第七章多元函数微分高等数学
高等数学多元函数微分学习题集锦

+
f y ⋅ gz ⋅ hx g y ⋅ hz
⎞ ⎟⎟⎠ dx.
即
du dx
=
fx
−
fy ⋅ gx gy
+
f y ⋅ gz ⋅ hx . g y ⋅ hz
第七章、多元函数微分法 习题课
解法3 隐函数求导法,
⎧u = f ( x, y),
⎪ ⎨
g
(
x,
y,
z)
=
0,
⎪⎩ h ( x , z ) = 0.
求 ∂z , ∂2z , ∂ 2z . ∂y ∂y2 ∂x∂y
解
∂z ∂y
=
x
3
⎛ ⎜⎝
f1′x +
f2′
1 x
⎞ ⎟⎠
f12′
xy y
x y
= x4 f1′+ x2 f2′,
x
∂2z ∂y 2
=
x4 ⋅
⎛ ⎜⎝
f1′1′x +
f1′2′
1 x
⎞ ⎟⎠
+
x2
⋅
⎛ ⎝⎜
f 2′′1 x
+
f2′′2
1 x
dx
dx
− xf ′d y + dz = f + xf ′ dx dx
F1′
+ F2′
d d
y x
+F3′
d d
z x
=
0
F2′
d d
y x
+
F3′
d d
z x
=
−
F1′
∴ dz = dx
−x f′ f +xf′
F2′
《高等数学C(Ⅱ)》课程教学大纲

《高等数学C(Ⅱ)》课程教学大纲课程编号:90902006学时:32学分:2适用专业:经济学、国际贸易、人力资源管理、旅游管理、物流管理、财务管理、财务管理(注册会计会师方向)、市场营销开课部门:商学院、管理学院一、课程的性质与任务高等数学C(Ⅱ)课程是应用型本科院校经管类专业的一门专业基础课。
本课程讲授多元函数微分学、重积分的基本内容,通过该课程的学习,使学生掌握多元函数微积分的基本概念、基本理论和基本方法,培养学生的抽象思维能力、逻辑推理能力、空间想象能力,为学生解决专业领域的实际问题奠定基础。
三、实践教学的基本要求无四、课程的基本教学内容及要求第七章多元函数微分学教学内容:(1)空间解析几何基本知识;(2)多元函数的基本概念;(3)二元函数的极限和连续;(4)偏导数;(5)全微分;(6)多元复合函数微分法;(7)多元函数的极值;(8)多元函数最值在经济领域的应用。
重点与难点重点:多元函数概念,偏导数与全微分的概念,多元复合函数求导法则,多元函数的极值及其求法,多元函数最值在经济领域的应用。
难点:偏导数的概念,全微分的概念,多元复合函数求导法则,多元函数的极值及其求法。
课程教学要求:了解空间曲线的一般方程、空间曲面的方程,空间曲线在坐标面的投影,二元函数的极限和连续性;理解偏导数的概念,全微分的概念,掌握多元函数偏导数、二元函数的极值和条件极值的计算方法;会用多元函数极值理论解决一些经济问题。
教师介绍多元函数微分学的有关概念,要注意与一元函数微分学的相关概念进行对比。
要突出多元函数最值问题的经济应用。
第八章重积分教学内容:(1)二重积分的概念与性质;(2)二重积分的计算;(3)重积分的应用举例;(4)广义二重积分。
重点与难点重点:二重积分概念与性质,二重积分的计算,二重积分的经济应用。
难点:二重积分概念,二重积分的计算,二重积分的经济应用,广义二重积分。
课程教学要求:了解广义二重积分;理解二重积分的概念和性质;掌握二重积分的计算方法(直角坐标、极坐标);掌握用二重积分求面积、体积的方法;会建立一些经济问题的二重积分模型并求解。
高等数学第七章微分方程微分方程

熟练掌握二阶常系数齐线性微分方程的解法. 掌握自由项(右端)为多项式、指数函数、正弦函数、余
弦函数以及它们的和或乘积的二阶常系数非齐线性微分方 程的解法.
