超支化聚合物的活性聚合方法

合集下载

超支化聚合物的合成方法和应用前景

超支化聚合物的合成方法和应用前景

超支化聚合物的合成方法和应用前景超支化聚合物(hyperbranched polymers)是一种具有极高枝数和部分无序性的高分子聚合物。

它们具有众多的分支和极为复杂的分子结构,其在理化性质和应用领域上展现出独特而广泛的优势。

本文将介绍超支化聚合物的合成方法,并探讨其在各个领域中的应用前景。

一、超支化聚合物的合成方法超支化聚合物的合成方法多种多样,常用的主要有自由基聚合法、迭代法和“核-壳”结构法等。

1. 自由基聚合法自由基聚合法是合成超支化聚合物最常用的方法之一。

它通过引入聚合度较高的核心物质和大量的向外生长的分支来实现超支化结构的形成。

通常采用的反应体系包括核心化合物、单体和引发剂。

反应过程中,核心化合物首先通过自由基聚合反应引发单体的聚合,单体分子在核心化合物表面进行连续聚合反应,最终形成超支化聚合物。

2. 迭代法迭代法是一种逐步生长的合成方法,通过不断地进行聚合反应来生成三维网络架构。

迭代法的优势在于可以精确控制分子架构和枝数,从而获得理想的超支化聚合物产品。

迭代法合成超支化聚合物的过程中,每一次聚合都会引发下一轮的反应,直到达到所需的分子结构。

3. “核-壳”结构法“核-壳”结构法是指将小颗粒状的超支化聚合物作为核心物质,通过表面修饰和功能化来包覆其他材料。

这种方法可以使超支化聚合物在化学、生物和医学等领域中发挥独特的性能和应用。

通过合适的修饰和功能化手段,可以使超支化聚合物具有药物缓释、生物传感和纳米催化等特性,实现更广泛的应用。

二、超支化聚合物的应用前景超支化聚合物由于其特殊的分子结构和良好的性能,在众多领域中具有广阔的应用前景。

1. 材料科学超支化聚合物在材料科学领域有着广泛的应用。

其独特的分子结构和性质使得其成为制备新型复合材料、功能材料和纳米材料的理想选择。

通过控制超支化聚合物的分支数和分子结构,在材料的机械强度、导电性能、热稳定性等方面可以得到显著的提高。

2. 生物医学超支化聚合物在生物医学领域中具有重要的应用潜力。

超支化聚合物材料的合成与应用

超支化聚合物材料的合成与应用

超支化聚合物材料的合成与应用超支化聚合物材料是一种具有特殊分子结构的高分子材料,由于其独特的性能和多样的应用领域,近年来备受关注。

本文将探讨超支化聚合物材料的合成方法以及其在不同领域的应用。

一、超支化聚合物材料的合成方法1.1 自由基聚合法自由基聚合法是一种常用的合成超支化聚合物的方法。

这种方法通常通过引入多官能团单体来引发自由基聚合反应,并利用交联剂连接单体分子,形成三维高分子网络结构。

自由基聚合法合成的超支化聚合物材料具有良好的热稳定性和机械性能。

1.2 离子聚合法离子聚合法是一种利用正离子或负离子进行聚合反应的方法。

这种合成方法可以控制聚合过程中聚合度和分子结构的分布,从而得到具有特定性能的超支化聚合物材料。

例如,通过调整离子聚合反应的溶剂和温度,可以制备出具有不同孔隙结构和比表面积的超支化聚合物。

1.3 点阵聚合法点阵聚合法是一种利用模板分子在聚合过程中形成点阵结构的方法。

通过选择合适的模板分子和单体,可以合成出具有高度有序结构和特殊功能的超支化聚合物材料。

点阵聚合法合成的超支化聚合物具有较大的孔隙尺寸和高的孔隙度,可应用于催化剂、吸附剂等领域。

二、超支化聚合物材料的应用领域2.1 环境污染治理超支化聚合物材料由于其良好的吸附性能和稳定性,被广泛应用于环境污染治理领域。

例如,通过改性超支化聚合物材料吸附剂,可以高效地去除废水中的重金属离子和有机物污染物,具有良好的应用前景。

