超支化聚合物ppt(1)

合集下载

超支化聚合物

超支化聚合物
几何异构现象是超支化分子与树枝状分子 和线性分子最显著的区别.
3. 分子量多分散性
超支化分子同树枝状分子相比,通常具有 较宽的分子量分布。
由于支化度的变化,超支化分子的分子量 分布一般大于传统的聚合物。
分子量的测定:
分子量测定的问题:
不适用: 凝胶渗透色谱(GPC) (体积排除色谱SEC方法)
适用:基质辅助激光脱附电离飞行时间质谱 (MALDI—TOF)
4、在催化剂领域中的应用
(1)、超支化聚合物分子内部的纳米微孔可以 螯合离子、吸附小分子或者作为小分子反应的催 化活性点,兼具均相催化剂和异相催化剂的优点。
(2)、催化活性点即可在高度支化聚合物表面 的外围端基上,也可以在高度支化聚合物的中心 核上。
(3)、催化剂的固载、回收和重复利用。
5、污水处理中的应用
分形的特征:
在任意小的尺度上都能有精细的结构; 太不规则,以至无论是其整体或局部都难以用传统欧氏几何 的语言来描述; 具有(至少是近似的或统计的)自相似形式; 一般地,其“分形维数”(通常为豪斯多夫维数)会大于拓 扑维数(但在空间填充曲线如希尔伯特曲线中为例外); 在多数情况下有着简单的递归定义。
高效脱色絮凝剂 用量少,效率高,pH应用范围广,操作简便
6、其他领域中的应用
(1)、光化学 (2)、分析化学 (3)、纳米材料 (4)、光电传感 (5)、自组装体系 (6)、液晶 (7)、聚合物电解质等
(三)超支化聚合物的性质
1、粘度较传统线性聚合物低 2、树状大分子具有球形结构,
分子间链缠结少
3、粘度随分子量增加而增大
粘度与分子结构的关系:

线型

超支化
树枝状
分子量
粘度:线型 > 超支化 > 树枝状

超支化聚合物的机理和应用分析

超支化聚合物的机理和应用分析

超支化聚合物的机理和应用分析超支化聚合物也称为超支化物(hyperbranched polymers,简称HBP),是由多个活性单体在低于常温的条件下反应而成的高分子化合物。

与线性聚合物不同,超支化聚合物既具有线性聚合物的一些性质,也具有分支聚合物的一些性质,因此具有较高的分子量和三维立体网络结构。

超支化聚合物具有以下的特点:1、分子量大,具有较高的密度和分子结构的特异性;2、独特的长链结构,使HBP具有较强的相容性和可溶性,适合于复杂的多组分体系;3、HBP具有较好的自组装性,可经过简单的流程制备嵌段共聚物和无机纳米复合材料;4、相比于线性聚合物,HBP具有更多的表面官能团,通过修饰可以进一步扩展其应用范围。

超支化聚合物的制备主要有以下几种方法:1、孢子和膨胀剂法:通过孢子的增殖和膨胀剂的作用,将聚合物分散在中空空间中制备超支化聚合物;2、双功能单体法:通过两个不同的活性单体分别在反应中引入分支结构,制备超支化聚合物;3、加成反应法:通过加成反应将不同的单体聚合成高分子,制备超支化聚合物;4、原子转移自由基聚合法:通过原子转移自由基聚合反应制备超支化聚合物。

超支化聚合物具有广泛的应用前景,其在以下领域具有潜在的应用:1、作为表面修饰剂,可以用于表面涂料、阻垢剂和表面活化剂等;2、作为聚合物纳米复合材料的基体,可以增强材料的力学性能和热稳定性;3、作为载体用于生物样品的分离和提取;4、作为功能性小分子的聚合物后基,可以用于制备分子筛、配位聚合物和电子材料等;5、作为药物载体可以用于药物的传递和释放。

总之,超支化聚合物是一种具有独特结构和性能的高分子化合物,其制备技术不断发展,应用领域也在不断扩展。

未来超支化聚合物将更加广泛地应用于诸如药物递送、表面涂装、纳米复合材料等领域。

超支化聚合物

超支化聚合物

超支化大分子的最新应用进展超支化大分子独特的构筑使其合成与应用在世界范围内受到人们越来越多的尖注。

笔者对最近以来国内外超支化大分子的最新应用进行了简要的综述,对今后超支化大分子的应用前景进行了展望和预测。

最近几年以来,由于超支化大分子独特的构筑,使得超支化大分子的合成与应用在世界范围内受到人们越来越多的尖注。

与线性大分子相比较,超支化大分子具有内部多孔的三维结构,表面富集大量的端基,使超支化大分子具有较佳的反应活性。

其独特的分子内部的纳米微孔可以螯合离子,吸附小分子,或者作为小分子反应的催化活性点;由于具有高度支化的结构,超支化聚合物难以结晶,也无链缠绕,因而溶解性、相容性大大提高;与相同分子量的线性分子相比,超支化分子结构紧凑(较低的均方回转半径和流体力学半径),熔融态粘度较低;并且分子外围的大量末端基团可以通过端基改性以获得所需的性能。

