四年级下册数学试题-奥数专题讲练:第五讲 巧求周长和面积 竞赛篇(解析版)全国通用 (2)
四年级下册数学奥数思维训练(第5讲)巧求面积

第5讲 巧求面积
例1:有一块菜地长20米,宽12米,菜地中间留着2条宽2米的路,把菜地平均分面四块,每个长方形面积是多少?
例2:下图是由四个同样大的长方形和一个周长4分米的小正方形拼成的一个边长是11分米的大正方形,每个长方形的面积是多少平方分米?
例3:如图,大正方形比小正方形的面积大40平方厘米,求这两个正方形面积各是多少?
四年级数学思维训练
姓名:
练习
1、有一块长方形的土地,长是宽的2倍,中间有一座雕塑,这个雕塑的底面是一个正方形,周围
是草坪,这个草坪的面积是多少平方米?
2、求图中正方形中阴影部份的面积?
3、四个一样的长方形和一个小正方形拼成一个大正方形,小正方形的边长是2厘米,大正方形边
长是小正方形边长的4倍。
求每个长方形的面积分别是多少平方厘米?
4、两个正方形的边长和为18分米,它们的面积差为36平方分米,求这两个正方形面积各是多少?
5、求下图中阴影部份的面积是多少?。
四年级几何巧求周长与面积学生版

知识要点巧求周长【例 1】 如图所示,在一个大长方形的右上角挖去一个小长方形。
如果大长方形的长是7厘米,宽是5厘米。
小长方形的长是5厘米,宽是3厘米。
那么该图形的周长是多少厘米?3575巧求周长与面积巧求周长长方形周长公式:长方形周长=(长+宽)2⨯,记作:C 长方形()2a b =+⨯; 正方形周长公式:正方形周长=边长4⨯,记作:C 正方形4a =⨯; 巧求周长时,常用到“平移线段法”和“标向法”。
巧求面积长方形面积公式:长方形面积=长⨯宽,记作:S 长方形a b =⨯; 正方形面积公式:正方形面积=边长⨯边长,记作:S 正方形2a a a =⨯=; 巧求面积时,常用到“割补法”(将图形平移、对称、旋转)。
【例 2】如图所示,这个多边形任意相邻的两条边都互相垂直。
请根据图中所给出的数,求出这个多边形的周长。
(单位:分米)【例 3】如图所示,这个多边形任意相邻的两条边都互相垂直。
请根据图中所给出的数,求出这个多边形的周长。
(单位:厘米)68【例 4】如图所示,将3个边长为8厘米的正方形叠放在一起。
后一个正方形的顶点恰好落在前一个正方形的正中心。
那么它们覆盖住的图形周长是多少厘米?【例 5】(2010年3月14日第八届小学“希望杯”全国数学邀请赛四年级第1试第9题)将边长为10厘米的五张正方形纸片如图那样放置,每张小正方形纸片被盖住的部分是一个较小的正方形,它的边长是原正方形边长的一半,则图中的图形外轮廓(图中粗线条)的周长为_______厘米。
【例 6】 如图是由10个边长为4厘米的小正方形组成.每个小正方形的顶点恰在另一个正方形的中心,且边相互平行,求这个图形的周长。
【例 7】 如图所示,从一个大正方形的边上挖去一个正方形得到一个多边形。
大长方形的长是6厘米,宽是4厘米,正方形的边长是2厘米。
这个图形的周长是多少厘米?462【例 8】 如图所示,四个长方形组成了一个多边形,如果图中所标数值的单位都是厘米,那么这个多边形的周长是多少厘米?836512【例 9】 如图,某人从点A 走到点B 所走的路程是多少?【例 10】如图,把长为2厘米、宽为1厘米的6个长方形摆成3层。
四年级下册数学试题-奥数专题讲练:第5讲 数学方法与思想(二) 精英篇(解析版)全国通用

第五讲数学方法和思想(二)内容概述学习数学的一个重要方面就是要掌握一定的解题方法,数学的题型千变万化,如果仅靠题海战术,而不去总结规律,寻找解题方法,将永远是大海捞针,失去方向!遇到题型发生变化,就会一筹莫展,这节课我们将介绍几种重要的解题方法,希望同学能体会贯通,举一反三。
从简单情况考虑有时候我们碰到的题目很复杂,乍一看似乎无从入手,这时候我们往往可以先从简单的情况出发,看看有什么规律。
很多情况下我们可以通过这种方法解决一些看起来很难的问题。
【例1】3×3的末位数字是9,3×3×3的末位数是7,3×3×3×3的末位数字是1.求35个3相乘的结果的末位数字是几?分析:从简单情况做起,列表找规律:仔细观察可发现,乘积的末位数字出现有周期性的规律,4个一组,35个3相乘是其第34项,所以末位数字是7。
【例2】444444444888888888÷666666666的商是_____________分析:这个题目我们当然可以列一个竖式来做,但这样是不是太麻烦了,观察算式的特点,4,8,6都有9个,那我们就先来看一下如果4,8,6分别各有1个,2个,3个商分别是多少,这个计算起来是非常简单的:48÷6=8 ,4488÷66=68 ,444888÷666=668 …同学们找到规律了吗?对了,444444444888888888÷666666666=666666668(8个6 ,一个8)。
【例3】① 12345678987654321是_________的平方② 1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1是_______的平方?③ 12345678987654321×(1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1)是_______的平方,分析:(1)从简单得情况入手,找规律:1的平方是1;11的平方是121;111的平方是12321;1111的平方是1234321;因此111111111的平方是12345678987654321;(2)再来看小括号里的数,从1加到9再加到1,我们从简单情况入手,1+2+1=4=2的平方1+2+3+2+1=9=3的平方1+2+3+4+3+2+1=12=4的平方发现规律后就知道:1+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=9的平方。
四年级下册数学试题-奥数专题讲练:5 图形的分割与拼接 精英篇(解析版)全国通用

第五讲图形的分割与拼接教学目标本章内容比较抽象,在这一讲中我们主要学习几种图形处理方法:1、理解掌握图形的分割;2、理解掌握图形的拼合;3、理解图形的剪拼;4、利用剪拼图形计算、解决问题.本章中很多类型的题目还要求同学们去动手尝试.通过本章知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.有8个相等的直角三角形,你能拼成下图中的空心正八角星吗?想挑战吗分析:把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成如右图所示的空心正八角星.专题精讲把一个几何图形按某种要求分成几个图形,就叫做图形的分割.反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.(一)图形的分割【例1】(★★★)如右图所示是由三个正方形组成的图形,请把它分成大小、形状都相同的四个图形?→→分析:要求把原来三个正方形分成四个大小、形状都相同的四个图形,先不考虑形状,大小相同也就是面积相等,也就是把整个图形的面积分成四份,分割后的每一部分占一份,可以考虑把每一个正方形的面积分成四份,再把三个正方形中的每一个小正方形合成要求的图形,如右上图所示.