什么是数学黑洞
Digital Black Hole数学黑洞

数学黑洞
周任行 G144
DA
• • • • Information Sisyphus Black Hole Capulet Carl black hole The number of daffodils black holes
INFORMATION
• 黑洞原是天文学中的概念,表示这样一种天体:它的引力场是如此之强,就 连光也不能逃脱出来。数学中借用这个词,指的是某种运算,这种运算一般 限定从某些整数出发,反复迭代后结果必然落入一个点或若干点。数字黑洞 运算简单,结论明了,易于理解,故人们乐于研究。但有些证明却不那么容 易。
CAPULET CARL BLACK HOLE
• • • • 三位数:个十百位不同 把这个三位数的三个数字按大小重新排列,得出最大数和最小数 两者相减得到一个新数 再按照上述方式重新排列,再相减,最后总会得到495这个数字
• Example • 输入352,排列得最大数位532,最小数为235,相减得297;再 排列得972和279,相减得693;接着排列得963和369,相减得 594;最后排列得到954和459,相减得495
SISYPHUS BLACK HOLE
• • • • • • 设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所 包含的所有位数的总数 数出该数数字中的偶数个数,数出该数数字中的奇数个数 数出该数数字的总个数 将答案按 “偶-奇-总” 的位序 将新数5510按以上算法重复运算,将新数134按以上算法重复运算将新数 134按以上算法重复运算 按上述算法,最后必得出123的结果
THE NUMBER OF DAFFODILS BLACK HOLES
• 任意找一个3的倍数的数 • 先把这个数的每一个数位上的数字都立方,再相加,得到一个新 数 • 然后把这个新数的每一个数位上的数字再立方、求和,......,重复 运算下去,就能得到一个固定的数——153
可怕的数学黑洞

可怕的数学黑洞“我们身边到处都是黑洞。
”—霍金无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去了,就像宇宙中的黑洞可以将任何物质(包括运行速度最快的光)牢牢吸住,不使它们逃脱一样,而这些设定的自然数就构成了数学黑洞。
西绪福斯黑洞西绪福斯黑洞也就是所谓的123数字黑洞。
数学中的123就跟英语中的ABC一样平凡和简单。
然而,按以下运算顺序,就可以观察到这个最简单的数字黑洞的值:例如:1234567890,偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有5 个。
奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有5 个。
总:数出该数数字的总个数,本例中为 10 个。
新数:将答案按“偶-奇-总” 的位序,排出得到新数为:5510。
重复:将新数5510按以上算法重复运算,可得到新数:134。
重复:将新数134按以上算法重复运算,可得到新数:123。
结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。
换言之,任何数的最终结果都无法逃逸123黑洞。
卡普雷卡尔黑洞卡普雷卡尔黑洞也叫作重排求差黑洞。
三位数黑洞495:只要你输入一个三位数,要求个,十,百位数字不相同,如不允许输入111,222等。
那么你把这个三位数的三个数字按大小重新排列,得出最大数和最小数,两者相减得到一个新数,再按照上述方式重新排列,再相减,最后总会得到495这个数字。
四位数黑洞6174:把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成 6174。
水仙花数黑洞水仙花数黑洞也叫作153数字黑洞。
任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方、求和,......,重复运算下去,就能得到一个固定的数——153,我们称它为数字“黑洞”。
奇妙的数学黑洞

奇妙的数学黑洞第一篇:奇妙的数学黑洞数学黑洞数学黑洞茫茫宇宙之中,存在着这样一种极其神秘的天体叫“黑洞”(black hole)。
黑洞的物质密度极大,引力极强,任何物质经过它的附近,都要被它吸引进去,再也不能出来,包括光线也是这样,因此是一个不发光的天体黑洞的名称由此而来。
由于不发光,人们无法通过肉眼或观测仪器发觉它的存在,而只能理论计算或根据光线经过其附近时产生的弯曲现象而判断其存在。
虽然理论上说,银河系中作为恒星演化终局的黑洞总数估计在几百万到几亿个之间,但至今被科学家确认了的黑洞只有天鹅座X-1、大麦哲伦云X-3、AO602-00等极有限的几个。
证认黑洞成为21世纪的科学难题之一。
数学被誉为“科学之母”,在现代科技的发展中起着定海神针般的作用,而现代的战争更是被认为将是一场“数学家和信息学家的战争”。
在信息战中,要运用数学作大量的模拟运算,运用数学在空间作精确的定位,运用数学对导弹作精密制导,运用数学来研究保密通信的算法,运用数学作为网络攻击利器。
无独有偶,在数学中也有这种神秘的黑洞现象。
1.123黑洞(即西西弗斯串)数学中的123就跟英语中的ABC一样平凡和简单。
然而,按以下运算顺序,就可以观察到这个最简单的黑洞值:设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,例如:1234567890,偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有 5 个。
奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有 5 个。
总:数出该数数字的总个数,本例中为 10 个。
新数:将答案按“偶-奇-总” 的位序,排出得到新数为:5510。
重复:将新数5510按以上算法重复运算,可得到新数:134。
重复:将新数134按以上算法重复运算,可得到新数:123。
结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。
数字黑洞

