运算方法和技巧。

2. 难点:理解多项式乘以多项式的概念和运算规则。

四、教学方法1. 采用讲解法,引导学生理解多项式乘以多项式的概念和意义。

2. 采用示例法,展示多项式乘以多项式的运算过程,让学生直观感受。

3. 采用练习法,让学生通过多做例题和练习题,巩固所学知识。

五、教学过程1. 导入:通过简单的数学问题,引入多项式乘以多项式的概念。

2. 新课讲解:讲解多项式乘以多项式的定义、性质和运算规则。

3. 示例解析:分析并解答几个多项式乘以多项式的例题。

4. 课堂练习:让学生独立完成一些多项式乘以多项式的练习题。

六、教学评价1. 通过课堂提问,检查学生对多项式乘以多项式的概念和运算规则的理解程度。

2. 通过课后作业和练习题,评估学生掌握多项式乘以多项式的运算方法和技巧的情况。

3. 结合学生的课堂表现和练习情况,综合评价学生的学习效果。

七、教学资源1. 教学PPT:制作多媒体教学课件,展示多项式乘以多项式的定义、性质和运算规则。

2. 练习题库:准备一批多项式乘以多项式的练习题,包括基础题和提高题。

3. 教学辅导书:提供相关的教学辅导书籍,供学生自主学习和复习。

八、教学进度安排1. 第一课时:讲解多项式乘以多项式的定义和性质。

2. 第二课时:讲解多项式乘以多项式的运算规则,示例解析。

3. 第三课时:课堂练习,学生独立完成练习题。

九、课后作业1. 完成课后练习题,巩固多项式乘以多项式的运算方法和技巧。

2. 选择一些提高题,挑战自己的极限,提高解决问题的能力。

《多项式乘以多项式》教案

《多项式乘以多项式》教案

《多项式乘以多项式》教案一、教学目标1. 让学生掌握多项式乘以多项式的运算法则。

2. 培养学生运用数学知识解决实际问题的能力。

3. 提高学生的数学思维能力和团队协作能力。

二、教学内容1. 多项式乘以多项式的定义和运算法则。

2. 多项式乘以多项式的计算方法。

3. 多项式乘以多项式在实际问题中的应用。

三、教学重点与难点1. 教学重点:多项式乘以多项式的运算法则和计算方法。

2. 教学难点:多项式乘以多项式在实际问题中的应用。

四、教学方法1. 采用讲解法、演示法、练习法、讨论法等教学方法。

2. 利用多媒体课件辅助教学,提高学生的学习兴趣。

3. 分组讨论,培养学生的团队协作能力。

五、教学步骤1. 导入新课:通过复习单项式乘以单项式的运算法则,引出多项式乘以多项式的概念。

2. 讲解多项式乘以多项式的运算法则,并用多媒体课件展示计算过程。

3. 举例讲解多项式乘以多项式的计算方法,让学生跟随老师一起动手操作。

4. 进行课堂练习,让学生独立完成多项式乘以多项式的计算。

5. 组织学生进行分组讨论,探讨多项式乘以多项式在实际问题中的应用。

6. 总结本节课所学内容,强调多项式乘以多项式的运算法则和计算方法。

7. 布置课后作业,巩固所学知识。

六、教学评价1. 通过课堂讲解、练习和讨论,评价学生对多项式乘以多项式的理解和掌握程度。

2. 评估学生在解决实际问题时,运用多项式乘以多项式的能力。

3. 观察学生在课堂上的参与程度、提问回答和小组合作情况,评价其数学思维能力和团队协作能力。

七、教学资源1. 多媒体课件:用于展示多项式乘以多项式的计算过程和实际应用案例。

2. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。

3. 小组讨论工具:如白板、彩笔等,用于小组内讨论和展示。

八、教学进度安排1. 第1周:导入多项式乘以多项式的概念,讲解运算法则。

2. 第2周:讲解多项式乘以多项式的计算方法,进行课堂练习。

3. 第3周:探讨多项式乘以多项式在实际问题中的应用,进行小组讨论。

多项式乘多项式-优秀教案可修改全文

多项式乘多项式-优秀教案可修改全文

可编辑修改精选全文完整版多项式乘多项式【教学目标】1.知识与能力目标:理解多项式与多项式的乘法法则,掌握多项式与多项式相乘的运算。

2.过程与方法目标:由求一个长方形的面积的不同方法,引出多项式与多项式的乘法法则,体会数形之间的统一。

3.情感、态度与价值观目标:在探究“法则”的过程中,培养学生观察,概括与抽象的能力。

【教学重难点】重点:多项式与多项式相乘的乘法法则及法则的推导。

难点:在运算中遇到各种细节处理,比如相乘时的符号处理等问题。

【教学过程】一、自主学习(约8分钟)1.问题引入:一个矩形的长为(m+n)米,宽为(a+b)米,则它的面积为米²。

2.结合图形,发现(m+n)(a+b)=3.讨论如何计算:(m+n)(a+b)=?多项式乘以多项式的法则:多项式与多项式相乘,先用一个多项式的分别乘以另一个多项式的,再把。