2.2 电子器件超支化聚合物材料在电子器件领域也有广泛的应用。

由于其低介电常数和高绝缘性能,超支化聚合物材料常用于制备电容器、绝缘层和光学波导等元件。

此外,超支化聚合物材料还可作为电子器件中的填充材料,改善器件的可靠性和稳定性。

2.3 药物传递超支化聚合物材料在药物传递领域具有广泛的应用前景。

由于其多孔结构和高比表面积,超支化聚合物材料可作为药物载体,控制药物的释放速率和方向,提高药物的生物利用度和疗效。

2.4 功能性涂料超支化聚合物材料通过控制其分子结构和交联方式,可制备出具有特殊功能的涂料。

超支化聚合物

超支化聚合物
几何异构现象是超支化分子与树枝状分子 和线性分子最显著的区别.
3. 分子量多分散性
超支化分子同树枝状分子相比,通常具有 较宽的分子量分布。
由于支化度的变化,超支化分子的分子量 分布一般大于传统的聚合物。
分子量的测定:
分子量测定的问题:
不适用: 凝胶渗透色谱(GPC) (体积排除色谱SEC方法)
适用:基质辅助激光脱附电离飞行时间质谱 (MALDI—TOF)
4、在催化剂领域中的应用
(1)、超支化聚合物分子内部的纳米微孔可以 螯合离子、吸附小分子或者作为小分子反应的催 化活性点,兼具均相催化剂和异相催化剂的优点。
(2)、催化活性点即可在高度支化聚合物表面 的外围端基上,也可以在高度支化聚合物的中心 核上。
(3)、催化剂的固载、回收和重复利用。
5、污水处理中的应用
分形的特征:
在任意小的尺度上都能有精细的结构; 太不规则,以至无论是其整体或局部都难以用传统欧氏几何 的语言来描述; 具有(至少是近似的或统计的)自相似形式; 一般地,其“分形维数”(通常为豪斯多夫维数)会大于拓 扑维数(但在空间填充曲线如希尔伯特曲线中为例外); 在多数情况下有着简单的递归定义。
高效脱色絮凝剂 用量少,效率高,pH应用范围广,操作简便
6、其他领域中的应用
(1)、光化学 (2)、分析化学 (3)、纳米材料 (4)、光电传感 (5)、自组装体系 (6)、液晶 (7)、聚合物电解质等
(三)超支化聚合物的性质
1、粘度较传统线性聚合物低 2、树状大分子具有球形结构,
分子间链缠结少
3、粘度随分子量增加而增大
粘度与分子结构的关系:

线型

超支化
树枝状
分子量
粘度:线型 > 超支化 > 树枝状

催化剂转移缩聚法合成超支化聚合物

催化剂转移缩聚法合成超支化聚合物

催化剂转移缩聚法合成超支化聚合物超支化聚合物因其独特的结构得到广泛的研究关注。

本文介绍了一种新型的超支化聚合物合成方法,即催化剂转移缩聚法(CTP),对其与传统合成方法区别、反应机理和优点进行了简要介绍,并重点介绍了Suzuki催化转移缩聚法。

标签:超支化聚合物;催化剂转移缩聚法;Suzuki催化转移缩聚法1 概述超支化聚合物具有高度支化的三维球状结构和大量的活性端基,因而具备低粘度、高溶解性、高反应性及修饰性等特点,使其在光电材料、涂料及药物载体等领域备受关注。

2 超支化聚合物的合成方法超支化聚合物的合成方法一般有ABn型单体缩聚法、自缩合乙烯基聚合法、开环聚合法、偶合单体法等。

ABn (n≥2)型单体缩聚法由Flory首先提出,是合成超支化聚合物最常用的方法,优点在于工艺简单。

但存在反应易凝胶化、易发生旁支反应、易发生环化反应等缺点,合成产物结构难以控制,官能团无序分布,分子量分布很宽。

自缩合乙烯基聚合法(SCVP)由Frechet首次提出,可以很好避免交联反应和凝胶的出现,常用乙烯基类单体,可引入可逆-加成断裂转移聚合、原子转移自由基聚合、阳离子聚合等活性聚合手段。