数字黑洞【第1篇】今天,我在书上突然看见几个字:什么是“数字黑洞”?我看着题目觉得很有趣,于是,便看了下去:“数字黑洞”是指自然数经过某种数字运算之后陷入了一种循环的境况。
例如,任意选四个不同的数字,组成一个最大的数和最小的数,用大数减去小数。
用所得的四位数重复上述过程,最多七步,必得6174。
即:7641-1467=6174。
仿佛掉进了黑洞,永远也出不来。
开始,我还读不太懂,然后,我又叫妈妈来看,结果,妈妈也看不懂,于是,她叫我去问林老师,第二天,我拿着书去问林老师,说:“林老师,这个我怎么看不懂呀?”林老师说:“这个就是用任意四个数字,组成一个最大和最小的数,用大数减去小数,用所得的商再组成一个最大和最小的数,最多七步,就可以得6174”。
我认真地听着,回到座位上一算:用1、2、3、4吧!4321-1234=3087 8730-3078=5652 6552-2556=3996 9963-3699=6264 6642-2466=41767641-1467=6174。
这样就得到了6174,只用了6步,我不得不相信书上说的。
今天,我明白了什么是“数学黑洞”,我真高兴呀!【第2篇】任意选一个四位数(数字不能全相同),把所有数字从大到小排列,再把所有数字从小到大排列,用前者减去后者得到一个新的数。
重复对新得到的数进行上述操作,7 步以内必然会得到6174。
例如,选择四位数 6767:7766 - 6677 = 10899810 - 0189 = 96219621 - 1269 = 83528532 - 2358 = 61747641 - 1467 = 6174……6174 这个“黑洞”就叫做 Kaprekar 常数。
对于三位数,也有一个数字黑洞——495。
3x + 1 问题从任意一个正整数开始,重复对其进行下面的操作:如果这个数是偶数,把它除以 2 ;如果这个数是奇数,则把它扩大到原来的 3 倍后再加1 。
数字黑洞作文(通用5篇)

数字黑洞作文(通用5篇)数字黑洞作文篇1今天,我在书上突然看见几个字:什么是“数字黑洞”?我看着题目觉得很有趣,于是,便看了下去:“数字黑洞”是指自然数经过某种数字运算之后陷入了一种循环的境况。
例如,任意选四个不同的数字,组成一个最大的数和最小的数,用大数减去小数。
用所得的四位数重复上述过程,最多七步,必得6174。
即:7641-1467=6174。
仿佛掉进了黑洞,永远也出不来。
开始,我还读不太懂,然后,我又叫妈妈来看,结果,妈妈也看不懂,于是,她叫我去问林老师,第二天,我拿着书去问林老师,说:“林老师,这个我怎么看不懂呀?”林老师说:“这个就是用任意四个数字,组成一个最大和最小的数,用大数减去小数,用所得的商再组成一个最大和最小的数,最多七步,就可以得6174”。
我认真地听着,回到座位上一算:用1、2、3、4吧!4321-1234=3087 8730-3078=5652 6552-2556=3996 9963-3699=6264 6642-2466=4176 7641-1467=6174。
这样就得到了6174,只用了6步,我不得不相信书上说的。
今天,我明白了什么是“数学黑洞”,我真高兴呀!数字黑洞作文篇2任意选一个四位数,把所有数字从大到小排列,再把所有数字从小到大排列,用前者减去后者得到一个新的数。
重复对新得到的数进行上述操作,7 步以内必然会得到 6174。
例如,选择四位数 6767:7766 - 6677 = 10899810 - 0189 = 96219621 - 1269 = 83528532 - 2358 = 61747641 - 1467 = 6174……6174 这个“黑洞”就叫做 Kaprekar 常数。
对于三位数,也有一个数字黑洞——495。
3x + 1 问题从任意一个正整数开始,重复对其进行下面的操作:如果这个数是偶数,把它除以 2 ;如果这个数是奇数,则把它扩大到原来的 3 倍后再加 1 。
数学黑洞