2013/9/23
第一节 微分方程的基本概念
解
2
在许多物理、力学、生物等现象中,不能直接找到联 系所研究的那些量的规律,但却容易建立起这些量与它们 的导数或微分间的关系。
例1
解 原方程即 对上式两边积分,得原方程的通解
例2
解
对上式两边积分,得原方程的通解 经初等运算可得到原方程的通解为
4
原方程的解为
例3
解 两边同时积分,得
故所求通解为
2013/9/23
例4
解 原方程即 两边积分,得 故通解为
曲线族的包络。
例6求解微分方程 解 分离变量
两端积分
工程技术中 解决某些问题时, 需要用到方程的 奇解。
18
例.
的通解.
解: 特征方程为
其根为
对应齐次方程的通解为
为特征方程的单根 ,因此设非齐次方程特解为
代入方程: 比较系数, 得 因此特解为 所求通解为
2013/9/23
19
特解:
故
等式两边取共轭 :
为方程 ③ 的特解 .
第三步 求原方程的特解 原方程 利用第二步的结果, 根据叠加原理, 原方程有特解 :
均为 m 次多项式 .
第四步 分析
因
本质上为实函数 ,
均为 m 次实多项式 .
内容小结
为特征方程的 k (=0, 1, 2) 重根, 则设特解为
为特征方程的 k (=0, 1 )重根, 则设特解为 3. 上述结论也可推广到高阶方程的情形.
高等数学下册第7章多元函数微分法及其应用 (7)

故当 y y0, x x0时,有 f ( x, y0 ) f ( x0 , y0 ),
5
说明一元函数 f ( x, y0 )在 x x0处有极大值,
必有
f x ( x0 , y0 ) 0;
类似地可证
f y ( x0 , y0 ) 0.
从几何上看,这时如果曲面 z f ( x, y) 在点
21
例6
求椭球面
x2 a2
y2 b2
z2 c2
1 的内接长方体,
使长方体的体积为最大.
解 设长方体与椭球面在第一卦限内的接点坐标为
(x, y, z),则内接长方体的体积为8x构yz造, 函数
F
( x,
y,
z)
8 xyz
(
x2 a2
y2 b2
z2 c2
1),
得方程组
8
yz
2x a2
0,
8 xz
2y b2
求出实数解,得驻点.
第二步 对于每一个驻点( x0 , y0 ),
求出二阶偏导数的值A、B、C.
第三步 定出AC B2 的符号,再判定是否是极值.
8
例1 求函数f ( x, y) x3 y3 3x2 3 y2 9x的极值.
解 先解方程组
f x ( x, y) 3x2 6x 9 0,
x y 1 3,z 2 3 和 2
x y 1 3,z 2 3 2
dmax 9 5 3, dmin 9 5 3.
25
例8. 求函数f(x, y)=xy在闭区域x2 y2 1上的
最大值与最小值
解 由fx(x, y)=y=0, fy(x, y)得=x到=0函, 数在区域内 的唯一驻点为(0,0),且 f(0,0)下=0面.考虑函数在区域 的边界x2+ y2=1上的最大值与最小值.设
高等数学笔记(含数一内容)

隐函数求导
参数方程确定的函数求导
分段函数求导
先讨论关键点是否连续,确定连续后再判断函数各个部分是否可导。
求函数高阶导
一般使用数学归纳法解决。
微分
可微
定义:设y=f(x) (x∈D),x₀∈D。若∆y=A∆x+৹(∆x),则称f(x)在x=x₀处可微。
性质
可微一定可导,可导一定可微(充要条件)
若∆y=A∆x+৹(∆x),则A=f'(x₀),即dy∣₍x=x₀₎=f'(x₀)dx
二阶线性微分方程解的结构 齐+齐=齐 齐 + 非齐 = 非齐 非齐 + 非齐 = 齐 (拆解性质)对于方程**,若f(x)=f1(x)+f2(x)(即可拆成两部分),则分别构造两个二阶非齐次线性微分方程,且φ1(x),φ2(x)分别为它们的特解,则 有原方程特解为:
y=φ1(x)+φ2(x) (系数和的特点)设φ1(x),φ2(x),...,φn(x),为方程**的解,则通解的组合形式为y=k1φ1(x)+k2φ2(x)+...+knφn(x) 若y为方程*的通解,则k1+k2+...+kn=0(系数和为0) 若y为方程**的通解,则k1+k2+...+kn=1(系数和为1) (二阶常系数线性微分方程通解形式推导定理)
函数f(x)∈ c【a,b】的性质(函数在区间内恒连续)
性质1:∃最大值 M 和最小值 m (最值); 性质2:∃M₀>0,使得∣f(x)∣≤M₀(有界);
性质3: ∀η ∈【m,M】,∃ξ∈【a,b】,使得f(ξ)=η(介值定理);
性质4:若 f(a)*f(b)<0,则∃c∈(a,b),使得f(c)=0(零点定理)。 连续函数的运算
高等数学 多元函数的微分中值定理和泰勒公式

一元函数 f ( x) 的泰勒公式:
f ( x0 ) 2 f ( x0 h) f ( x0 ) f ( x0 )h h 2!
f ( n ) ( x0 ) n h n!