此外超支化大分子的合成采用一锅法,合成方法简单,无需繁琐耗时的纯化与分离过程,大大降低了成本•因此超支化聚合物独特的结构和简单的合成方法使其在许多领域中均有着广泛的应用,现将最近以来国内外超支化大分子的主要应用领域作一简要的总结与展望。

1 超支化大分子嵌段共聚物在水溶液中具有自组织功能的两亲性嵌段共聚物由于其在生物工程、信息材料和药物传输等领域的潜在应用前景而备受人们尖注被人们称作architectural copolymer!聚乙烯醇共聚物组成的胶束由于具有良好的生物相容性和溶解性而在药物载体运输(药物缓释)和基因转移方面具有潜在应用价值。

与传统的由表面活性剂组成的低分子胶束相比较,由大分子组成的胶束具有较低的临界胶束浓度(CMC)和稳定性,通过调节不同结构嵌段比例可以使某种嵌段富集于胶束的内部或外部。

但是,大分子两亲嵌段共聚物的扰曲性产生的链缠结和较宽的相对分子质量分布限制了其应用。

采用内部具有高度支化结构的单分子胶束可以避免以上问题,通过对超支化大分子表面的改性可以捕捉不同的分子,因此此种结构的单分子胶束可以作为纳米反应器。

超支化聚合物增韧环氧树脂

超支化聚合物增韧环氧树脂

超支化聚合物以粒子状态分散在环氧树 脂基体中,与基体的相互作用较大。端轻基 超支化聚合物由于表面拥有大量的经端基, 与基体以氢键相互作用;端环氧基超支化聚合 物的端环氧基、超支化固化剂的端梭基和端 胺基参与基体网络的形成,与基体以化学键 相连接。其它的和橡胶粒子、刚性粒子一样, 以范德华力与基体相互作用。超支化粒子与 基体有较强的相互作用,赋予体系更好的增 韧效果。
3 超支化聚合物增韧
增韧分类
根据超支化聚合物 在环氧体系中组成 的不同
超支化聚合物 (HBPs)增韧环氧树
脂体系
超支化环氧树脂 超支化固化剂
端环氧基超支化聚 合物
端梭基或端胺基超 支化聚合物
超支化增韧填充剂
端基为轻基、苯基、 脂肪长链等不参与 形成基体网络的基 团的超支化聚合物
由于HBPs固有的特性,拥有大量的端基,在环氧基体中,超支化粒子周围产生扭曲,因 此端环氧基超支化聚合物不能完全取代普通环氧树脂,同样,固化剂也不能完全由超支化 固化剂组成,一般采取和普通固化剂进行复配组成。
谢 谢 大 家!
3 超支化聚合物增韧
增韧原因
原 空穴理论 因 原位增强增韧机理
超支化粒子与基体有较强的相互作用 扭曲空间的存在
3 超支化聚合物增韧

空穴化理论是指在低温或高速形变过程中,在三

维应力作用下,发生橡胶粒子内部或橡胶粒子与基体 界面层的空穴化现象。该理论认为:橡胶改性的塑料
理 在外力作用下,分散相橡胶颗粒由于应力集中,导致
物理改性
物理改性则更为常用,其方法为 将橡胶弹性体或耐热性能良好 的热塑性树脂作为第二组分与 环氧树脂共混。
2 增韧方法
BACK
3 超支化聚合物增韧