开环聚合法建立在SCVP法的基础上,由Suzuki首先提出,其特点是操作简单,聚合过程不需除去小分子副产物就能得到高分子量的超支化聚合物。

开环聚合现有报道较少,选用单体有限,常用有环状氨基甲酸酯、环氧化物、内酯等单体。

这些方法大多本质上是逐步聚合机理,反应过程较复杂,很难对聚合物的分子结构及分散性进行有效的控制。

3 催化剂转移缩聚法催化剂转移缩聚法(Catalyst Transfer Polycondensation,CTP)利用催化剂活化聚合物链端官能团,与单体进行反应,然后转移催化剂到延长后的聚合物末端,使其遵循链式缩聚机理。

与逐步聚合机理相比,催化剂转移缩聚中单体之间不会发生发应,只与链增长中心发生反应,容易实现高分子量、低分散性的控制合成。

超支化聚合物的机理和应用分析

超支化聚合物的机理和应用分析

超支化聚合物的机理和应用分析超支化聚合物也称为超支化物(hyperbranched polymers,简称HBP),是由多个活性单体在低于常温的条件下反应而成的高分子化合物。

与线性聚合物不同,超支化聚合物既具有线性聚合物的一些性质,也具有分支聚合物的一些性质,因此具有较高的分子量和三维立体网络结构。

超支化聚合物具有以下的特点:1、分子量大,具有较高的密度和分子结构的特异性;2、独特的长链结构,使HBP具有较强的相容性和可溶性,适合于复杂的多组分体系;3、HBP具有较好的自组装性,可经过简单的流程制备嵌段共聚物和无机纳米复合材料;4、相比于线性聚合物,HBP具有更多的表面官能团,通过修饰可以进一步扩展其应用范围。

超支化聚合物的制备主要有以下几种方法:1、孢子和膨胀剂法:通过孢子的增殖和膨胀剂的作用,将聚合物分散在中空空间中制备超支化聚合物;2、双功能单体法:通过两个不同的活性单体分别在反应中引入分支结构,制备超支化聚合物;3、加成反应法:通过加成反应将不同的单体聚合成高分子,制备超支化聚合物;4、原子转移自由基聚合法:通过原子转移自由基聚合反应制备超支化聚合物。

超支化聚合物具有广泛的应用前景,其在以下领域具有潜在的应用:1、作为表面修饰剂,可以用于表面涂料、阻垢剂和表面活化剂等;2、作为聚合物纳米复合材料的基体,可以增强材料的力学性能和热稳定性;3、作为载体用于生物样品的分离和提取;4、作为功能性小分子的聚合物后基,可以用于制备分子筛、配位聚合物和电子材料等;5、作为药物载体可以用于药物的传递和释放。