[拓展]把如右图这样由五个正方形组成的图形,分成四块大小、形状都相同的图形→→分析:从面积考虑,把整个图形的面积分成四份,分割后的每一部分占一份.正方形,则可把每个正方形分成四个面积相等的小正方形,每块图形应有五个这样的小正方形,如右上图所示.[巩固]右图是由五个正方形组成的图形.把它分成形状、大小都相同的四个图形,应怎样分?分析:如果不考虑分成的四个图形的形状,只考虑它们的面积,这就要求把原来五个正方形分成四个面积相等的图形,每个图形的面积应是1个多正方形.我们把每个正方形各分成四个面积相等的小正方形,分成的每块图形应有五个这样的小正方形.根据图形的对称性,我们很快就能得到如右上图的分法.【例2】(★★★★)把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左上图所示的三种分法.又因为4=l×4=2×2,所以,如果我们把每一个小三角形的面积看做1,那么1×4就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而2×2可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形.根据上面的分析,又可以得到如右上图的另两种分法.[前铺] 把任意一个三角形分成面积相等的2个小三角形,有许多种分法.请你画出4种不同的分法.分析:根据等底等高的三角形面积相等这一结论,只要把原三角形分成2个等底等高的小三角形,它们的面积必定相等.而要得到这2个等底等高的小三角形,只需找出原三角形的某条边的中点与这边相对的顶点连接起来就行了.根据上面的分析,可得如下图所示的三种分法.[拓展]怎样把一个等边三角形分别分成8块和9块形状、大小都一样的三角形.→分析:(1)分成8块的方法是:先取各边的中点并把它们连接起来,得到4个大小、形状相同的三角形,然后再把每一个三角形分成一半,得到如左上图所示的图形.(2)分成9块的方法是:先把每边三等分,然后再把分点彼此连接起来,得到加上右上图所示的符合条件的图形.【例3】(★★★★)如下图所示,请将这个正方形分切成两块,使得两块的形状、大小都相同,并且每一块都含有学而思奥数五个字.→图1 图2分析:图中有相同汉字挨在一起的情况,肯定要从它们之间切开(图1),因此,首先要在它们之间划出切分线.因为要将这个正方形切开成两块形状和大小都一样的图形,所以其中一块绕中心点旋转180°必定与另一块重合.要是把切分线也绕中心点旋转180°就可得到一些新的切分线(图2).这就为我们解决问题提供了线索,本题的两种解法如上图所示.[拓展] 如右图所示的正方形是由36个小正方格组成的.如图那样放着4颗黑子,4颗白子,现在要把它切割成形状、大小都相同的四块,并使每一块中都有一颗黑子和一颗白子.试问如何切割?分析:首先在相同颜色的棋子之间划出切分线,以中心旋转90°、180°、270°之后,得一些新的切分线,同时考虑到每块包含有一颗黑子和一颗白子的要求,以及每一块面积应该是36÷4=9,即含有9个小正方格,先找到符合要求的一块后,让它绕中心旋转90°、180°、270°便得到其他三块,如右上图.(二)图形的拼合【例4】(★★★)将方格纸剪成面积是4的图形,形状只有七种,如下图所示.其中有哪几种自身可以拼成面积是16的正方形?分析:面积是16的正方形,其边长等于4,用图形(5)和(7)显然能拼成边长是4的正方形(如左上图所示).用图形(1)、(2)和(6)也能拼成边长为4的正方形(如右上图所示).通过观察与试验,无法用所给图中的(3)和(4)拼成题目要求的正方形.因此,用所给图中的七种图形,共可以拼成5种面积是16的正方形.[巩固]下面哪些图形自身用4次就能拼成一个正方形?分析:用4块图(4)和图(5)那样的图形显然能够拼成一个大正方形.其实用图(1)、图(2)、图(3)也能拼成一个大正方形,拼法见右上图.【例5】(★★★★)用6个完全一样的等腰直角三角形拼图,要求边与边完全重合.你能拼出几种图形?把它们画出来.分析:建议用等腰直角三角板,把不同的边进行重合,不要漏掉旋转重合,或者准备一些等腰直角三角形的纸片,由学生拼接后贴到黑板上,见下图[前铺]用3个等腰直角三角形拼图,要求边与边完全重合,能拼出几种图形?分析:这种类型的题需要学生亲自操作,建议教师准备材料与学生互动。
(完整word版)小学奥数模块教程四年级杯赛备战讲义——巧求面积

上课日期: 上课时间: 教师姓名:知识点一:格点面积 一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.二、 三角形格点问题1、定义:所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.2、公式:关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.知识点二:图形剪拼巧求面积知识框架毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点,则它的面积为12LS N =+-.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.(1)把一个几何图形按某种要求分成几个图形,就叫做图形的分割.(2)反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.(3)将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.(1)如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.(2)图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.(3)如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.(4)如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.一、解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。
高斯小学奥数四年级下册含答案第05讲_割补法巧算面积