推广 多元函数泰勒公式
(0 1)
记号 (设下面涉及的偏导数连续): • (h k ) f ( x0 , y0 ) 表示 h f x ( x0 , y0 ) k f y ( x0 , y0 ) x y 2 • (h k ) f ( x0 , y0 ) 表示 x y
1 (h 2! x 1 (h n! x 2 k y) n k y)
f ( x0 , y0 ) f ( x0 , y0 ) Rn
①
1 ( h k ) n 1 f ( x h, y k ) ② 其中 Rn ( n 0 0 1)! x y
m
( m) (0) (h x k y ) m f ( x0 , y0 )
由 (t ) 的麦克劳林公式, 得
将前述导数公式代入即得二元函数泰勒公式.
说明: 因 f 的各 n+1 阶偏导数连续, (1) 余项估计式. 在某闭
邻域其绝对值必有上界 M , M Rn ( h k ) n 1 (n 1) ! 则有
例1. 求函数 f ( x, y ) ln(1 x y ) 在点 (0,0) 的三阶泰
勒公式. 解:
1 f x ( x, y ) f y ( x, y ) 1 x y f x x ( x, y ) f x y ( x, y ) f y y ( x, y )
3 f x y 4 f x y
高等数学习题详解-第7章多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限:A (2,1,-6),B (0,2,0),C (-3,0,5),D (1,-1,-7).解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。
2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则(1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3).(3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3).同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3).3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即(-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2.解之得z =11,故所求的点为M (0,0,149). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得21214M M =,2213236,6M M M M ==所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程.解:所求平面方程为1235y x z++=-。
《高等数学》(北大第二版 )6-7多元函数的微分中值定理与泰勒公式

例 , = 2, f 在(x0 , y0 )的泰勒多项式是 如 n
f (x0 , y0 ) + f x (x0 , y0 )∆x + f y (x0 , y0 )∆y
1 2 + [ f xx (x0 , y0 )∆x2+ 2 fxy (x0 , y0 )∆x∆y + f yy (x0 , y0 )∆y ]. 2! π 2 例1 求函数 f (x, y) = sin( x y) 在点(1,1)的二阶泰勒多 2
ϕ(1) −ϕ(0) = ϕ′(θ ),
f (x0 + ∆x, y0 + ∆y)− f (x0 , y0 )
∂f ∂f = (x0 +θ∆x, y0 +θ∆y)∆x + (x0 +θ∆x, y0 +θ∆y)∆y. ∂y ∂x
证毕.