总之,超支化聚合物是一种具有独特结构和性能的高分子化合物,其制备技术不断发展,应用领域也在不断扩展。

未来超支化聚合物将更加广泛地应用于诸如药物递送、表面涂装、纳米复合材料等领域。

超支化聚合物的合成及应用

超支化聚合物的合成及应用

超支化聚合物的合成及应用超支化聚合物是指在单个分子中具有超支链结构的聚合物,它们具有独特的结构和性能,可用于多种应用,如防护、储存和导电等。

本文将首先讨论超支化聚合物的合成方法,然后介绍其应用。

一、超支化聚合物的合成1.以水热法合成水热法是一种常见的聚合物合成方法,通过控制水的温度、pH值和时间来实现聚合物的合成,广泛用于制备超支化聚合物。

水热法操作简便,但在合成过程中需要考虑防止水解反应,因此,需要使用低温、低pH和高浓度的酸类试剂,以降低水解反应的发生率。

2.以溶剂析出法合成溶剂析出法是指在溶剂中将聚合物构建起来,然后将溶剂析出,从而得到目标聚合物。

溶剂析出法可以避免水解反应的发生,可以控制聚合物的构建过程,是制备超支化聚合物的重要手段。

3.以硫醚氧化法合成硫醚氧化法是一种常用的聚合物合成方法,可以用于制备超支化聚合物。

该方法可以使用低温、低pH和高浓度的酸类试剂,从而避免水解反应的发生。

4.以高分子间交联法合成高分子间交联法是一种常用的聚合物合成方法,可以用于制备超支化聚合物。

该方法可以使用不同的有机溶剂,从而控制聚合物的构建过程,避免水解反应的发生,并有效控制聚合物的结构和性能。

二、超支化聚合物的应用1.用于防护超支化聚合物具有优异的力学性能,可以用作防护材料,可以有效抵御外界的冲击和温度变化。

此外,超支化聚合物具有良好的耐久性,可以有效保护它们所覆盖的物体免受外界环境的影响。

2.用于储存超支化聚合物具有良好的耐湿性和耐腐蚀性,可以用作储存容器,可以有效保护它们所储存的物质免受湿气和污染的影响。

3.用于导电超支化聚合物具有优异的电导性能,可以用作导电材料,可以有效将电能传输到目标位置。

此外,超支化聚合物还具有良好的耐热性和耐化学性,可以有效承受电路中的高温和腐蚀性物质的影响。

综上所述,超支化聚合物具有优异的结构和性能,可以用于多种应用,如防护、储存和导电等。

现有的超支化聚合物合成方法有水热法、溶剂析出法、硫醚氧化法和高分子间交联法,可以根据应用需求选择不同的方法来制备超支化聚合物。

超支化聚合物的机理和应用分析

超支化聚合物的机理和应用分析

超支化聚合物的机理和应用分析超支化聚合物是一种具有特殊结构和性能的高分子材料,在近年来得到了广泛的关注和研究。

它不仅具有传统线性聚合物的特性,还具有分枝和交联等结构特征,因而具有较高的力学性能、温度稳定性和化学稳定性。

本文将从超支化聚合物的机理和应用两方面进行分析,以期为读者提供更深入的了解。

1. 超支化聚合物的机理超支化聚合物是通过合成方法制备而成的一种高分子材料,其机理主要包括自由基聚合、离子聚合和环氧树脂交联等多种方式。

自由基聚合是指通过引发剂在单体分子之间形成自由基,并且自由基之间可以进行链增长反应的聚合过程。

通常采用的引发剂包括过氧化苯乙烯、过氧化叔丁基和自由基引发剂等。

在聚合反应过程中,自由基之间的化学键可以不断连接,形成线性、分枝或者交联结构。

离子聚合是指通过引发剂在单体分子中引发阴离子或者阳离子的聚合反应。

与自由基聚合相比,离子聚合反应的速率通常更快,且可以在常温下进行。

常见的引发剂包括溴化铜、氧化铝和硫酸铜等。

在离子聚合反应中,单体分子之间可以形成大量的离子键,从而形成超支化结构。

环氧树脂交联是指通过自由基引发剂在聚合物中引发环氧树脂的开环反应,形成交联结构。

环氧树脂分子具有多个环氧基团,可以与其他分子中的羟基或胺基发生反应,从而形成交联网络。

这种交联结构可以使得超支化聚合物具有更高的力学性能和热稳定性。

超支化聚合物的机理是通过引发剂在单体分子之间引发聚合反应,从而形成特殊的结构和性能。

不同的聚合方式会导致不同的结构特征,因此可以通过控制聚合条件和合成方法来制备具有特定性能的超支化聚合物。

超支化聚合物以其特殊的结构和性能在许多领域具有广泛的应用前景,主要包括纳米材料、涂料、增强材料和医用材料等。

在纳米材料中,超支化聚合物常常用作纳米载体材料,可以帮助纳米颗粒在生物体内、溶液中或者固体表面上的分散和稳定。

其分支或者交联结构可以增加纳米材料与其他物质之间的物理吸附和化学结合,从而提高纳米材料的利用率和稳定性。

超支化聚合物的机理和应用分析

超支化聚合物的机理和应用分析

超支化聚合物的机理和应用分析
超支化聚合物是一种特殊的聚合物结构,具有高分支度和分子量的特点。