注意:每一项必须连同前面的符号相乘。

二、自测(1)(a+b)(c+d)= ;(2)(m+n)(x+y)= ;(3)(m+n)(a-b)= ;(4)(x-1)(y-2)= ;练习(1)(2x+1) (x+3) (2)(m+2n)(m-3n) (3)(a-1)²(4)(2x²-1)(x-4) (5)(x²+3)(2x-5) (6)(3x-1)(2x+1)三、小组合作探究并展示(约5分钟)(1)两项式乘以两项式,结果一定是两项式吗?(2)项数多于两项的多项式乘多项式,能用多项式乘以多项式的法则进行计算吗?(3)二项式乘以三项式,展开是几项式?例:计算)32(222y xy x y x -+-)(四、当堂训练(约12分钟)要求:认真、规范、独立完成习题,注意知识与方法额应用、书写认真,步骤规范,成绩计入小组量化。

(A 组为必做题,做完的同学请举手示意,B 组为选做题)(一)计算1.(3m-n)(m-2n) 2.(2x-3)(x+4) 3.(x+y) 24.(-x+3y+4)(x-y) 5.(x -1)(x²-2x +3) 6.(3a-2)(a-1)+(a+1)(a+2)7.解方程 5x(x+1)=3x ²+2(x 2-5)8.若(x ²+ax +8)(x ²-3x +b )的乘积中不含x ²和x ³项,则a =_______,b =_______。

人教版数学八年级上册14.1.4.2 《多项式乘多项式》教学设计

人教版数学八年级上册14.1.4.2 《多项式乘多项式》教学设计

人教版数学八年级上册14.1.4.2 《多项式乘多项式》教学设计一. 教材分析《多项式乘多项式》是人教版数学八年级上册第14章中的一节内容。

本节课主要介绍了多项式乘多项式的运算法则,通过实例让学生理解并掌握两个多项式相乘的运算方法。

教材通过引导学生在实际操作中探索和发现规律,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了整式的加减运算,对单项式乘以单项式的运算法则有一定的了解。

但学生在处理多项式乘多项式时,可能会遇到一些困难,如如何正确分配项与项相乘,如何合并同类项等。

因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生克服困难。

三. 教学目标1.知识与技能目标:使学生理解多项式乘多项式的运算法则,能够熟练地进行多项式乘多项式的运算。

2.过程与方法目标:通过实例分析,培养学生探索和发现规律的能力,提高学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在实际生活中的运用。

