最新微分方程建模简介

最新微分方程建模简介
最新微分方程建模简介

微分方程建模简介

第三章微分方程模型

3.1微分方程与微分方程建模法

一、微分方程知识简介

我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方程组,要求掌握其解法,并了解一些方程的近似解法。

微分方程的体系:(1)初等积分法(一阶方程及几类可降阶为一阶的方程)

?Skip Record If...?(2)一阶线性微分方程组(常系数线性微分方程组的解法)

?Skip Record If...?(3)高阶线性微分方程(高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理。

0.常数变易法:常数变易法在上面的(1)(2)(3)三部分中都出现过,它是由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次方程或方程组的解的一种方法。

1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法,掌握全微分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。

分离变量法:(1)可分离变量方程: ?Skip Record If...?

(2) 齐次方程:?Skip Record If...?

常数变易法:(1) 线性方程,?Skip Record If...??Skip Record If...?

(2) 伯努里方程,?Skip Record If...??Skip Record If...?

积分因子法:化为全微分方程,按全微分方程求解。

对于一阶隐式微分方程?Skip Record If...?有

参数法:(1) 不含x或y的方程:?Skip Record If...?

(2) 可解出x或y的方程:?Skip Record If...?

对于高阶方程,有

降阶法:?Skip Record If...?

恰当导数方程

一阶方程的应用问题(即建模问题)。

2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次微分方程的通解结构,刘维尔公式等);

n阶线性常系数微分方程解法:(1)求常系数齐次线性微分方程基本解组的待定指数函数法;(2)求一般非齐次线性方程解的常数变易法;(3)求特

殊型非齐次常系数线性方程解的待定系数法;(4)求解初值问题的拉普拉斯变换法;(5)求二阶线性方程的幂级数解法。

4.常微分方程的基本定理:常微分方程的几何解释(线素场),初值问题解的存在与唯一性定理(条件与结论),求方程的近似解(欧拉折线法与毕卡逐次逼近法),解的延展定理与比较定理、唯一性定理证明解的存在区间(如为左右无穷大),奇解与包络线,克莱罗方程。

5.常微分方程的稳定性理论:掌握稳定性的一些基本概念,以及运用特征根法判断常系数线性方程(组)的解的稳定性,运用李雅普诺夫函数法判断一般方程(组)的解的稳定性。

6.常微分方程的定性理论:掌握定性理论的一些基本概念,运用特征根法判断奇点类型,极限环。

7.差分方程。

8.偏微分方程。

二、数学建模的微分方程方法

微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建

模适用的领域比较广,利用它可建立纯数学(特别是几何)模型,物理学(如动力学、电学、核物理学等)模型,航空航天(火箭、宇宙飞船技术)模型,考古(鉴定文物年代)模型,交通(如电路信号,特别是红绿灯亮的时间)模型,生态(人口、种群数量)模型,环境(污染)模型,资源利用(人力资源、水资源、矿藏资源、运输调度、工业生产管理)模型,生物(遗传问题、神经网络问题、动植物循环系统)模型,医学(流行病、传染病问题)模型,经济(商业销售、财富分布、资本主义经济周期性危机)模型,战争(正规战、游击战)模型等。其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。下面,我们给出如何利用方程知识建立数学模型的几种方法。

1.利用题目本身给出的或隐含的等量关系建立微分方程模型。这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模型。

例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的[5]。又如在天文学、气象学中常用到的等角轨线,已知曲线或曲线族(c),求曲线?Skip Record If...?(等角轨线或正交轨线),使?Skip Record If...?与(c)中每条曲线相交成给定的角度(这是题目中明确给出的条件,即曲线的切线相交成给定的角度,这样,就在它们的导数之间建立了联系),又题目中隐含的条件是:在?Skip Record If...?与(c)中曲线相交点处,它们的函数值相等;这样,我们只要求出已知曲线或曲线族的微分方程,根据它们之间的联系,就可以建立等角轨线的微分方程模型,从而求出等角轨线的方程[5]。

2.从一些已知的基本定律或基本公式出发建立微分方程模型。我们要熟悉一些常用的基本定律、基本公式。例如从几何观点看,曲线y=y(x)上某点的切线斜率即函数y=y(x)在该点的导数;力学中的牛顿第二运动定律:f=ma,其中加速度a就是位移对时间的二阶导数,也是速度对时间的一阶导数;电学中的基尔霍夫定律等。从这些知识出发我们可以建立相应的微分方程模型。

例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体,我们可以利用牛顿第二运动定律建立其微分方程模型,设物体质量为m,空气阻力系数为?Skip Record If...?,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时刻t时物体的下落速度为?Skip Record If...?,初始条件:?Skip Record If...?。由牛顿第二运动定律建立其微分方程模型:

?Skip Record If...?