超支化聚合物的机理分为两个主要方面:自由基聚合和离子聚合。

下面将分别对这两个方面进行介绍。

自由基聚合机理是指聚合反应中自由基的生成、传递和聚合的过程。

自由基聚合是最常见的聚合反应机理,也是合成超支化聚合物的常用方法之一。

在自由基聚合过程中,首先发生引发反应,引发剂被激活形成自由基,并引发单体的自由基聚合。

然后,自由基聚合体会和引发剂进行反应,形成新的自由基,继续聚合过程。

聚合反应结束后,通过一定的方法,使超支化聚合物形成。

超支化聚合物具有很多特殊的性质和应用。

超支化聚合物具有高分子量和分支度,因此具有良好的机械性能和热稳定性。

超支化聚合物具有很高的溶解度和可溶性,可以制备成溶液,方便加工和成型。

超支化聚合物还具有较高的活性位点和化学官能团,可以进行进一步的修饰和功能化。

超支化聚合物在许多领域中有广泛的应用。

超支化聚合物可以用作改性剂,用于增加其他聚合物的力学性能和热性能。

超支化聚合物可以用于制备新型复合材料,可以改善材料的力学性能和热性能。

超支化聚合物还可以用于制备纳米颗粒、微胶囊等功能材料,具有广阔的应用前景。

超支化聚合物是一种具有高分支度和分子量的特殊聚合物结构,其机理包括自由基聚合和离子聚合。

超支化聚合物具有良好的力学性能、热性能和溶解性,具有广泛的应用领域,可用作改性剂、复合材料以及功能材料的制备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超支化聚合物的活性聚合方法1 前言超支化聚合物是一类具有三维椭球状立体结构的高度支化的大分子聚合物[1],分子之间无缠结, 大量的端基暴露在最外层, 因此超支化聚合物表现出高溶解度、低粘度、化学反应活性高等特殊性能, 对其端基进行改性可得到不同特性和各种功能性的聚合物,如共混改性剂、涂料、纳米杂化材料、药物缓释、光电材料、粘合剂以及可降解聚合物等[2-4]。

因此, 超支化聚合物一出现就受到了大批研究者的关注与青睐, 成为高分子科学中的热门课题之一[5-8]。

超支化聚合物的飞速发展,不但增加了超支化聚合物的制备方法, 也丰富了超支化聚合物的种类[9 ]。

科学家们也在不断开发和应用新型的超支化聚合物[10]。

2 超支化聚合的活性/可控自由基聚合方法传统的自由基聚合由于其反应条件温和、形式多样化(本体、悬浮、溶液、乳液),易于制备,是合成高分子材料的主要方法。

而它慢引发、快增长、易转移、链终止等反应特点使得产物的分子量和结构难以控制、分子量分布宽,还易出现支化交联等现象,严重影响了高分子材料的某些方面的性能。

直至上世纪七十年代,科学家发现了碘转移自由基聚合[11](ITP),使氟烯烃的自由基聚合得以控制。

经过科学家几十年的不懈努力,活性/可控自由基聚合(Control/Living Radical Polymerization,CRP)成为制备分子结构明确、分子量可控及分子量分布窄的聚合物的主要方法,已引起了学术界和工业界的极大兴趣。

当前制备超支化聚合物的活性/可控自由基聚合包括原子转移自由基聚合[12-14](ATRP)、可逆加成—断裂链转移聚合[15,16] (RAFT),且他们都可以与点击化学(Click Chemistry)相结合。

这些活性/可控自由基都是使增长自由基浓度降低,但链增长反应仍可进行,双基偶合和歧化反应显著减少,从而达到控制反应的目的,从而便利高效地合成各种具有预定结构的聚合物,比如嵌段、梳型、接枝、星型、超支化和环形等。

2.1 原子转移自由基聚合(ATRP)原子转移自由基以有机卤化物为引发剂,过渡金属络合物作为卤原子载体即催化剂,在“活性种”与“休眠种”之间建立可逆的动态平衡.有效地抑制了自由基双基终止,实现多种单体的活性聚合和可控自由基聚合,最终实现对反应的控制。

Gaynor等[17]最先报道了利用ATRP制备超支化聚合物的研究成果。

他们选择分子结构中含有苄基氯和聚合双键的对氯甲基苯乙烯(CMS)作为单体原料,在CuCI/2,2'-联二Ⅱtt啶(bpy)的催化体系中进行ATRP,最终得到了端基含有大量氯原子的超支化聚合物。

Weimer等[18]发现只有使用大量催化剂才能制的超支化聚合物。

陈云辉等[19]以CuBr/bpy作为催化剂,通过a—溴代苯乙烷引发二苯甲烷双马来酰亚胺的ATRP,可由双烯化合物原位生成自引发单体合成超支化聚合物。

原子转移自由基聚合(ATRP)利用控制自由基来控制分子结构和分子量,制备分子量分布较窄的聚合物,相对分子质量可以控制在103~105,Mw/Mn介于1.05-1.5之间。