第五讲割补法巧算面积在上一讲中,我们学习了如何计算格点图形的面积,介绍了正方形格点图形和三角形格点图形的面积计算公式.根据公式,我们可以求出正方形格点图形的面积是最小正方形面积的几倍,或者求出三角形格点图形面积是最小正三角形面积的几倍.随着几何学习的步步深入,大家会发现除了用公式法直接求面积之外,还有很多间接求面积的方法.尤其是对于不规则图形,我们并不知道这些图形的面积公式,但是可以把它们通过分割、添补等各种方式变换为规则的图形.例题1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)「分析」这是一个不规则图形,我们能不能把它切成很多规则的小块,一块一块地求面积呢? 练习1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)我们可以看到,在没有格点的情况下,割补的方法仍然可以使用.我们将来做几何面积计算时,就要视情况灵活运用割补法.例题2如图所示,在正方形ABCD 内部有一个长方形EFGH .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 都等于2厘米.求长方形EFGH 的面积.「分析」所求长方形的长、宽都是未知且不可求的,但是正方形面积以及周围四个直角三角形面积都是可以计算出来的,那么长方形面积怎么计算呢?1 223 453 2 4341249 DG如图所示,在正方形ABCD 内部有三角形CEF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AF 都等于2厘米.求三角形CEF 的面积.例题3如图所示,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?「分析」阴影部分零零散散,能不能通过割补的方法把它变成规则的图形嗯? 练习3如图所示,大正三角形的面积为10平方厘米.连接大正三角形的各边中点得到四个小正三角形,取各个小正三角形的中心,再将每个小正三角形的中心和顶点相连,得到三个一样的小三角形,那么图中阴影部分的面积总和等于多少平方厘米?例题4如图,把两个相同的正三角形的各边分别三等分和四等分,并连接这些等分点.已知图1中阴影部分的面积是48平方分米.请问:图2中阴影部分的面积是多少平方分米?「分析」图1和图2中最小正三角形的面积是不一样的,但两个大正三角形面积却是一样的,你能求出大正三角形的面积吗?D图2如图,把两个同样大小的正方形分别分成55⨯和33⨯的方格表.图1阴影部分的面积是162,请问图2中阴影部分的面积是多少?例题4中的阴影部分都是同样形状的花图形,我们不能直接看出花图形和大正三角形的面积之间有什么倍数关系,但是借助一块块小正三角形,我们把花图形和大正三角形之间联系起来,看看它们各自占了多少个小正三角形.找到面积之间的联系,是解决类似问题的钥匙.有些图形看起来没有分割成一些相同的小图形,实际上不过是将分割线隐藏起来或者只出现了其中的一部分,需要我们自己进行分割. 例题5如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A 的面积是36平方厘米,那么正方形B 的面积是多少平方厘米?「分析」乍一看上去和例题2有些相似,我们能不能求出大等腰直角三角形的面积呢?它的面积和正方形A 、B 之间有什么关系呢? 例题6如图所示,已知一个四边形的两条边的长度和三个角的度数,这个四边形的面积是多少平方厘米?(单位:厘米)「分析」这个四边形并不规则,直接求面积似乎有些困难.我们已经知道了其中的三个角,其中有直角也有45°角.你能从这两种“特殊角”发现图形的特点吗?图1课堂内外毕式定理据说毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;但这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形瓷砖,但毕达哥拉斯不仅仅是欣赏瓷砖的美丽,而是想到它们和数之间的关系,于是拿了画笔并且蹲在地板上,选了一块瓷砖以它的对角线AB为边画一个正方形,他发现这个正方形面积恰好等于两块瓷砖的面积和.他很好奇……于是再以两块瓷砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块瓷砖的面积,也就是以两股为边作正方形面积之和.至此毕达哥拉斯作了大胆的假设:任何直角三角形,其斜边的平方恰好等于另两边平方之和.那一顿饭,这位古希腊数学大师,视线都一直没有离开地面.这就是著名的毕式定理:在任何一个直角三角形中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方.实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查.相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的这个故事都是后人辗转传播的.可以说真伪难辨.这个现象的确不太公平,之所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上.他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了.至于希腊科学的起源只是近一二百年才有更深入的研究.因此,毕达哥拉斯定理这个名称一时半会儿改不了.不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,更普遍地则称为勾股定理.中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.作业1. 下图中的数字分别表示对应线段的长度,图中多边形的面积是多少?2. 如下图所示,在正方形ABCD 内部有梯形EHGF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 、BF 、DG 都等于2厘米.则梯形EHGF 的面积是多少平方厘米?3. 如图所示,平行四边形的面积是12,把一条对角线四等分,将四等分点与平行四边形另外两个顶点相连.图中阴影部分的面积总和是多少?4. 下图中空白部分的面积是100,那么阴影正方形的面积是多少?5. 如图所示,正六边形ABCDEF 的面积是36.阴影正六边形的面积是多少?D G324 34 1242 3 33 3第五讲 割补法巧算面积1. 例题1答案:32平方厘米详解:对这个图形进行简单分割后,分别求面积再相加. 32243632⨯+⨯+⨯=平方厘米.也可对图形进行添补.(如右图)2.例题2答案:16平方厘米详解:正方形面积是36平方厘米,三角形AEH 、FCG 的面积是2平方厘米,三角形EBF 、GDH 的面积是8平方厘米.长方形EFGH 的面积是36228216-⨯-⨯=平方厘米.3. 例题3答案:50平方厘米详解:首先可把小正方形中间的阴影部分添补到相对应的空白处,中间小正方形的面积等于四个角上的阴影三角形的面积和.可连接正方形对边的中点,也可以把四个三角形向中间对折都可以说明阴影部分的面积是正方形面积的一半,即为1010250⨯÷=平方厘米. 4. 例题4答案:27平方厘米详解:图1中大三角形被分成9块,阴影部分面积占3块,面积是48平方分米,那么每个小三角面积是16平方分米,大三角形面积是169144⨯=平方分米. 图2中大三角形被分成了16块,那么每个小三角形的面积是144169÷=平方分米,阴影部分面积是9327⨯=平方分米. 5. 例题5答案:32平方厘米详解:对图形进行如左图的分割,通过第一个图,我们知道等腰直角三角形的面积8平方厘米,正方形B 的面1 2 2 3 4 5 1 22 3 45积是32平方厘米.6. 例题6答案:20平方厘米详解:如图所示,把原图添补成一个大的等腰直角三角形.需要将多余的小直角三角形去掉才是原图.大等腰直角三角形的底是7厘米,高是7厘米,所以面积是77224.5⨯÷=平方厘米;小等腰直角三角形的底是3厘米,高是3厘米,所以面积是332 4.5⨯÷=平方厘米.所以四边形的面积是24.5 4.520-=平方厘米.7. 