求解模型可得:

?Skip Record If...?

由上式可知,当?Skip Record If...?时,物体具有极限速度:

?Skip Record If...?,

其中,阻力系数?Skip Record If...?,?Skip Record If...?为与物体形状有关的常数,?Skip Record If...?为介质密度,s为物体在地面上的投影面积。根据极限速度求解式子,在?Skip Record If...?一定时,要求落地速度?Skip Record If...?不是很大时,我们可以确定出s来,从而设计出保证跳伞者安全的降落伞的直径大小来。

3.利用导数的定义建立微分方程模型。导数是微积分中的一个重要概念,其定义为

?Skip Record If...?,

商式?Skip Record If...?表示单位自变量的改变量对应的函数改变量,就是函数的瞬时平均变化率,因而其极限值就是函数的变化率。函数在某点的导数,就是函数在该点的变化率。由于一切事物都在不停地发展变化,变化就必然有变化率,也就是变化率是普遍存在的,因而导数也是普遍存在的。这就很容易将导数与实际联系起来,建立描述研究对象变化规律的微分方程模型。

例如在考古学中,为了测定某种文物的绝对年龄,我们可以考察其中的放射性物质(如镭、铀等),已经证明其裂变速度(单位时间裂变的质量,即其变化率)与其存余量成正比。我们假设时刻t时该放射性物质的存余量R是t 的函数,由裂变规律,我们可以建立微分方程模型:

?Skip Record If...?

期中?Skip Record If...?是一正的比例常数,与放射性物质本身有关。求解该模型,我们解得:?Skip Record If...?,其中c是由初始条件确定的常数。从这个关系式出发,我们就可以测定某文物的绝对年龄。(参考碳定年代法)另外,在经济学领域中,导数概念有着广泛的应用,将各种函数的导函数(即函数变化率)称为该函数的边际函数,从而得到经济学中的边际分析理论。

4.利用微元法建立微分方程模型。一般的,如果某一实际问题中所求的变量p符合下列条件:p是与一个变量t的变化区间[a, b]有关的量;p对于区间[a, b]具有可加性;部分量?Skip Record If...?的近似值可表示为?Skip Record If...?。那么就可以考虑利用微元法来建立微分方程模型,其步骤是:首先根据问题的具体情况,选取一个变量例如t为自变量,并确定其变化区间[a, b];在区间[a, b]中随便选取一个任意小的区间并记作[?Skip Record If...?],求出相应于这个区间的部分量?Skip Record If...?的近似值。如果?Skip Record If...?能近似的标示为[a,

数学建模竞赛简介

数学建模竞赛简介 数学建模就是建立、求解数学模型的过程和方法,首先要通过分析主要矛盾,对各种实际问题进行抽象简化,并按照有关规律建立起变量,参数间的明确关系,即明确的数学模型,然后求出该数学问题的解,并通过一定的手段来验证解的正确性。 数学建模竞赛于1985年起源于美国,起初竞赛题目通常由工业部门、军事部门提出,然后由数学工作者简化或修正。1989年我国大学生开始参加美国大学生数学建模竞赛,1990年我国开始创办我国自己的大学生数学建模竞赛。1993年国家教委(现教育部)高教司正式发文,要求在全国普通高等学校中开展数学建模竞赛。从1994年开始,大学生数学建模竞赛成为教育部高教司和中国工业的应用数学学会共同主办,每年一届的,面向全国高等院校全体大学生的一项课外科技竞赛活动。2010年全国共有30省(市、自治区)九百多所院校一万多个队三万多名大学生参赛,成为目前全国高等学校中规模最大的课外科技活动。数学建模竞赛是教育主管部门主办的大学生三大竞赛之一。 现在的竞赛题目来源于更广泛的领域,都是各行各业的实际问题经过适当简化,提炼出来的极富挑战性的问题,每次两道题,学生任选一题,可以使用计算机、软件包,可以参阅任何资料(含上网参阅任何资料)。竞赛以三人组成的队为单位,三人之间通力合作,在三天三夜内完成一篇论文。不给论文评分,而是按论文的水平为四档:全国一等奖、全国二等奖、赛区一等奖,赛区二等奖,成功参赛奖。我校于2001年开始参加这项竞赛活动。多次获全国一等奖、二等奖、湖北赛区一等奖、二等奖。 数学建模竞赛活动培养了学生的创造力、应变能力、团队精神和拼搏精神,适应了21世纪经济发展和人才培养的挑战。不少参加过全国大学生数学建模竞赛的同学都深有感触,他们说:“参加这次活动是我们大学四年中最值得庆幸的一件事,我们真正体会这几年内学到了什么,自己能干什么。”“那不寻常的三天在我们记忆中留下了永恒的一瞬,真是一次参赛,终身受益。”团队精神贯穿在数学建模竞赛的全过程,它往往是成败的关键。有些参赛队员说:“竞赛使我们三个人认识到协作的重要性,也学会了如何协作,在建模的三天中,我们真正做到了心往一处想,劲往一处使,每个人心中想的就是如何充分发挥自己的才华,在短暂的时间内做出一份尽量完善的答卷。三天中计算机没停过,我们轮流睡觉、轮流工作、轮流吃饭,可以说是抓住了每一滴可以抓住的时间。”“在这不眠的三天中,我们真正明白了团结就是力量这个人生真谛,而这些收获,将会伴随我们一生,对我们今后的学习,工作产生巨大的影响。”