超支化聚合物的机理和应用分析

超支化聚合物的机理和应用分析

超支化聚合物的机理和应用分析超支化聚合物是一种特殊类型的聚合物,其分子结构呈现出树状形态,具有更高的分子量和更高的分子间交联度。

超支化聚合物的形成机理可以归结为两种主要反应,即分子内的多步反应和分子间的交叉反应。

分子内的多步反应是指通过一系列的聚合反应将单体逐步地无规则组装成超支化聚合物的过程。

一般来说,首先进行核心化学物质的合成,然后添加一定比例的单体,使其与核心反应。

随着单体逐渐增加,多个分支以无规则方式迅速增长,形成树状结构。

此过程要求连续添加单体,并控制聚合反应的速率和顺序。

分子间的交叉反应是指超支化聚合物分子之间通过交联反应形成网络结构。

这种交联反应可以通过多种方式实现,如化学交联、热交联以及物理交联等。

化学交联是最常见的一种方法,通过将超支化聚合物与交联剂反应,形成三维网络结构。

而热交联则是通过加热引发聚合物链段进行交联反应。

物理交联则是利用超支化聚合物链与其他聚合物链的物理排斥力形成临时的交联结构。

这些交联反应能够使超支化聚合物具有更高的分子间交联度和更强的物理性质。

超支化聚合物具有很多独特的性质和应用。

由于分子间的交联结构,超支化聚合物展现出较高的抗拉强度和弹性模量,并且能够抵御各种外部应力。

超支化聚合物可调控分子结构和分子量,从而影响其物理和化学性质。

可以通过改变单体种类和比例来调节超支化聚合物的疏水性能和热稳定性。

超支化聚合物还具有较大的存储体积和吸附能力,可以被广泛应用于药物传递、水处理、化学传感器等领域。

在药物传递领域,超支化聚合物的多分支结构和高比表面积使其成为理想的载体。

药物可以通过物理吸附或化学键合的方式与超支化聚合物结合,形成纳米颗粒或微胶囊。

这些载体具有良好的溶解性、缓释性和靶向性,可用于治疗癌症和其他疾病。

在水处理领域,超支化聚合物的吸附能力和高度交联的结构使其可以有效地去除水中的有机和无机污染物。

超支化聚合物可以作为吸附剂使用,将污染物吸附在其表面,并随后进行再生。

超支化聚合物的定义

超支化聚合物的定义

超支化聚合物的定义
超支化聚合物是一种新型的高分子材料。

和其他聚合物相比,它具有很多优异的性质,例如高分子量、高分子密度、高分子稳定性、高分子热稳定性、高分子溶解度等。

因此,超支化聚合物在许多领域中都有着广泛的应用前景。

超支化聚合物的定义是指在聚合反应中引入另一种分子,使反应中的自由基数量增加,从而增加聚合物的分子量。

因此,超支化聚合物的分子量远高于传统聚合物,可以达到数百万甚至数千万,也因此具有更高的物理化学性能。

超支化聚合物的制备方法有很多种,其中最常见的是自由基聚合法和离子聚合法。

自由基聚合法是指通过引入自由基反应源来促进聚合反应,离子聚合法则是通过引入离子反应源来促进聚合反应。

这两种方法各有优缺点,可以根据具体需求选择。

除了分子量和稳定性,超支化聚合物还具有其他优异的性质。

例如,它们可以形成三维网络结构,从而增加聚合物的强度和硬度。

此外,它们还具有更高的溶解度和更好的热稳定性,可以在高温环境下使用。

这些性质使超支化聚合物在许多领域中都有着广泛的应用。

超支化聚合物的应用范围非常广泛,其中最常见的是作为聚合物添加剂。

例如,在涂料和胶黏剂中,超支化聚合物可以增加它们的黏度和粘附性,从而使它们更容易涂布和固定。

此外,它们还可以作
为生物医学材料,例如用于人工关节和心脏瓣膜的制造。

超支化聚合物是一种具有广泛应用前景的高分子材料。

它们的优异性能使其在许多领域中都有着不可替代的作用。

未来,随着生产技术的不断进步和应用领域的不断拓展,超支化聚合物的应用前景将会越来越广阔。

超支化聚合物的机理和应用分析

超支化聚合物的机理和应用分析

超支化聚合物的机理和应用分析超支化聚合物(hyperbranched polymers,简称HBP)是一类具有高枝晶的聚合物,其分子结构类似于树枝,具有丰富的分支点,分支数远高于传统线性聚合物。