通过ATRP得到的聚合物,末端带卤素,可被其他亲核基团所取代,用来制备末端功能化的聚合物。

迄今为止,采用原子转移自由基聚合已成功地制备了分子结构明确、分子量大小可控及分子量分布较窄的端基官能团聚合物[20]、大分子单体[21]、梯形共聚物[22]、接枝共聚物[23]及结构较为复杂的星形聚合物[24]、超支化聚合物[25]等。

ATRP 聚合条件温和、分子设计能力强、适用于大多数的单体以及易于实现工业化。

ATRP 的主要缺点是反应金属催化体系用量较大,卤代烷有毒,对氧或湿气敏感,这种催化剂在聚合后必须除去,但不易回收[26]。

2.2 可逆加成-断裂链转移自由基聚合(RAFT )2005年,Liu [27]等首先报道了用RAFT 制备超支化聚合物,用偶氮二异丁腈为引发剂,2-(2-氰基丙基)二硫代苯甲酸酯(CPDB)为RAFT 试剂进行聚合,得到乙二醇二甲基丙烯酸酯(EGDMA)和甲基丙烯酸甲酯超支化共聚物,其单体转化率较高(>95%),提高反应温度和交联剂(EGDMA)浓度可使聚合速率增大,链转移剂(CPDB)浓度增加时聚合速率降低:但交联剂浓度一定时,链转移剂浓度越大,产物的分子量分布越集中。

Tao [28]等通过RAFT 方法制备了超支化PHPMA ,得到的产物具有较好的生物相容性。

Armes [29]等报道了通过RAFT 聚合制备含有二硫键的超支化PMMA 。

RAFT 实现可控自由基聚合的关键是使用二硫代酯[30] 作为具有高链转移常数和特定结构的链转移剂,通过增长自由基与二硫代酯类化合物的可逆链转移反应,为其提供了一个链平衡循环过程,控制聚合体系中增长自由基的浓度,从而达到活性/可控的目的,得到分子量分布指数(PDI)较低的聚合物。

RAFT 体系具有以下优点:反应条件温和,单体来源广泛,可制备分子量分布较窄的聚合物,聚合物分子量可以由单体和链转移剂的投料比及聚合时间控制;借助活性基团引入功能基团,再加入单体,可生成嵌段、星型、超支化聚合物等。

2.3 自缩合乙烯基聚合法1995年,Frechet 等人[31]发明了自缩合乙烯基聚合法(self-condensing vinyl polymerization,SCVP ),SCVP 的发现在超支化聚合物的发展中具有重大的意义,它意味着商品化的AB 型乙烯基单体也可以合成超支化聚合物。

其合成原理如图所示。

CH 2CH3Binitiating siteCH 2CH3B CH 2CH3B CH 2CH3B CH 2CH3B CH 2CHB自缩合乙烯基聚合法示意图[21]Scheme of the self condensing vinyl polymerization(SCVP).在反应过程中,活性基团引发乙烯基的增长且在链的增长过程中,活性基团会迁移形成新的活性位点从而继续引发乙烯基的聚合,增长链一直保持与单体一致的反应活性,基本没有链转移与链终止, 故活性链的浓度始终保持不变。

因此,活性自由基聚合可精确控制聚合速率、产物的分子量和结构,但缺点在于较难控制聚合度和支化度。

因此,科学家将原子自由基聚合(ATRP)和可逆加成-断裂链转移聚合(RAFT)等活性方法引入到SCVP中,实验表明可以有效地控制支化链长和分子量分布等。

Gaynor等[32]最早将ATRP 反应引入到SCVP中制备超支化聚合物,使用商业化产品对氯甲基苯乙烯(CMS)制备了超支化的聚对氯甲基苯乙烯。

Wan和Pan 通过SCVP和ATRP结合起来,合成了超支化-线型-超支化结构的聚合物[33]。

2.4 活性方法与点击化学相结合点击化学是指利用易得原料,通过高效而有选择性的化学反应来实现碳杂原子连接,使链接基团构筑特殊结构的高分子。

这种低成本、快速合成大量新化合物的强大且实用的合成方法,已得到广泛的应用。

Finn 等[34]利用Cu (Ⅰ)催化二叠氮化物和三炔反应制得了收率在80 % —90 %的超支化聚合物。

将点击化学与活性聚合方法结合起来已成为制备超支化聚合物最高效的方法。

点击化学反应经常与各种活性聚合相结合制各特殊结构的高分子,一般先利用活性聚合得到在特定位置带上炔基或者叠氮的高分子,再利用Click反应的高效性将高分子作为构筑单元以一定的方式连接起来,从而得到特定结构的聚合物。