练习1答案:78平方厘米详解:492331278⨯+⨯+⨯=平方厘米.8. 练习2答案:10平方厘米详解:正方形面积是36平方厘米,三角形AEF 的面积是2平方厘米,三角形BEC 、DFC 的面积都是12平方厘米.三角形EFC 的面积是362121210---=平方厘米.9. 练习3答案:5简答:大正三角形被分成12块,阴影部分占6块,占总个数的一半,面积为5平方厘米.10. 练习4答案:1503 243 4124 9简答:图1中大正方形被分成25块,阴影部分面积占18块,面积是162,那么每个小正方形面积是9,大正方形面积是259225⨯=.图2中大正方形被分成了9块,那么每个小正方形的面积是225925÷=,阴影部分面积是256150⨯=.11. 作业1答案:84简答:()312433332284⨯+⨯+++⨯⨯=平方厘米.12. 作业2答案:18简答:首先求出大正方形的面积,再求出各个角上的小三角形的边长和面积.然后把大正方形的面积减去四个小三角形的面积就得梯形的面积. 13. 作业3答案:6简答:将右上两个阴影三角形切下来添到左侧空白处,使其拼成一个大的三角形.阴影面积是平行四边形面积的一半.所以阴影部分的面积是6. 14. 作业4答案:80简答:对三角形进行分割,能知道每个小三角形的面积是100520÷=,阴影正方形的面积是80.15. 作业5答案:9简答:把大六边形划分为24个小正三角形,其中阴影部分可以分成6个小正三角形,所以大六边形是阴影部分面积的4倍,正六边形面积是36,阴影部分的面积是3649÷=.。
四年级杯赛备战讲义奥数巧求周长

上课日期: 上课时间: 教师姓名:一、 基本概念(1)周长:封闭图形一周的长度就是这个图形的周长. (2)面积:物体的表面或封闭图形的大小,叫做它们的面积.二、 基本公式:(1)长方形的周长2=⨯(长+宽),面积=长⨯宽.(2)正方形的周长4=⨯边长,正方形的面积=边长⨯边长.三、 几个重要的解题思想 (3)平移在平面图形的计算中,常常要将一个平面图形移动到平面上的另一个位置进行计算.其中,将图形沿一个固定方向的移动叫做平移,一个图形经过平行移动不改变其形状与大小,所以图形面积是保持不变的.利用图形的平移,可以使面积计算问题的解法简捷明快,颇有新意.(4)割补割补法在我国古代叫“出入相补原理”,我国古代魏晋时期著名的数学家刘徽在《九章算术注》中就明确地提出“出入相补,各从其类”的出入相补原理.这个原理的内容是几何图形经过分、合、移、补所拼凑成的新图形,它的面积不变.(5)旋转在平面图形的割补中,有时要将一个图形绕定点旋转到一个新的位置,产生一种新的图形结构,图形在转动过程中形状大小不发生改变.利用这种新的图形结构可以帮我们解决面积的计算问题.(6)对称平面图形中有许多简单漂亮的图形都是轴对称图形.轴对称图形沿对称轴折叠,轴两侧可以完全重合.也就是说,如果一个图形是轴对称图形,那么对称轴平分这个图形的面积.熟悉轴对称图形这个性质,对面积计算会有很大帮助.(7)代换在几何计算中,对有关数量进行适当的等量代换也是解决问题的已知技巧.巧求周长知识框架小结:本讲主要通过求一些不规则图形的周长,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,体会求周长的技巧,提高观察能力、动手操作能力、综合运用能力.重难点(1)正方形、长方形周长计算公式;(2)转化思想。
例题精讲模块一基本公式【例1】一个正方形的面积与一个长方形的面积相等,如长方形的长是1024,宽是1,则正方形的周长是__________.【答案】128【分析】正方体的面积等于长方体的面积,所以正方体面积等于1024,所以正方体边长为32,周长为128.【巩固】一个正方形的面积与一个长方形的面积相等,如长方形的长是10dm,宽是36cm,则正方形的周长是多少?【例2】现有一个正方形和一个长方形,长方形的周长比正方形的周长多4厘米,宽比正方形的边长少2厘米,那么长比正方形的边长多()厘米.A.2 B.8 C.12 D.4【答案】D【解析】长方形周长比正方形的周长多4厘米,则长与宽的和比2个边长多2厘米,宽比正方形的边长少2厘米,则长比宽多4厘米.【巩固】现有一个正方形和一个长方形,长方形的周长比正方形的周长多6厘米,宽比正方形的边长少2厘米,那么长比正方形的边长多()厘米.模块二平移【例3】从边长为5厘米的正方形纸片的四个角处剪掉四个小长方形后的图,得到的新图形的周长是__________.【答案】20【巩固】一个长方形铁皮,从四个角各剪掉一个边长为5厘米的正方形,如图,做成长方体盒子.用________cm2铁皮,容积是_________cm3答案:650;1500【例4】图中“C”形图形的周长是______厘米.62 222【答案】32【巩固】求下图的周长【例5】如图,从一张长50厘米、宽20厘米的长方形纸片上剪去边长分别是12厘米和4厘米的两个正方形,则剩余部分面积的周长是__________厘米.【答案】172【分析】从整体考虑,剩余部分图形的周长增加了12 厘米边长正方形的左右两边和4 厘米边长正方形的左右两边.++⨯⨯⨯(5020)2122+42=172(厘米)【巩固】在一张边长是6厘米的正方形纸中,如图剪去一个长3厘米,宽2厘米的长方形,剩下部分的周长是多少?答案:30【例6】 某商场大厅的主楼楼梯如图所示,1楼到2楼共15级台阶,每级台阶高16厘米,每级台阶槽深26厘米.已知楼梯宽3米,现在1楼和2楼的楼梯上铺设每平方米80元的地毯,则买地毯至少需要多少钱?【答案】1512【解析】地毯展开为一个长方形,宽为楼梯宽3米,长为楼梯台阶的周长(0.260.16)15 6.3()m +⨯=,地毯面积为26.3318.9()m ⨯=,地毯至少需要18.9801512⨯=(元).【巩固】 如图为楼梯侧面剖视图,要将铺上地毯,则需要多少米的地毯.答案:7 (4+3)米模块三 割补【例7】 有一个长方形,如果它的长和宽同时增加6厘米,则面积增加了114平方厘米.则这个长方形的周长等于__________厘米. 【考点】几何 【难度】☆☆☆☆ 【答案】26【解析】()11466678613-⨯÷=÷=(厘米),13226⨯=(厘米).【巩固】 一块正方形的的玻璃,长、宽都截去8厘米后,剩下的正方形比原来少448平方厘米,这块正方形玻璃原来的面积是多大?模块四 旋转【例8】 如图所示,长方形ABCD 中,14AB =厘米,12AD =厘米,现沿其对角线BD 将它对折,得一几何图形,则图中阴影部分周长是__________.ABDCE【答案】52【解析】从图中可以看出阴影部分周长为DE DC BE BC +++,其中12DE BC AD ===,14DC BE AB ===,因此周长是12+142=52⨯()(厘米).【巩固】 如图所示,长方形ABCD 中,AB=20厘米,AD=16厘米,现沿其对角线BD 将它对折,得一几何图形,则图中阴影部分周长是__________.A BCDE答案:72模块五对称【例9】将一张边长为12厘米的正方形纸对折,再将对折后的纸沿它的竖直中线(右图虚纸)剪开,得到三个矩形纸片,其中两个较小的矩形的周长之和是多少厘米?分析与解:根据题目条件可知两个较小的长方形的周长相同.