推论 若函数z=f(x,y)在区域D 内具有连续的偏导数且
∂f ∂f 满足 ≡ 0, ≡ 0, 证明:f(x,y)在D内为一常数. ∂y ∂x 证 在区域D内任意取定一点P0 (x0 , y0 ). ∀P(x, y) ∈D,
1. 二元函数的微分中值定理
定理1 定理1
(二元函数的拉格朗日中值公式) 二元函数的拉格朗日中值公式
又假定D中有两个点P0 ( x0 , y0 )与P ( x0 + ∆x, y0 + ∆y ) , 1 并且P0到P的直线P0 P ⊂ D, 则存在θ , 0 < θ < 1, 使得 1
f ( x0 + ∆x, y0 + ∆y ) = f ( x0 , y0 ) ∂f ∂f + ( x0 + θ∆x, y0 + θ∆y )∆x + ( x0 + θ∆x, y0 + θ∆y )∆y. ∂x ∂y 或写成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 多元函数微分学一、内容分析与教学建议(一) 本章主要是把一元函数微分学中一些主要概念、理论和方法推广到多元函数,一方 面充实微分学,另一方面也给工程技术及自然科学提供一些处理问题的方法和工具。
在教学方法上,在一元函数微分学基础上,通过类比方法引入新的问题、概念、理论和方法,并注意比较它们的异同。
(二) 多元函数、极限、连续先通过介绍平面点集的几个基础概念,引入二元函数由点函数再过渡到多元函数,并引入多元函数极限,讲清它的概念,并指出二元函数与一元函数极限点0P P →方式的异同,可补充一些简单例题给出二元函数求极限的一些常用方法,如换元化为一元函数两边夹准则,运用连续性等。
在理解极限概念之基础上,不难得到求一个二元函数极限不存在之方法,最后可介绍累次极限与重极限之关系。
(三) 偏导数与全微分1、可先介绍偏增量概念,类比一元函数,引入偏导数,通过例题说明,偏导与连续之关系,在偏导数的计算中,注意讲清分段函数分界点处的偏导数。
2、可由测量矩形相邻边长计算面积实例,类比一元函数的微分,引入全微分的定义,并指出用定义判断),(y x f z =可微,即求极限[]ρyy x z x y x z z y x y x ∆+∆-∆→∆→∆),(),(lim 0是否为0。
3、讲清教材中全微分存在的必要条件和充分条件,重点指出可微与偏导之关系,让学生理解关系式dy yzdx x z dz ∂∂+∂∂=之意义,最后可通过列表给出多元函数连续、偏导存在、可微之相互关系。
(四) 复合函数求偏导1、可先证明简单情形的全导数公式,画出函数关系图,通过关系图中“分线相加,连线相乘”法则推广至偏导数或全微分的各种情形),(v u f z =,)(x u ϕ=,)(x v ϕ=从中让学生理解口诀的含义。
2、通过例题说明各种公式,具体方法及符号正确运用;3、通过教材中典型例题,细致讲解复合函数高阶偏导数的求法,这是个难点,并注意① 求导时,注意分析函数的各种关系;② 讲透符号1f ',12f ''等之涵义。
(五) 隐函数求偏导1、结合简单例子,讲解方程与函数之关系;2、对于0),(=y x F 确定的隐函数存在定理,讲清三个条件和三个结论,再拓广介绍其它两种常见情形,其偏导数公式的证明,可只证部分结论;3、用例题说明隐函数求偏导数之三种方法,公式法、复合函数法(直接法)、微分法,要让学生理解三种方法中各种变量之相互关系。
(六) 方向导数与梯度从偏导数的概念拓广到方向导数概念,并指出与偏导数之关系,其次可通过具体应用实例引入梯度之概念,可画图指出梯度与方向导数之关系,此外,顺便介绍等高线、梯度场、势场等知识加深对梯度概论的理解。
(七) 多元函数微分学应用 1、几何应用:(a ) 通过割线及到切线概念,从而得到切线方程;(b ) 曲面∑上任一点M 处的任何曲线,若M 处切线均在一个平面上,从而引入切平面与法线概念,并导出切平面与法线方程,举例说明它们的应用;(c ) 可让学生复习有关空间解析几何直线与平面有关内容。
2、极值① 与一元函数类比,讲述二元函数极值的必要和充分条件; ② 求极值问题一般分为两种情况:a 无条件条件; b 条件极值。
从无条件极值到条件极值,自然地引入到“拉格朗日乘数法”,讲解时注意此方法的基本思想、方法及步骤,另外还可优化结合起来讲解。