微分方程建模案例

第五章微分方程建模案例 微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学涵。微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。下面简要介绍利用方程知识建立数学模型的几种方法: 1.利用题目本身给出的或隐含的等量关系建立微分方程模型 这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模 型。 例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。 2.从一些已知的基本定律或基本公式出发建立微分方程模型

我们要熟悉一些常用的基本定律、基本公式。例如从几何观点看,曲线 y y(x)上某点的切线斜率即函数y y(x)在该点的导数;力学中的牛顿第二运 动定律:F ma ,其中加速度a 就是位移对时间的二阶导数,也是速度对时间 的一阶导数等等。从这些知识出发我们可以建立相应的微分方程模型。 例如在动力学中,如何保证高空跳伞者的安全问题。对于高空下落的物体, 我们可以利用牛顿第二运动定律建立其微分方程模型, 设物体质量为m ,空气阻 力 系数为k ,在速度不太大的情况下,空气阻力近似与速度的平方成正比;设时 刻t 时物体的下落速度为v ,初始条件:v (o ) 0.由牛顿第二运动定律建立其微 分方程模型: 求解模型可得: 体在地面上的投影面积。根据极限速度求解式子,在m,, 一定时,要求落地速 度w 不是很大时,我们可以确定出s 来,从而设计出保证跳伞者安全的降落伞的 直径大小来 3?利用导数的定义建立微分方程模型 dv m 一 dt mg kv 2 ? k(exp[2t 由上式可知,当t 其中,阻力系数k 1) 时,物体具有极限速度: lim v t mg :k , s , 为与物体形状有关的常数, 为介质密度,s 为物 、mg(exp[2t 1)

3.1 微分方程模型的建模步骤

第3章微分方程模型 3.1 微分方程模型的建模步骤 在自然科学以及工程、经济、医学、体育、生物、社会等学科中的许多系统,有时很难找到该系统有关变量之间的直接关系——函数表达式,但却容易找到这些变量和它们的微小增量或变化率之间的关系式,这时往往采用微分关系式来描述该系统——即建立微分方程模型。我们以一个例子来说明建立微分方程模型的基本步骤。 例1 某人的食量是10467(焦/天),其中5038(焦/天)用于基本的新陈代谢(即自动消耗)。在健身训练中,他所消耗的热量大约是69(焦/公斤?天)乘以他的体重(公斤)。假设以脂肪形式贮藏的热量100%地有效,而1公斤脂肪含热量41868(焦)。试研究此人的体重随时间变化的规律。 模型分析 在问题中并未出现“变化率”、“导数”这样的关键词,但要寻找的是体重(记为W )关于时间t 的 函数。如果我们把体重W 看作是时间t 的连续可微函数,我们就能找到一个含有的dt dW 微分方程。 模型假设 1.以)(t W 表示t 时刻某人的体重,并设一天开始时人的体重为0W 。 2.体重的变化是一个渐变的过程。因此可认为 )(t W 是关于t 连续而且充分光滑的。 3.体重的变化等于输入与输出之差,其中输入是指扣除了基本新陈代谢之后的净食量吸收;输出就是进行健身训练时的消耗。 模型建立 问题中所涉及的时间仅仅是“每天”,由此,对于“每天” 体重的变化=输入-输出。 由于考虑的是体重随时间的变化情况,因此,可得 体重的变化/天=输入/天—输出/天。 代入具体的数值,得 输入/天 = 10467(焦/天)—5038(焦/天)=5429(焦/天), 输出/天 = 69(焦/公斤?天)×W (公斤)= 69W (焦/天)。 体重的变化/天=t W ??(公斤/天)dt dW t =→?0 考虑单位的匹配,利用 “公斤/天=公斤焦天 焦/41868 /”, 可建立如下微分方程模型