小矩形的长=12(厘米)小矩形的宽=12÷2÷2=3(厘米)小矩形的周长=(12+3)⨯2=30(厘米)两个小矩形的周长=30⨯2=60(厘米)答:其中两个较小矩形的周长之和是60厘米.【巩固】将一张边长为16厘米的正方形纸对折,再将对折后的纸沿它的竖直中线(右图虚纸)剪开,得到三个矩形纸片,其中两个较小的矩形的周长之和是多少厘米?【例10】如下图,有一个正方形和四个钝角等腰三角形,四个等腰三角形同时以同样的速度向正方形的中心运动,当四个三角形的底角接触时停止,此时正方形的边正好在三角形两腰中点的连线上,已知三角形的腰长为4cm,底边长为6cm,阴影部分的周长是多少厘米?【巩固】三角形ABC是等腰三角形,D.E.F分别为三边的中点,连接这三点得到三角形DEF,已知三角形ABC的两条边长分别为4cm和3cm,求三角形DEF的周长?模块六等量代换【例11】如右图,5个相同的小长方形拼成一个大正方形.已知大正方形的周长比一个小长方形的周长多10厘米,那么小长方形的周长是_______厘米.【答案】15【解析】大正方形的周长比小长方形的周长多的部分是8个小长方形的宽,所以小长方形的宽等于5 108=4÷厘米,大正方形的边长为5255=44⨯厘米,所以小长方形的周长为255+2=1544⎛⎫⨯⎪⎝⎭厘米.【巩固】如图,5个相同的小长方形拼成一个周长是88厘米的大长方形,那么大长方形的面积是多少平方厘米?【例12】按下图的方式,从周长为40厘米的正方形上截下四个完全一样的长方形,每个长方形的周长是多少厘米?【巩固】如下图,大长方形是由5个完全相同的小长方形组成,已知小长方形的宽是2厘米,求大长方形的周长?模块七最值问题【例13】将12个长4厘米,宽3厘米的长方形纸板拼成个大的长方形(包含正方形),拼接时要使得没有重叠部分并且不中空,那么拼成的长方形的周长最短是_________厘米,最长是_________厘米.【答案】48,102【巩固】用12个边长是1厘米的正方形拼成一个长方形,要使这个长方形的周长最短,那么这个长方形的一条长应是()厘米A.12B.6C.4D.不能确定【答案】C【例14】如右图,一张长方形的纸片,长20厘米,宽16厘米.如果从这张纸上剪下一个长10厘米,宽5厘米的小长方形,而且至少有一条边在原长方形的边上,那么剩下纸片的周长最大是()厘米.20 厘米16厘米A.72 B.82 C.92 D.102【答案】C【分析】在一个长方形中可以有多少种剪下小长方形的方法?(包括大长方形的宽都比小长方形的长长的情况,和大长方形的宽比小长方形的长短的情况)这个可以试着让孩子试试,然后实际操作一下,总结一下,至少有一条边在原长方形的边上时,最短的一边在原长方形的边上时,增加的长度最多.+⨯+⨯=.(2016)210292【巩固】一张长方形的纸片,长30厘米,宽15厘米.如果从这张纸上剪下一个长12厘米,宽8厘米的小长方形,而且至少有一条边在原长方形的边上,那么剩下纸片的周长最大是()厘米.【例15】面积是36平方厘米的长方形,边长为整厘米数,求周长的最小值?【巩固】面积是42平方分米的长方形,边长是整分米数,求长方形的周长的最大值?【挑战题】由2013个边长为1的小正三角形拼成的四边形中,周长的最小值是__________.【考点】几何直线形周长周长公式运用【关键词】2013年“数学解题能力展示”初赛答案:127解析:正三角形组成两种四边形,平行四边形和梯形.平行四边形要求偶数个三角形,而此题为2013个正三角形,所以一定构成梯形.那么在构造的梯形中,相邻层数间都差2个三角形,且都是奇数个,则可以构造一个梯形:第一次层有:2a+1个三角形;最后一层有2b+1个三角形,则有层数为b−a+1层.利用等差数列求和公式得:(2a+1+2b+1)×(b−a+1)÷2=2013化简得(b+a+1)×(b−a+1)=2013再考虑这个梯形上底长:a;下底长b+1;腰为:b−a+1;则周长可列为:3b−a+3由于2013=3×11×61,考虑到要想周长最小,即b尽量大,a尽量小取b+a+1=61,b−a+1=33,得a=14,b=46.带入得最小周长3b−a−3=127.【挑战题巩固】由2015个边长为1的小正三角形拼成的四边形中,周长的最小值是__________.家庭作业【作业1】边长为a的正方形,在一个角剪掉一个边长为的b正方形,则所剩余图形的周长为______ 答案:4a【作业2】求下图的周长【作业3】将长15厘米,宽10厘米的长方形纸片,剪成四个小长方形,再将其拼接(接头不重叠)成一个长方形,那么拼接成的长方形的周长最大是_______厘米.答案:125【作业4】现有一个正方形和一个长方形,长方形的周长比正方形的周长多8厘米,宽比正方形的边长少4厘米,那么长比正方形的边长多()厘米.【作业5】一张长方形纸片长8厘米、宽5厘米,从上面剪去一个最大的正方形后,剩下部分长厘米、宽厘米、周长是厘米.【作业6】将一张边长为20厘米的正方形纸对折,再将对折后的纸沿它的竖直中线(右图虚纸)剪开,得到三个矩形纸片,其中两个较小的矩形的周长之和是多少厘米?【作业7】如图是一个的侧剖图.已知每步台阶宽3分米,高2分米.这个侧面周长的是多少米?答案:60 (3x6+2x6)x2=60【作业8】一个正方形的面积与一个长方形的面积相等,如长方形的长是128cm,宽是2cm,则正方形的周长是多少?【作业9】五个相同的小正方形拼成一个长方形,周长减少24厘米,每个小正方形的面积是多少平方厘米?【作业10】一张长方形的纸片,长24厘米,宽12厘米.如果从这张纸上剪下一个长10厘米,宽7厘米的小长方形,而且至少有一条边在原长方形的边上,那么剩下纸片的周长最大是()厘米.【作业11】如下图,大长方形是由11个完全相同的小长方形组成,已知小长方形的长是5厘米,求大长方形的周长?【作业12】一个长方形的边长是整厘米数,面积是24平方厘米,那么这个长方形的周长最大是多少厘米?最小是多少厘米?【作业13】等边三角形的周长是18cm,连接三边的中点,得到四个小三角形,再连接顶点处的三个小三角形三边的中点,得到更小的三角形,求图中四个小三角形的周长之和?【作业14】如图,一个长方形的周长是26厘米,如果它的长和宽各增加3厘米,那么增加的面积是多少平方厘米?。
高斯小学奥数四年级下册含答案第05讲_割补法巧算面积