四. 教学重难点1.教学重点:多项式乘多项式的运算法则。

2.教学难点:如何正确分配项与项相乘,如何合并同类项。

五. 教学方法1.引导发现法:教师通过提出问题,引导学生思考和探索,让学生自主发现多项式乘多项式的运算法则。

2.实例分析法:教师通过具体的实例分析,让学生理解和掌握多项式乘多项式的运算方法。

3.小组讨论法:教师学生进行小组讨论,培养学生的团队合作意识,提高学生的逻辑思维能力。

六. 教学准备1.教学课件:制作多媒体课件,展示多项式乘多项式的运算过程。

2.实例题库:准备一些相关的实例题目,用于巩固和拓展学生的知识。

3.小组讨论工具:准备一些卡片或白板,方便学生在小组讨论时记录和展示自己的思考过程。

七. 教学过程1.导入(5分钟)教师通过提出问题,引导学生回顾整式的加减运算,进而引入本节课的主题——多项式乘多项式。

八年级数学上册《多项式与多项式相乘》教案、教学设计

八年级数学上册《多项式与多项式相乘》教案、教学设计
2.布置分层作业:根据学生的学习程度,设计不同难度的练习题,让学生在课后进行巩固。
(五)总结归纳
1.回顾本节课所学内容,引导学生总结多项式与多项式相乘的运算法则和注意要点。
提问:通过今天的学习,我们掌握了哪些关于多项式乘法的知识?有哪些需要注意的地方?
2.强调数学在现实生活中的应用价值,激发学生学习数学的兴趣。
3.讲解多项式乘法中的符号处理方法:分析多项式乘法中的符号规律,提醒学生注意符号的处理,避免出现错误。
解释:在多项式乘法中,正负号的组合有一定的规律,我们需要注意符号的运算,确保最终结果的正确性。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,每组讨论一个具有实际背景的多项式乘法问题,如“计算一个长为(x+2)cm,宽为(x-1)cm的长方形的面积”。
五、作业布置
为了巩固本节课所学的多项式与多项式相乘的知识,培养学生的运算能力和解决问题的能力,特布置以下作业:
1.基础练习题:完成课本第56页的练习题第1、2、3题,要求学生独立完成,注意检查运算过程和结果。
提示:在做题过程中,注意分配律的运用,确保运算步骤正确。
2.提高题:计算以下长方形的面积,并将结果写成标准多项式的形式。
(2)开展课后小组讨论,让学生在讨论中互相学习,共同提高。
5.拓展环节:
(1)引导学生探索多项式与多项式相乘的其他运算方法,培养学生的创新思维。
(2)设计具有一定难度的数学问题,让学生在挑战中提高自己的数学素养。
6.情感态度与价值观的培养:
(1)鼓励学生积极参与课堂讨论,培养学生的团队合作精神。
(2)关注学生在学习过程中的情感体验,引导学生正确看待挫折,培养克服困难的勇气和信心。
(2)在多项式乘法运算中,如何运用分配律简化计算过程?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




知识象一艘船 让它载着我们
驶向理想的……

《熊出没》之数学真奇妙
熊大有一块长为b米宽为d米的
西瓜地,西瓜地大丰收,所以熊
大想扩大种植,把西瓜地的长扩
大a米,把宽扩大c米。现在请你 帮熊大计算下图的面积,并把你的算法与同学交流,共
有几种算法呢?
a
b
c
d
请计算下图的面积,并把你的算法与同 学交流.
a
b
c
方法一 方法二
d
方法三
方法四
a
则此图的面积为: c(ab)d(ab)
a
b
c
d
如果把此图看成是 由4个小长方形组成,
则此图的面积为:a ca db cbd
a
b
c
d
把(c d)或 (ab)看
成一个整体
由此得到:
(a b)(c d)
或 (a b)(c d)
a(cd) b(cd) c(a b) d(a b)
acadbcbd acbc adbd
x3 y3
需要注意的几个问题
1.漏乘 2.符号问题 3.最后结果应化成最简形式.
5米
x2
x米
5米
原来
(X+5)米
(X-5) (x+5)(x-5)

现在
熊大熊二的 房子终于盖好 了,房子结构 如图所示(单 位:米),他 们打算除卧室 外,其余部分 都铺上地砖.
3m 2
厕所
厨 房
2m 2
a2a b 5 a b5 b2
a26ab5b2
(3)(xy)(x2xyy2)
解:原式= x x 2 x ( x y ) x y 2 y x 2 y ( x y ) y y 2
x 3 ( x 2 y ) x y 2 x 2 y ( x y 2 ) y 3 x 3 x 2 y x y 2 x 2 y x y 2 y 3
卧室
客厅
4m 3
(1)他们需要买多少平方米地 砖?(不计损耗)
(2) 当m=4时,地砖的价格 为每平米100元,他们至少 需要花多少钱?(不计损耗)
m 1
分享本节课的收获
小结
1、多项式与多项式相乘,先用一个多项式的 每一项乘另一个多项式的每一项,再把所得 的积相加.
(a+b)( m+n)=am+an+bm+bn
b
c
d
如果把此图看成是一个
长为 (ab) ,宽为 (c d)
的长方形.
则此图的面积为: (ab)c(d)
a c
d
b
如果把此图看成是由长、 宽分别为(c+d)、a和(c+ d)、b的2个小长方形组成.
则此图的面积为: a(cd)b(cd)
a c
d
b
如果把此图看成是由长、 宽分别为(a+b)、c和(a+ b)、d的2个小长方形组成,
(2)(a5b)(ab)
(3)(xy)(x2xyy2)
(1() 2x 1)(x 3) 解:原式=2x·x 2x·3 1·x 1 3
2x2 6x x 3 2x2 7x 3
(2)(a5b)(ab)
解:原式= a a a ( b ) ( 5 b ) a ( 5 b ) ( b )
2、在计算时一定要注意多项式中的每一项的 符号,同时不要漏乘,最后结果必须化简。
3.数学思想:转化、数形结合、特殊到一般
探索与提升
(1)化简求值
( x3)2 (x1)2x(x1)8 其x中 1
(2)解不等式
( 2 x 3 )x ( 4 ) (x 2 )x ( 3 ) x 2 2
(3)解方程
(x 3 )x (2 ) 6 (x 3 )x (1 )
上面的运算过程,也可以表示为
(ab)c(d)= a c + ad + bc + bd
多项式乘多项式的运算法则: 多项式与多项式相乘,先用一个多项式的每 一项乘另一个多项式的每一项,再把所得的 积相加.
ห้องสมุดไป่ตู้
(a+ b+c) (m +n) =am+an+bm+bn+cm+cn
计算:
(1)( 2 x 1)( x 3 )
相关文档
最新文档