难道每一个数 都以123结束 吗?
冰雹猜想,也是数学黑洞问题中的一个小的分支,最早出 现于上个世纪的 70 年代,来自于各个大学内部的一种数学游戏。 这个数学游戏的原理和过程并不复杂,就是游戏者写出一个自 然数,这个自然数可以用 N 来进行代替,但是不能为 0。如果
这个自然数为奇数,那么在游戏的下一步过程中会变为 3N+1,
复下去,所的数值仍然为 6174。在这个运算中,6174 就是相应
的黑洞数值,这个计算过程就是数学中的卡普雷卡尔运算法则。 通过这样的例子,很好地理解了什么是卡普雷卡尔常数,对于
进一步学习数学黑洞知识奠定了坚实的基础。
随意写出一个四位数,它的各个数位上的 数字不都相等。用这个四位数各个数位上 的数字组成一个最大数和一个最小数,并 用最大数减去最小数,得到一个新的四位 数。对于新得到的四位数,一直重复上面 的运算,最后你发现了什么?
如果这个自然数是偶数,那么在游戏的下一步就会成为 N / 2。 人们在游戏中发现,这个游戏中的N只要是一个不为0的自然数, 在游戏的最后都会回到数值 1,也就是无法跳出 4-2-1 这个数字
循环。后来的数学研究者就将这样的数学问题称作冰雹猜想,
我们对于冰雹猜想进行一定了解,对于学习数学黑洞,加深相 关理解有积极的促进作用。
正整数5681245721
偶数数字是:6、8、2、4、2,偶数数字的个数为5; 奇数数字是:5、1、5、7、1,奇数数字的个数为5; 数字的总个数为10; 按“偶—奇—总”的位序排出,得到新数:5510; 将新数5510按以上规则进行操作,得到新数:134; 将新数134按以上规则进行操作,得到新数:123; 将新数123按以上规则进行操作,最后结果还是123。 无论我们再按以上规 则 操 作 多 少 次, 都会永无休止地重 复出现“123”这个结果。
数学黑洞简介

数学黑洞简介
数学黑洞是指引力场中不能逃逸的物理状态,因此任何光线和其他物质都无法逃离该状态,它通常表示绝对空间、无限时间以及未知的物理法则。
数学黑洞是由前列纳斯特理论所提出,结合相对论而成形,以描述物理状态的尺度。
数学黑洞的存在不仅影响着物理学的尺度,它还可能影响到宇宙的尺度,发生时能在极短的时间内生成极大的能量。
虽然真正的数学黑洞不会在宇宙中发现,但是它们还是会影响着宇宙的形态以及微观层面。
五年级:美妙数学之“数字黑洞”(0708五)