第五讲割补法巧算面积在上一讲中,我们学习了如何计算格点图形的面积,介绍了正方形格点图形和三角形格点图形的面积计算公式.根据公式,我们可以求出正方形格点图形的面积是最小正方形面积的几倍,或者求出三角形格点图形面积是最小正三角形面积的几倍.随着几何学习的步步深入,大家会发现除了用公式法直接求面积之外,还有很多间接求面积的方法.尤其是对于不规则图形,我们并不知道这些图形的面积公式,但是可以把它们通过分割、添补等各种方式变换为规则的图形.例题1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)「分析」这是一个不规则图形,我们能不能把它切成很多规则的小块,一块一块地求面积呢? 练习1图中的数字分别表示对应线段的长度,试求下面多边形的面积.(单位:厘米)我们可以看到,在没有格点的情况下,割补的方法仍然可以使用.我们将来做几何面积计算时,就要视情况灵活运用割补法.例题2如图所示,在正方形ABCD 内部有一个长方形EFGH .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 都等于2厘米.求长方形EFGH 的面积.「分析」所求长方形的长、宽都是未知且不可求的,但是正方形面积以及周围四个直角三角形面积都是可以计算出来的,那么长方形面积怎么计算呢?1 223 453 2 4341249 DG如图所示,在正方形ABCD 内部有三角形CEF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AF 都等于2厘米.求三角形CEF 的面积.例题3如图所示,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?「分析」阴影部分零零散散,能不能通过割补的方法把它变成规则的图形嗯? 练习3如图所示,大正三角形的面积为10平方厘米.连接大正三角形的各边中点得到四个小正三角形,取各个小正三角形的中心,再将每个小正三角形的中心和顶点相连,得到三个一样的小三角形,那么图中阴影部分的面积总和等于多少平方厘米?例题4如图,把两个相同的正三角形的各边分别三等分和四等分,并连接这些等分点.已知图1中阴影部分的面积是48平方分米.请问:图2中阴影部分的面积是多少平方分米?「分析」图1和图2中最小正三角形的面积是不一样的,但两个大正三角形面积却是一样的,你能求出大正三角形的面积吗?D图2如图,把两个同样大小的正方形分别分成55⨯和33⨯的方格表.图1阴影部分的面积是162,请问图2中阴影部分的面积是多少?例题4中的阴影部分都是同样形状的花图形,我们不能直接看出花图形和大正三角形的面积之间有什么倍数关系,但是借助一块块小正三角形,我们把花图形和大正三角形之间联系起来,看看它们各自占了多少个小正三角形.找到面积之间的联系,是解决类似问题的钥匙.有些图形看起来没有分割成一些相同的小图形,实际上不过是将分割线隐藏起来或者只出现了其中的一部分,需要我们自己进行分割. 例题5如图,在两个相同的等腰直角三角形中各作一个正方形,如果正方形A 的面积是36平方厘米,那么正方形B 的面积是多少平方厘米?「分析」乍一看上去和例题2有些相似,我们能不能求出大等腰直角三角形的面积呢?它的面积和正方形A 、B 之间有什么关系呢? 例题6如图所示,已知一个四边形的两条边的长度和三个角的度数,这个四边形的面积是多少平方厘米?(单位:厘米)「分析」这个四边形并不规则,直接求面积似乎有些困难.我们已经知道了其中的三个角,其中有直角也有45°角.你能从这两种“特殊角”发现图形的特点吗?图1课堂内外毕式定理据说毕达哥拉斯有次应邀参加一位富有政要的餐会,这位主人豪华宫殿般的餐厅铺着正方形美丽的大理石地砖,由于大餐迟迟不上桌,这些饥肠辘辘的贵宾颇有怨言;但这位善于观察和理解的数学家却凝视脚下这些排列规则、美丽的方形瓷砖,但毕达哥拉斯不仅仅是欣赏瓷砖的美丽,而是想到它们和数之间的关系,于是拿了画笔并且蹲在地板上,选了一块瓷砖以它的对角线AB为边画一个正方形,他发现这个正方形面积恰好等于两块瓷砖的面积和.他很好奇……于是再以两块瓷砖拼成的矩形之对角线作另一个正方形,他发现这个正方形之面积等于5块瓷砖的面积,也就是以两股为边作正方形面积之和.至此毕达哥拉斯作了大胆的假设:任何直角三角形,其斜边的平方恰好等于另两边平方之和.那一顿饭,这位古希腊数学大师,视线都一直没有离开地面.这就是著名的毕式定理:在任何一个直角三角形中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方.实际上,早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且巴比伦、埃及、中国、印度等的发现都有真凭实据,有案可查.相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的这个故事都是后人辗转传播的.可以说真伪难辨.这个现象的确不太公平,之所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上.他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了.至于希腊科学的起源只是近一二百年才有更深入的研究.因此,毕达哥拉斯定理这个名称一时半会儿改不了.不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,更普遍地则称为勾股定理.中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦.作业1. 下图中的数字分别表示对应线段的长度,图中多边形的面积是多少?2. 如下图所示,在正方形ABCD 内部有梯形EHGF .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 、BF 、DG 都等于2厘米.则梯形EHGF 的面积是多少平方厘米?3. 如图所示,平行四边形的面积是12,把一条对角线四等分,将四等分点与平行四边形另外两个顶点相连.图中阴影部分的面积总和是多少?4. 下图中空白部分的面积是100,那么阴影正方形的面积是多少?5. 如图所示,正六边形ABCDEF 的面积是36.阴影正六边形的面积是多少?D G324 34 1242 3 33 3第五讲 割补法巧算面积1. 例题1答案:32平方厘米详解:对这个图形进行简单分割后,分别求面积再相加. 32243632⨯+⨯+⨯=平方厘米.也可对图形进行添补.(如右图)2.例题2答案:16平方厘米详解:正方形面积是36平方厘米,三角形AEH 、FCG 的面积是2平方厘米,三角形EBF 、GDH 的面积是8平方厘米.长方形EFGH 的面积是36228216-⨯-⨯=平方厘米.3. 例题3答案:50平方厘米详解:首先可把小正方形中间的阴影部分添补到相对应的空白处,中间小正方形的面积等于四个角上的阴影三角形的面积和.可连接正方形对边的中点,也可以把四个三角形向中间对折都可以说明阴影部分的面积是正方形面积的一半,即为1010250⨯÷=平方厘米. 4. 例题4答案:27平方厘米详解:图1中大三角形被分成9块,阴影部分面积占3块,面积是48平方分米,那么每个小三角面积是16平方分米,大三角形面积是169144⨯=平方分米. 图2中大三角形被分成了16块,那么每个小三角形的面积是144169÷=平方分米,阴影部分面积是9327⨯=平方分米. 5. 例题5答案:32平方厘米详解:对图形进行如左图的分割,通过第一个图,我们知道等腰直角三角形的面积8平方厘米,正方形B 的面1 2 2 3 4 5 1 22 3 45积是32平方厘米.6. 例题6答案:20平方厘米详解:如图所示,把原图添补成一个大的等腰直角三角形.需要将多余的小直角三角形去掉才是原图.大等腰直角三角形的底是7厘米,高是7厘米,所以面积是77224.5⨯÷=平方厘米;小等腰直角三角形的底是3厘米,高是3厘米,所以面积是332 4.5⨯÷=平方厘米.所以四边形的面积是24.5 4.520-=平方厘米.7. 练习1答案:78平方厘米详解:492331278⨯+⨯+⨯=平方厘米.8. 练习2答案:10平方厘米详解:正方形面积是36平方厘米,三角形AEF 的面积是2平方厘米,三角形BEC 、DFC 的面积都是12平方厘米.