二、补充例题例1.设),(y x f u =,()0,,2=z e x yϕ,x y sin =,其中ϕ都具有一阶连续偏导数,且0≠∂∂z ϕ,求dxdu. 解: 分别求偏导数得:⎪⎪⎪⎩⎪⎪⎪⎨⎧==⋅'+⋅'+⋅'++=)3(cos )2(02)1(321x dx dydx dz dx dy e x dx dz f dx dy f f dx dyy z y x ϕϕϕ (3)代入(2)3231cos 2ϕϕϕϕ''⋅-''-=y e x x dx dy(3)代入(1)⎪⎪⎭⎫ ⎝⎛''⋅-''-++=3231cos 2cos ϕϕϕϕy y y x e x x f x f f dx dy ()2sin 13cos 2cos ϕϕϕ'+''-+=x e x f x f f x zy x 例2.设),(y x z 是由方程0),(=-yz x y f ,确定的隐函数,其中f 有二阶连续偏导数,求22xz∂∂. 解: 方程两边对x 求偏导0)1(21=∂∂⋅'+-'xzyf f ,21f y f x z ''=∂∂ ()22222112121122)1()1(f y x z y f y f y f f y x z y f f x z '⎪⎭⎫ ⎝⎛∂∂⋅''+-''⋅'-'⎪⎭⎫ ⎝⎛∂∂⋅''+-''=∂∂代入上式并整理得:()()()3222213211122222f y f f f f f f f x z ''''-'''+'''-=∂∂ 例3.设直线L : ⎩⎨⎧=--+=++030y ay x b y x 在平面π上,而平面π与曲面22y x z +=相切于点)5.2,1(-,求a ,b 的值.解: 在点)5.2,1(-处曲面法向量]1.4,2[--=,于是切平面方程为: 0)5()2(4)1(2=--+--z y x即 0542=---z y x由L : ⎩⎨⎧--+-=--=⇒⎩⎨⎧=--+=++)(3030b x a x z bx y y ay x b y x 053442≡-+++-++∴ab ax x b x x 因而有: 05=+a 024=-+ab b 5-=a 2-=b例4.已知椭球面2222a yz xy z y x =++++,)0(>a ,①求椭球面上z 坐标为最大与最小点;②求椭球面的xOy 面上投影区域的边界曲线.解: 由于椭球面是一封闭曲面,因此椭球面上z 坐标最大与最小点一定存在,且此二点处z 值就是椭球面方程所确定隐函数),(y x z z =的最大值与最小值. 椭球面方程两边分别对x 及y 求偏导:⎪⎪⎩⎪⎪⎨⎧=+∂∂++∂∂+=∂∂++∂∂+022022z y z y x y z z y x z y y x z z x 令0=∂∂xz,0=∂∂y z , ⎩⎨⎧=++=+0202z x y y x 解得:x y 2-=,x z 3=,代入椭球的方程得到ba x ±=故得两点 ⎪⎪⎭⎫⎝⎛-b a b a b a P 3,2,1,⎪⎪⎭⎫⎝⎛--b a b a b a P 3,2,2由于椭球面确定存在z 坐标最大与最小的点,因此点1P 与2P 为所求.② 设S 是椭球面对于xOy 面投影柱面S 与椭球面切于曲线C ,则C 在上,两曲面的法向量相同都为[]y z z x y y x n ++++=2,2,2由⊥,0=⋅,即 02=+y z因此曲线C 满足 ⎩⎨⎧=+=++++02222y yz a yz xy z y x消去z 即S 的方程 22243a xy y x =++故投影区域的边界曲线为:⎪⎩⎪⎨⎧==++043222z axy y x 例5.设生产某种产品必须投入两种要素1x 和2x 分别为两要素的投入量,Q 为产出量,若生产函数为βα212x x Q =,其中α,β为正常数1=+βα,假设两种要素的价格分别为1p ,2p ,试问:当产出量为12时,两要素各投入多少要可以使得投入总费用最小?解: 需要在产出量12221=βαx x 的条件下,求总费用2211x p x p +的最小值,为此作拉格朗日函数 )212()(21221121βαλx x x p x p x x F -++=,⎪⎪⎩⎪⎪⎨⎧==-='=-='--)3(122)2(02)1(02212122111121βββαααλβλαx x x x p F x x p F x x 由(1),(2)得:2121x x p p αβ=故2121x p p x βα=,代入(3),ααβ⎪⎪⎭⎫ ⎝⎛=2126p p x 因此 ββα⎪⎪⎭⎫⎝⎛=1216p p x由于此实际问题存在最小值,且驻点唯一,故当ββα⎪⎪⎭⎫ ⎝⎛=1216p p x ,ααβ⎪⎪⎭⎫⎝⎛=2126p p x 时,投入总费用最少.例6.设⎪⎭⎫ ⎝⎛=x y xy f x z ,3,其中f 具有二阶连续偏导数,求y x z ∂∂∂2,22y z ∂∂.解:2214f x f x yz'+'=∂∂ 22y z ∂∂⎥⎦⎤⎢⎣⎡''+''+⎥⎦⎤⎢⎣⎡''+''=222121211411f x f x x f x f x x 221231152f x f x f x ''+''+''=yx z∂∂∂22124f x f x '+'=22114f y f x ''-''+ 例7.设)(x y y =,)(x z z =是由方程)(y x xf z +=和0),,(=z y x F 所确定的函数,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求dxdz . 