五年级:美妙数学之“数字黑洞”(0708五)美妙数学天天见,每天进步一点点。
亲爱的同学们,你们好,我是朱乐平工作室的老师,今天要和你们分享的内容是《数字黑洞》。
同学们,你听说过“宇宙黑洞”吗?在现代广义相对论中,它是宇宙空间内存在的一种非常神秘的天体,不论什么东西,只要被它吸进去,就再也别想爬出来,就像一个无底洞一样。
在数学这个神秘的王国里,也存在着类似天文学上的黑洞——数字黑洞。
什么是数字黑洞?数学中借用这个词,指的是某种运算,这种运算一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点的情况。
我们可以任意选四个不同的数字,按从大到小的顺序排成一个数,再按从小到大的顺序排成一个数,用大数减去小数。
用所得结果的四位数重复上述过程,最多七步必得6174,仿佛掉入了黑洞,永远出不来。
像这样自然数经过某种数学运算之后陷入了一种循环的境况,就是数字黑洞。
是不是任意四个不同的数字,重复以上过程都会有这样的结果呢?我们来试一试。
我选四个不同的数字1,2,3,0。
按从大到小的顺序排成一个数3210,再按从小到大的顺序排成一个数123,用大数减去小数3210-123=3087用3087重复上述过程:8730-378=8352继续重复以上的过程:8532-2358=6174想一想:除了四位数数字黑洞6174,你还发现了其他的数字黑洞了吗?看看两位数、三位数,甚至五位数也会有数字黑洞呢?我试试有没有三位数的数字黑洞。
那我来试两位数的。
我选三个不同的数字3,6,0。
按从大到小的顺序排成一个数630,再按从小到大的顺序排成一个数36,用大数减去小数630-36=594用594重复上述过程:954-459=495。
两位数的更简单,比如选8和5,85-58=27,72-27=45,54-45=9。
再比如选9和4,94-49=45,54-45=9。
同学们你发现了吗?1.四位数的黑洞数字6174;2.三位数的黑洞数字是495;3.两位数的黑洞数字是9。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是数学黑洞
在数学中也有这种神秘的黑洞现象,对于数学黑洞,无论怎样设值,在规定的处理法则下,最终都将得到固定的一个值,再也跳不出去了,就像宇宙中的黑洞可以将任何物质(包括运行速度最快的光)牢牢吸住,不使它们逃脱一样。
这就对密码的设值破解开辟了一个新的思路。
【一】123黑洞
(即西西弗斯串)
数学中的123就跟英语中的ABC一样平凡和简单。
然而,按以下运算顺序,就可以观察到这个最简单的
黑洞值:
设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,
例如:1234567890,
偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有5 个。
奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有5 个。
总:数出该数数字的总个数,本例中为10 个。
新数:将答案按“偶-奇-总” 的位序,排出得到新数为:5510。
重复:将新数5510按以上算法重复运算,可得到新数:134。
重复:将新数134按以上算法重复运算,可得到新数:123。
结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。
换言之,任何数的最终结果都无法逃逸123黑洞。
【二】任意N位数的归敛的卡普雷卡尔黑洞
取任何一个4位数(4个数字均为同一个数字的例外),将组成该数的4个数字重新组合成可能的最大数和可能的最小数,再将两者的差求出来;对此差值重复同样的过程(例如:开始时取数8028,最大的重新组合数为8820,最小的为0288,二者的差8532。
重复上述过程得出8532-2358=6174),最后总是达到卡普雷卡尔黑洞:6174。
称之“黑洞”是指再继续运算,都重复这个数,“逃”不出去。
把以上计算过程称为卡普雷卡尔运算,这个现象称归敛,其结果6174称归敛结果。
一, 任意N位数都会类似4位数那样归敛(1、2位数无意义) . 3位数归敛到唯一一个数495; 4位数归敛到唯一一个数6174; 7位数归敛到唯一一个数组( 8个7位数组成的循环数组______称归敛组);其它每个位数的数归敛结果分别有若
干个,归敛数和归敛组兼而有之(如14位数____共有9×10的13次方个数____的归敛结果有6个归敛数,21个归敛组).
一旦进入归敛结果,继续卡普雷卡尔运算就在归敛结果反复循环,再也“逃”不出
去。
归敛组中各数可以按递进顺序交换位置(如a → b → c 或b → c → a 或c → a → b)
归敛结果可以不经过卡普雷卡尔运算就能从得出.
某个既定位数的数,它的归敛结果的个数是有限的,也是确定的.
二,较多位数的数(命它为N)的归敛结果是由较少位数的数(命它为n, N>n)的归敛结果,嵌加进去一些特定的数或数组而派生形成. 4、6、8、9、11、13的归敛结果中的8个称基础数根.它们是派生所有任意N位数的归敛结果的基础. 1, 嵌加的数分三类.
第一类是数对型,有两对:1)9,0 2)3,6
第二类是数组型,有一组:
7,2
5,4
1,8
第三类是数字型,有两个:
1)5 9 4
2)8 6 4 2 9 7 5 3 1
2, 嵌入数的一部分嵌入前段中大于或等于嵌入数的最末一个数字的后邻位置。
另一部分嵌入后段相应位置_____使与嵌入前段的数形成层状组数结构。
594只能嵌入n=3+3К 这类数。
如9、12、15、18…….位.
3, (9,0)、(3,6)两对数可以单独嵌入或与数组型、数字型组合嵌入。
数组
7,2
5,4
1,8
必须“配套”嵌入并按顺序: (7,2)→(5,4)→(1,8) 或(5,4)→(1,8)→(7,2) 或(1,8) →(7,2) →(5,4)。
4, 可以嵌如一次、二次或若干次(则形成更多位数的归敛结果).
任意N 位数的归敛结果都“隐藏”在这N位数中, 卡普雷卡尔运算只是找出它们而不是新造成它们.
参考资料:
1, 美国《新科学家》,1992,12,19
2, 中国《参考消息》,1993,3,14-17
3, 王景之: ⑴也谈数学“黑洞”——关于卡普雷卡尔常数
⑵我演算得到的一部分归敛结果
4, 天山草: 能够进行任意多位数卡普雷卡尔(卡布列克) 运算的程序。
【三】自恋性数字
除了0和1自然数中各位数字的立方之和与其本身相等的只有153、370、371
和407(此四个数称为“水仙花数”)。
例如为使153成为黑洞,我们开始时取任意一个可被3整除的正整数。
分别将其各位数字的立方求出,将这些立方相加组成一个新数然后重复这个程序。
除了“水仙花数”外,同理还有四位的“玫瑰花数”(有:1634、8208、9474)、五位的“五角星数”(有54748、92727、93084),当数字个数大于五位时,这类数字就叫做“自幂数”。