三角形EFC 的面积是362121210---=平方厘米.9. 练习3答案:5简答:大正三角形被分成12块,阴影部分占6块,占总个数的一半,面积为5平方厘米.10. 练习4答案:1503 243 4124 9简答:图1中大正方形被分成25块,阴影部分面积占18块,面积是162,那么每个小正方形面积是9,大正方形面积是259225⨯=.图2中大正方形被分成了9块,那么每个小正方形的面积是225925÷=,阴影部分面积是256150⨯=.11. 作业1答案:84简答:()312433332284⨯+⨯+++⨯⨯=平方厘米.12. 作业2答案:18简答:首先求出大正方形的面积,再求出各个角上的小三角形的边长和面积.然后把大正方形的面积减去四个小三角形的面积就得梯形的面积. 13. 作业3答案:6简答:将右上两个阴影三角形切下来添到左侧空白处,使其拼成一个大的三角形.阴影面积是平行四边形面积的一半.所以阴影部分的面积是6. 14. 作业4答案:80简答:对三角形进行分割,能知道每个小三角形的面积是100520÷=,阴影正方形的面积是80.15. 作业5答案:9简答:把大六边形划分为24个小正三角形,其中阴影部分可以分成6个小正三角形,所以大六边形是阴影部分面积的4倍,正六边形面积是36,阴影部分的面积是3649÷=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五讲巧求周长和面积编写说明“巧求周长和面积”的相关内容我们在寒假小4第四讲给予过一定的讲解. 本讲我们主要在原有知识的基础上进行提高巩固,同时加入一些新的知识,帮助我们更好的过渡到五年级几何部分的学习. 对于一些非常典型的例题,我们采用“重复加强”的学习方法,帮助孩子们牢固掌握. 奥数的题目虽然很多,但一些经典题目,常常会以原题形式出现在各个中学入学测试题中,希望我们的孩子能戒骄戒躁,温故而后知新,清晰彻底的掌握理解自己学习过题目.你还记得吗【复习1】右图中是一个方形螺线.已知两相邻平行线之间的距离均为l厘米,求螺线的总长度.分析:如下图所示,将原图形转化为3个边长分别为3、5、7厘米的正方形和中间一个三边图形.所以螺线的总长度为:(3+5+7)×4+1×3=63 cm .【复习2】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示。
如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?分析:我们可以让静止的瓷砖动起来,把对角线上的(101+1)÷2=51块黑瓷砖,通过向上或向右平移处理,移到两条边上(如图2)。
在这一转化过程中瓷砖的位置发生了变化,但数量没有变,此时白色瓷砖组成一个正方形。
(101+1)÷2=51(大正方形的边长),51-1=50(白色瓷砖组成正方形的边长),50×50=2500(块),所以白色瓷砖共用了2500块。
【复习3】有10张长3厘米,宽2厘米的纸片,将它们按照右图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?分析:每多盖一张,遮住的面积增加2×1,所以这10张纸片所盖住的桌面的面积是3×2+2×1×9=24cm2.【复习4】有红、黄、绿三块大小一样的正方形纸片,放在一个正方形盒内,它们之间相互叠合(如右图),已知露在外面部分中,红色面积是20,黄色面积是12,绿色面积是8,那么正方形盒的底面积是多少?分析:黄色纸片露出部分与绿色纸片露出部分面积不同,把黄色纸片向左移动,在这个移动过程中,黄色纸片露出部分减少的面积等于绿色纸片纸片露出部分增加的面积,它们露出的面积和不变,所以图2中黄色露出部分面积为10,绿色面积也为10。
红、黄、绿三个长方形的面积已经求出,因为长方形中对角的面积乘积相等,故有:黄×绿=红×白。
空白长方形的面积应为10×10÷20=5,纸盒的底面积为20+10+10+5=45。
解答此题的关键是让黄色正方形纸片移动,使复杂的图形变为基本图形。
巧求周长【例1】(希望杯1试)如右图,正方形ABCD的边长是6厘米,过正方形内的任意两点画直线,可把正方形分成9个小长方形。
这9个小长方形的周长之和是多少厘米?分析:从总体考虑,在求这9个小长方形的周长之和时,AB、BC、CD、AD这四条边被用了1次,其余四条线被用了2次,所以9个小长方形的周长之和是:4×6+4×2×6=72(厘米).【巩固】计算右面图形的周长(单位:厘米).分析:要求这个图形的周长,似乎不可能,因为缺少条件.但是,我们仔细观察这个图形,发现它的每一个角都是直角,所以,我们可以将图中右上缺角处的线段分别向上、向右平行移动到虚线处(见右下图),这样正好移补成一个长方形。
求长方形的周长就易如反掌了.图形的周长是:(10+15)×2=50(厘米) .这个思路熟悉以后,我们要学会从总体考虑.【例2】 如右图所示,在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲,和L 形区域乙和丙 .甲的边长为4厘米,乙的边长是甲边长的1.5倍,丙的边长是乙边长的1.5倍,那么丙的周长为多少厘米?EF 长多少厘米?分析:乙的周长实际上是正方形AHJE 的周长(我们可将乙与甲重合的部分“掰过来”),同理丙的周长也就是正方形ABCD 的周长,那么AE=1.5×4=6 ,AD=1.5×6=9,丙的周长为36厘米,EF =AE-AF=6-4=2(厘米).【例3】 有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形(如图)的面积是45平方厘米,求这个大长方形的周长.分析:【前铺】右图的长方形被分割成5个正方形,已知原长方形的面积为120cm 2,求原长方形的长与宽。
分析:设小正方形边长为a ,那么大正方形的边长为1.5a ,所以长方形的长、宽分别为3a 、2.5a ,7.5×a ×a=120=7.5×16 ,所以a=4,原长方形的长和宽分别为:12、10厘米.巧求面积 【例4】 长方形ABCD 的周长是30厘米,以这个长方形的每一条边为边长向外画正方形.已知这四个正方形的面积之和为290平方厘米,那么长方形ABCD 的面积是多少平方厘米?45459542555554225542.522252.5422.5229÷⨯⨯=⨯=⨯=⨯=⨯⨯从图上可以知道,小长方形的宽是长的。