解: 分别在方程的两边对x 求导得:⎪⎪⎩⎪⎪⎨⎧='+'+''⎪⎭⎫ ⎝⎛++=01dx dz F dx dy F F f dx dy x f dx dz y y x 即 ⎪⎪⎩⎪⎪⎨⎧'-='+''+=+'-x y y F dx dz F dxdy F f x f dxdzdx dy f ,zy x y F f x F F f x F f x f dx dz ''+'''-''+=)( 例8 求下列极限① 221)ln(limyx e x y y x ++→→ ② 11lim0-+++→→y x y x y x③ yx x y x x +→∞→⎪⎭⎫ ⎝⎛+211lim 0 ④ 222lim x y x y x xy ⎪⎪⎭⎫⎝⎛++∞→+∞→ 解: ① 原式2ln lim )ln(lim 220101=++=→→→→yx e x y x y y x②令t y x =+,当0→x ,00→⇒→t y 原式()211lim 11lim=++=-+=→→t t t t t③原式e x yx x x y x =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=+→∞→211lim 0④+∞→x ,+∞→y ,不妨设0>x ,0>y ,则21022≤+<yx xy 得:2221022x x yx xy⎪⎭⎫⎝⎛≤⎪⎪⎭⎫⎝⎛+<,由于+∞→x lim0212=⎪⎭⎫⎝⎛x所以原式0=例9 设ϕ,ψ都是有连续的二阶偏导数[]⎰+-+-++=axy axy dt t a ax y ax y z )(21)()(21ψϕϕ试求:22222yz a x z ∂∂-∂∂. 解:[][])()(21)()(2ax y ax y ax y ax y a x z -+++-'-+'=∂∂ψψϕϕ =∂∂22xz [][])()(2)()(22ax y ax y a ax y ax y a -'-+'+-''++''ψψϕϕ[][])()(21)()(21ax y ax y aax y ax y y z --++-'+'=∂∂ψψϕϕ =∂∂22yz [][])()(21)()(21ax y ax y a ax y ax y -'-+'+-''++''ψψϕϕ 022222=∂∂-∂∂yz a x z 例10 设函数),(y x f z =在点)1,1(处可微,且1)1,1(=f ,2)1,1(=∂∂xf,3)1,1(=∂∂yf ,)),(,()(x x f x f x =ϕ,求13)(=x x dxd ϕ.解: 1)1,1())1,1(,1()1(===f f f ϕ1213)()(3)(==⎥⎦⎤⎢⎣⎡=x x dx x d x x dxd ϕϕϕ[]121212)),(),())(,(,()),(,()(3='+''+'=x x x f x x f x x f x f x x f x f x ϕ++⋅⋅=3=1)]32(32[51三、补充练习1、证明2222200)(lim y x y x y x y x -+→→不存在.2、设vue z =而22y x u +=,xy y x v 22+=求x z ∂∂,yz∂∂及dz .⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛∂∂+∂∂=+-=∂∂+-=∂∂++dyy z dx x z dz e xy xy x y yz e yx y x y x x z xyy x xyyx 22222244224422 3、设⎪⎭⎫⎝⎛⋅=xy x y f x z 2,其中f 是具有二阶连续偏导数,求y x z ∂∂∂2.⎪⎭⎫ ⎝⎛''+''-'+'223112213f y x f x y f x f 4、设()22y x f z -=,其中f 是具有二阶连续偏导数,求22xz∂∂.()()()2222242y x f x y xf -''+-'5、设0=-xyz e z,求yx z∂∂∂2.()⎪⎪⎭⎫ ⎝⎛--31z xy z 6、设v e x ucos =,v e y u sin =,uv z =求x z ∂∂和yz∂∂. ⎪⎪⎭⎫ ⎝⎛+=∂∂-=∂∂--)cos sin (),sin cos (v u v v e y z v u v v e x z u u 7、求曲面932222=++z y x 上平行于平面01232=++-z y x 的切平面方程.)09232(=++-z y x8、考察函数xy y x f =),(在点)0,0(处是否连续?偏导数是否存在?是否可微?(连续,0)0,0(=x f ,0)0,0(=y f ,不可微)9、求函数22324y xy x x z -+-=的极值.()0,0(极大值点0)0,0(=f )10、求内接于半径为a 的球且有最大体积的长方体. ⎪⎪⎭⎫⎝⎛===高宽长32a。