活性自由基聚合和点击化学相结合成为合成各种特殊结构的聚合物的有利工具,如星形、环形、嵌段、接枝、超支化聚合物,而且反应条件不再苛刻,单体适用范围很广。

段明等人通过点击化学结合ATRP方式合成了聚苯乙烯- 聚甲基丙烯酸甲酯树枝状新型聚合物[35]。

Shen 等人合成了第2~4 代并引入了1,2,3-三噻唑结构的偶氮苯树枝状大分子[36],而Lee 等人从丙炔溴和树枝状苄醇制得相应的树枝状苄基丙炔基醚。

这种含有3 个反应点的叠氮化物与乙炔树枝状物的三聚反应及含叠氮基树枝状物和含乙炔基树枝状物的偶合反应,可高效率地制备对称或不对称的三唑树枝状聚合物[37 ]。

3 超支化聚合物的应用超支化聚合物因具备树形分子的许多优点,如含大量端基、良好的溶解性能、较高的活性、分子间无缠结、易流动性、低黏度、良好的成膜能力、抗腐蚀性等特点,而且合成简单、成本低廉在许多方面可以代替树形分子,超支化聚合物在很多方面显示出诱人的应用前景。

3.1 在涂料中的应用超支化聚合物在涂料方面的应用引起了越来越多关注,因其具有许多良好的性能,可用于皮革用涂料、粉末涂料、环保涂料、建筑用涂料、无溶剂涂料、水性涂料、高固体组分涂料、光固化涂料等以及涂料的各种改性剂。

Hult等以芳香族为支臂原料合成的超支化聚酯,可以作为紫外光固化粉末涂料,其软化温度为60—80℃,涂膜双键转化率较高、柔韧性好[38]。

Axel等人利用超支化聚合物作为PMMA的粘度调节剂,成功解决了因超支化聚合物端基为极性基团而与本体互不相容的问题。

超支化聚合物粘度调节剂不但能用于热塑性树脂,也可用于热固性树脂[39]。

3.2在药物缓释剂中的应用由于超支化聚合物具有多空穴结构,它可以作为药物缓释剂载体来改善药物在生物体内的释放速率和浓度[40]。

采用低毒性、生物相容的原料制成超支化药物缓释剂载体,能控制药物释放速度,增长释放时间,不会引起生物体的排异现象。

Parzuchowski等[41]利用开环聚合法制备了端羟基超支化聚碳酸酯,大量暴露的端羟基使得产物亲水性较好,且甘油和重复单元残留的碳酸酯和丙三醇使聚合物可生物降解,可作为药物载体。

3.3 在聚合物改性方面的应用共混改性通常可以改善加工性能、流变性能以及物化性能等,通过共混改性可以得到高韧性、高强度及功能化的性能优良的产物,或者在不改变产物性能的条件下降低生产成本。

它可在聚合物共混中用作固化剂、分散剂、增韧剂、增溶剂等。

Kaneko等[42]研究了超支化聚酯酰胺接枝胶体硅对环氧树脂固化行为的影响,发现较低接枝率超支化聚合物不能使环氧树脂固化,但当接枝率达到60.4%时,固化反应却能成功进行。

Verrey等[43]采用超支化聚合物增韧碳/环氧复合树脂,研究发现树脂中超支化聚合物含量为7.5%时,就能使树脂的临界平面应变断裂韧度增长66%,韧性增加60%。

3.4 在其他领域的应用超支化聚合物优异的性能,目前,超支化聚合物在生物医用材料、液晶材料、非线性光学材料、超高分子自组装、固体粒子表面改性、超分子化学、纳米材料等方面的应用己逐渐成为研究热点,也是未来发展的重点。

4 展望超支化聚合物性能特征使其在新兴的领域,如纳米技术、药物传输、超分子化学、传感器等方面有着宽广的应用前景,高效、高选择及高产率合成不同结构和功能的超支化聚合物及超支化聚合物的功能化将是研究的重点问题。

相关文档
最新文档