根据题意,每个小长方形的面积是=(平方厘米),长长,长长=所以 长=(厘米),宽=(厘米)于是这个大长方形的周长是(++)=(厘米)分析:从图形我们可以看出,A1B的长度恰好为长方形的长与宽之和,即为长方形ABCD 周长的一半,可以看出若以A1B和BC1为边能构成大正方形A1BC1E1(如下图b所示),其中包含两个长方形和两个正方形,而且两个长方形的面积是相等的,两个正方形的面积刚好是290平方厘米的一半.这样我们容易求出:大正方形A1BC1E1的边长为15厘米,面积为:225平方厘米,正方形CDD1C1与正方形ADEA1的面积之和为:290÷2=145(平方厘米).长方形ABCD与长方形EDD1E1的面积相等.所以,长方形ABCD的面积为:(225—145)÷2=40(平方厘米).【前铺】一块正方形的苗圃(如右图实线所示),若将它的边长各增加30米(如图虚线所示),则面积增加9900平方米,问原来这块正方形苗圃的面积是多少平方米?分析:小正方形的面积为:30×30=900平方米.用增加的面积减去小正方形的面积就得到增加的两个长方形的面积,为:9900—900=9000平方米.而增加的两个长方形的面积相等,于是其中一个长方形的面积等于9 000÷2=4500平方米.长方形的宽为30米,那么长为:4500÷30=150(米),150×150=22500(平方米).【巩固】用两块长方形纸片和一块正方形纸片拼成一个大正方形,长方形纸片面积分别44cm2与28cm2,原正方形纸片面积是多少平方厘米?分析:做辅助线,如右下图,小正方形Ⅰ的面积为44-28=16,a=4,b=28÷4=7,原正方形面积=7×7=49(平方厘米).【例5】把正三角形的每条边三等分,以各边的中间一段为边向外作小正三角形,得到一个六角形.再将这个六角形的六个“角”(即小正三角形)的两边三等分,又以它的中间段为边向外作更小的小正三角形,这样就得到如右图所示的图形.如果所作的最小的小正三角形的面积为l平方厘米,求如图中整个图形的面积.分析:题目中出现了大、中、小三种规格的正三角形(如图a),由已知,图中最小的小正三角形的面积是l平方厘米,于是我们就以1平方厘米的小正三角形为单位,对图a进行分割,得到图b.从图b可以看出,一个大正三角形中包含9个中正三角形,一个中正三角形中包含9个小正三角形.由此可以求出,一个大正三角形中包含9×9:81个小正三角形,在图a中,除了一个大三角形之外,还有三个中三角形和12个小正三角形,所以整个圆形中共含有小三角形的个数为:9×9+3×9+12=120(个),而每一个小正三角形的面积为1平方厘米,所以图a中图形的面积为120平方厘米.【前铺】右图中 A,B两点分别是长方形的长和宽的中点,阴影部分占长方形面积的几分之几?分析:3/8 ,采用分割的思想去做,分割如右下图所示.【前铺】正三角形ABC的面积是1m2,将三条边分别向两端各延长一倍,连结六个端点得到一个六边形(如右图),求六边形的面积.分析:采用分割法,右下图中所有小三角形的面积都相同,所以面积=13.【例6】如图,正方形ABCD的边长是5,E,F分别是AB和BC的中点,求四边形BFGE的面积.分析:利用割补法,原正方形面积等于5个小正方形面积之和,每个小正方形面积是5,而阴影部分面积等于1个小正方形面积,所以也是5。
【例7】有一大一小两块正方形试验田,他们的周长相差40米,面积相差220平方米,那么小正方形试验田的面积是多少平方米?分析:根据已知条件,我们将两个正方形试验田的一个顶点对齐,画出示意图(如图a),将大正方形在小正方形外的部分分割成两个直角梯形,再拼成一个长方形(如图b).由于两个正方形的周长相差40米,从而它们的每边相差40÷4=10米,即图b中的长方形的宽是10米.又因为长方形的面积是两个正方形的面积之差,即为220平方米,从而长方形的长为:220÷10=22(米).由图可知,长方形的长是大正方形与小正方形的边长之和,长方形的宽为大正方形与小正方形的边长之差,从而小正方形的边长为:(22—10)÷2=6(米).所以小正方形的面积为:6×6=36(平方米).解本题的常规思路是先求出小正方形试验田的边长,再在利用面积公式求出小正方形试验田的面积.可是直接从题目已知出发求小正方形试验田的边长不太容易,于是我们想到用割补的方法利用图像来比较直观地解决这个问题.综合应用【例8】(迎春杯初赛)如右图,甲、乙、丙、丁四个长方形拼成一个正方形EFGH,中间阴影为正方形。
已知甲、乙、丙、丁四个长方形面积的和是32cm2,四边形ABCD的面积是20cm2,求甲、乙、丙、丁四个长方形周长的总和.分析:大正方形面积等于四边形ABCD面积加上甲、乙、丙、丁面积和的一半,即20+32÷2=36(厘米2)。
推知大正方形边长为6厘米,也就是小长方形的长加宽为6厘米,所以一个小长方形的周长为12厘米,甲、乙、丙、丁周长的总和等于48厘米.【例9】从一块正方形的玻璃板上锯下宽为0.5米的一个长方形玻璃条后,剩下的长方形的面积为5平方米,请问锯下的长方形玻璃条的面积等于多少?分析:我们先按题目中的条件画出示意图(如图a),我们先看图中剩下的长方形,已知它的面积为5平方米,它的长和宽相差0.5米,为了解题方便,我们可以将这样形状的四个长方形拼成一个弦图(如图b).图b是一个大正方形,它的边长等于长方形的长和宽之和,中间的那个小正方形的边长,等于长方形的长和宽之差,等于0.5米.这样中间的小正方形的面积等于0.5×0.5=0.25平方米,那么大正方形的面积等于5×4+0.25=20.25平方米.因为4.5×4.5=20.25,所以大正方形的边长等于4.5米.这样我们便知道了剩下的长方形的长与宽的和为4.5米,而长与宽的差为0.5米,运用(和+差)÷2=大数,(和一差)÷2:小数这两个公式中的一个,就可以求出剩下的长方形的长为:(4.5+0.5)÷2=2.5(米),即原正方形的边长为2.5米. 又知锯下的长方形玻璃条的宽为0.5米,于是可得锯下的长方形玻璃条的面积为:2.5×O.5=1.25(平方米).【例10】(06年希望杯2试)如右图,用标号为1,2,3,4,5的五种大小不同的正方形拼成一个大长方形,大长方形的长和宽分别是18,14,则标号为5的正方形的面积是多少?分析:如果标号为5的正方形的边长是a,那么1号比2号大a,2号比3号大a,所以1号比3号大2a,又因为2号和3号的边长之和是14,1号和2号的边长之和是18,所以1号比3号大18-14=4,即2a=4,a=2,标号为5的正方形的面积是4 .【例11】如右图的长方形纸片,假如按图中虚线剪成4块,这4块纸片可拼成一个正方形.那么所拼成的正方形的周长是多少厘米? (单位:厘米)分析:根据形变其面积不变的原理,所拼成的正方形面积是:9×(12+4)=144(平方厘米),由正方形面积计算公式可知正方形的边长是12厘米,即144=12×12,所以,所拼成的正方形的周长是:12×4=48(厘米).【例12】如图,一个矩形被分成八个小矩形,其中有五个矩形的面积如图中所示(单位:平方厘米),问大矩形的面积是多少平方厘米?分析:通过分析题目中的已知条件可以看出,面积为16平方厘米和面积为20平方厘米的两个长方形的宽相等,即CB相等,不妨假设CB=2厘米,可以算得:AC=8厘米,CD=10厘米.于是可以算得:GC=36÷8=4.5(厘米),BE=30÷10=3(厘米),EF=12÷8=1.5(厘米).于是大长方形的长=10+8=18(厘米).宽=4.5+2+3+1.5=1l(厘米).因此大长方形的面积=11×l8=198(平方厘米).附加题目【附1】(希望杯1试)如右图,六个相同的长方形围成了大小两个正方形,已知小正方形的面积是36平方厘米,则每个小长方形的面积是多少平方厘米?分析:小正方形的面积为36平方厘米,则边长为6厘米,所以小长方形的长为6厘米,2个宽+长=2个长,所以小长方形的宽等于3厘米,每个小长方形的面积为18平方厘米.图4【附2】图1、图2都是由完全相同的正方形拼成的,并且图1的周长是22厘米,那么图2的周长是多少厘米?分析:图1的周长是小正方形边长的12倍。