超支化聚合物的合成机理与传统的线性或分支共聚物不同,它通过在聚合反应中引入少量的交联剂,使反应过程中出现交联反应和开环反应的竞争,从而形成高度交联的分支结构。

超支化聚合物的合成方法主要有两种,一种是核心化合物法,通过在合成反应中加入有机或无机核心化合物,使其成为聚合反应的起始物,从而实现超支化聚合物的合成。

另一种是自由基聚合法,通过引入交联剂和减少引发剂浓度,使聚合反应发生在中低度亚稳态下,从而形成超支化聚合物。

超支化聚合物具有许多独特的性质和应用潜力。

超支化聚合物具有高分子量和分子量分布窄的特点,可用于制备高性能的聚合物材料。

超支化聚合物具有丰富的分支结构,具有很高的分子末端反应活性,可以通过化学修饰和功能化反应来改变其性质。

超支化聚合物由于其特殊的分子结构,具有较高的溶解度和流动性,可用于制备高分散性的聚合物溶液。

超支化聚合物还具有良好的抗疲劳、增容和抗蠕变等性能,可用于制备高性能的聚合物胶体。

超支化聚合物在材料科学领域有广泛的应用。

超支化聚合物可用于制备纳米材料,如超支化聚合物纳米微球、纳米纤维和纳米薄膜等,可以应用于高分散性的悬浮液、电催化剂、荧光材料和生物传感器等领域。

超支化聚合物可用于制备功能性聚合物材料,如聚合物凝胶、智能聚合物和生物医用材料等,可应用于药物传递、组织工程和仿生材料等领域。

超支化聚合物还可用于制备高性能的聚合物膜、纤维和涂层等,可应用于过滤、分离和防护等领域。

超支化聚合物是一类具有高分支度和特殊分子结构的聚合物,具有丰富的分支点和独特的性质,在材料科学领域有广泛的应用潜力。

随着对超支化聚合物的进一步研究和应用的深入,相信其在材料科学及相关领域中将有更广泛的应用前景。

超支化聚合物的定义

超支化聚合物的定义

超支化聚合物的定义
超支化聚合物(Hyperbranched Polymers)是指在多核聚合物的基础上,在分子链上构建出完全支化的单体,使聚合物具有树枝状结构,并具有极高的分子量的高分子结构体,它们具有独特的结构和物理性能,因而在研究导电聚合物、荧光聚合物、储能聚合物、高分子阻燃剂等方面具有重要的应用前景。

超支化聚合物有多种结构,其中包括单核聚合物和多核聚合物。

多核聚合物是指在分子链上构建出完全支化的单体,这样可以形成树枝状结构,从而使聚合物分子量极高。

超支化聚合物分子量通常在几十万到几百万之间,相比于其他高分子聚合物,具有很高的分子量,因此可以提高其性能。

此外,超支化聚合物还具有其他特性,如高溶度、高耐热性、高耐化学性、高抗氧化能力、高抗拉伸强度和低热容量等,这些特性使其有效地应用于导电聚合物、荧光聚合物、储能聚合物和高分子阻燃剂中。

总之,超支化聚合物是指在多核聚合物的基础上,在分子链上构建出完全支化的单体,使聚合物具有树枝状结构,并具有极高的分子量的高分子结构体,它们具有独特的结构和物理性能,因而在研究导电聚合物、荧光聚合物、储能聚合物、高分子阻燃剂等方面具有重要的应用前景。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超支化聚 合物
荧光性
2
实验原理 超支化聚合物的合成 常用的超支化聚合物合成方法可分为以下几类:A2+B3单体聚合 反应、多官能团单体的缩聚反应、开环聚合反应、自缩合乙烯 基聚合反应(SCVP)。而缩聚反应是合成超支化聚合物最经典、 研究得最成熟、也是最常用的方法 ,主要是采用 ABX(X≥2)型单体。
3 4
聚合物的合成与表征
研究不同分子量的聚合物对 荧光性的影响
1 2
叔胺超支化聚合物HMEAP的合成 将MBAP和四丁基钛酸酯在氮气高温 下反应然后经过抽真空得到HMEAP
5
后期规划
1
计划内容
2
1、探究分子量对荧光性 的影响
根据不同实验的反应条件 根据所用物料的比例不同 合成出不同的分子量的聚 合物,比较其荧光性。
水溶性超支化聚合物的合成与表征
指导老师:孙淼 汇报人:沈晨
目录
研究背景
实验原理
实验操作
后期规划
1
研究背景
超支化聚合物具有低粘度、高流变性、良好的溶解性 以及分子末端带有大量的官能团等优点。荧光技术具 有成本低、操作简单、临床安全、灵敏度高等优点, 已成为使用最广泛的技术,而荧光技术中最关键的问 题就是制备性能优良的荧光材料。
B A B A B A B A B B B B A B A B A
B B B B
3
实验步骤
二乙醇胺

荧 光 性 影 响 因 素
酸性
水溶性
分子量
碱性
4
实验操作
HMEAP的除杂纯化
将得到的HMEAP溶于甲醇 中在真空下去除杂质
合成超支化聚合物单体MBAP
将丙烯酸甲酯和二乙醇胺溶于甲醇 中加入到100ml的两颈原地烧瓶中, 搅拌30分钟,然后将溶液升温至35 度,反映4小时得到MBAP
3
3、探究不同PH值对荧 光性的影响
对同一种物质,分析其不 同PH值下的荧光性,探究 PH值对其荧光性的影响。
2、探究温度对荧光性强 弱的影响
对同一种聚合物分析其不同 温度下的荧光性,探究温度 对荧光性的影响。
6
谢谢聆听!
Thanks for listening!
相关文档
最新文档