数学建模常见评价模型简介

常见评价模型简介 评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。 层次分析模型 层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。 运用层次分析法进行决策,可以分为以下四个步骤: 步骤1 建立层次分析结构模型 深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。 步骤2构造成对比较阵 对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵; 步骤3计算权向量并作一致性检验 由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。

步骤4计算组合权向量(作组合一致性检验) 组合权向量可作为决策的定量依据 通过一个具体的例子介绍层次分析模型的应用。 例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。 步骤1 建立系统的递阶层次结构 将决策问题分为3个层次:目标层O,准则层C,方案层P;每层有若干元素,各层元素间的关系用相连的直线表示。

常微分方程在数学建模中的应用.

微分方程应用 1 引言 常微分方程的形成与发展和很多学科有着密切的联系,例如力学、天文学、物理学等.数学的其他分支的快速发展,产生出很多新兴学科,这些新兴学科的产生都对常微分方程的发展有着深刻的影响,而且当前计算机的快速发展更是为常微分方程的应用及理论研究提供了非常有力的工具. 数学解决实际问题就必须建立模型,而数学建模就是把数学语言描述实际现象的过程.利用数学去解决各类实际问题时,建立数学模型是十分重要的一步,但是也是最困难的一步.建立数学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程.要通过大量调查、收集相关数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题. 因此本文先简要介绍了如何建立微分方程模型,并通过具体的实例来简单地介绍了微分方程在数学建模中的应用. 2 数学模型简介 通常我们把现实问题的一个模拟称为模型.如交通图、地质图、航空模型和建筑模型等.利用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等来模拟现实的模型称为数学模型.数学模型在实际生活中经常碰到,如求不规则图形的面积,可建立定积分的数学模型,求变化率的问题可建立导数模型,统计学中抽样调查,买彩票中奖的概率问题等等.学会建立数学模型对解决实际生活问题会有很大的帮助. 建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁.随着科学技术的进步,特别是电子计算机技术的迅速发展,数学已经渗透到从自然科学技术到工农业生产建设,从经济生活到社会生活的各个领域.一般地说,当实际问题需要我们对所研究的现实对象提供分析、预报、决策、控制等方面的定量结果时,往往都离不开数学的应用,而建立数学模型则是这个过程的关键环节. 3 常微分方程模型 3.1 常微分方程的简介

数学建模简介

数学建模简介 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型,然后用通过计算得到的结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学建模的广泛应用 数学建模的应用逐渐变的广泛,数学建模大量用于一般工程技术领域,用于代替传统工程设计中的现场实验、物理模拟等手段;在高新科技领域,成为必不可少的工具,无论是在通信、航天、微电子、自动化都是创新工艺、开发新 产品的必要手段;在新的科研领域在用数学方法研究 其中的定量关系时,数学建模就成为首要的、关键的 步骤和这些学科发展和应用的基础。 将计算机技术和数学建模进行紧密结合,使得原 本抽象的数学模型生动具体的呈现在研究者面前,使 得问题得到更好的解决。 数学建模的分支——数据挖掘 数据挖掘(Data Mining,DM)是目前人工智能和数 据库领域研究的热点问题,所谓数据挖掘是指从数据库 的大量数据中揭示出隐含的、先前未知的并有潜在价值 的信息的非平凡过程。数据挖掘是一种决策支持过程, 它主要基于人工智能、机器学习、模式识别、统计学、 数据库、可视化技术等,高度自动化地分析企业的数据, 做出归纳性的推理,从中挖掘出潜在的模式,帮助决策 者调整市场策略,减少风险,做出正确的决策。 数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示3个步骤。数据准备是从相关的数据源中选取所需的数据并整合成用于数据挖掘的数据集;规律寻找是用某种方法将数据集所含的规律找出来;规律表示是尽可能以用户可理解的方式(如可视化)将找出的规律表示出来。 数据挖掘的任务有关联分析、聚类分析、分类分析、异常分析、特异群组分析和演变分析,等等。

数学建模的介绍

一、数学建模的意义 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。 应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结

数学建模实验答案微分方程模型

实验07 微分方程模型(2学时) (第5章 微分方程模型) 1.(验证)传染病模型2(SI 模型)p136~138 传染病模型2(SI 模型): 0(1),(0)di k i i i i dt =-= 其中, i (t )是第t 天病人在总人数中所占的比例。 k 是每个病人每天有效接触的平均人数(日接触率)。 i 0是初始时刻(t =0)病人的比例。 1.1 画~di i dt 曲线图p136~138 取k =0.1,画出i dt di ~的曲线图,求i 为何值时dt di 达到最大值,并在曲线图上标注。 参考程序:

提示:fplot, fminbnd, plot, text, title, xlabel 1)画曲线图 用fplot函数,调用格式如下: fplot(fun,lims) fun必须为一个M文件的函数名或对变量x的可执行字符串。 若lims取[xmin xmax],则x轴被限制在此区间上。 若lims取[xmin xmax ymin ymax],则y轴也被限制。 本题可用 fplot('0.1*x*(1-x)',[0 1.1 0 0.03]); 2)求最大值 用求解边界约束条件下的非线性最小化函数fminbnd,调用格式如下:x=fminbnd('fun',x1,x2) fun必须为一个M文件的函数名或对变量x的可执行字符串。 返回自变量x在区间x1

微分方程模型建模实例

微分方程模型建模实例 1.一个半球状雪堆,其体积融化的速率与半球面面积S成正比,比例系数k > 0。设融化中雪堆始终保持半球状,初始半径为R且3小时中融化了总体积的7/8,问雪堆全部融化还需要多长时间? 2.从致冰厂购买了一块立方体的冰块,在运输途中发现,第一小时大约融化了1/4 (1)求冰块全部融化要多长时间(设气温不变) (2)如运输时间需要2.5小时,问:运输途中冰块大约会融化掉多少? 3.一展开角为α的圆锥形漏斗内盛着高度为H的水,设漏斗底部的孔足够大(表面张力不计),试求漏斗中的水流光需要多少时间? 4.容器甲的温度为60度,将其内的温度计移入容器乙内,设十分钟后温度计读数为70度,又过十分钟后温度计读数为76度,试求容器乙内的温度。 5.一块加过热的金属块初始时比室温高70度,20分钟测得它比室温高60度,问:(1)2小时后金属块比室温高多少?(2)多少时间后,金属块比室温高10度? 6.设初始时容器里盛放着含净盐10千克的盐水100升,现对其以每分钟3升的速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟2升的速率放出盐水,求1小时后容器里的盐水中还含有多少净盐? 7.某伞降兵跳伞时的总质量为100公斤(含武器装备),降落伞张开前的空气阻力为0.5v,该伞降兵的初始下落速度为0,经8秒钟后降落伞打开,降落 伞打开后的空气阻力约为0.6 试球给伞降兵下落的速度v(t),并求其下落的极限速度。 8. 1988年8月5日英国人Mike McCarthy创建了一项最低开伞的跳伞纪录,它从比萨斜塔上跳下,到离地179英尺时才打开降落伞,试求他落地时的速度。 9.证明对数螺线r=A 上任一处的切线与极径的夹角的正切为一常 数,()

数学建模——微分方程的应用

第八节 数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,尤其是微分方程经济学中的应用. 读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 分布图示 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t 的质量. 用x 表示该放射性物质在时刻t 的质量, 则 dt dx 表示x 在时刻t 的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 .kx dt dx -= (8.1) 这是一个以x 为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中0>k 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t 增加时, 质量x 减少. 解方程(8.1)得通解.kt Ce x -=若已知当0t t =时, ,0x x =代入通解kt Ce x -=中可得,00kt e x C -= 则可得到方程(8.1)特解 ,)(00t t k e x x --= 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( U 238)的半衰期约为50亿年;通常的镭( Ra 226)的半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克Ra 226 衰变成半克所需要的时间与一吨Ra 226衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础.

数学建模课程简介

《数学建模》课程简介 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 内容简介: 本课程以物理、生态、环境、医学、管理、经济、信息技术等领域的一些典型实例为背景,阐述如何通过建立数学模型的方法来研究、解决实际问题的基本方法和技能。开设本课程的目的是,在传授知识的同时,通过典型建模实例的分析和参加建模实践活动,培养和增强学生自学能力、创新素质。参加数学建模课的学习,应自己动手解决一、二个实际问题,以求在实际参与中获取真知。 本课程包括一定学时的讨论班,学生可利用课外时间自己参与建模实践活动并自愿参加由指导教师组织的讨论班活动。选修本课程的本科生经双向选择还有机会参加全国大学生数学建模竞赛(每年约90人)和美国大学生数学建模竞赛(每年为21人)。 推荐教材或参考书: “数学建模”,杨启帆、谈之奕、何勇编著,浙江大学出版社出版,2006年7月 《数学建模》教学大纲 20053025 数学建模 4.5 Mathematical Modeling 4-1 预修要求:微积分、线性代数 面向对象:竺可桢学院工程高级班 一、教学目的与基本要求: 通过典型数学模型分析和课外建模实践,使学生基本掌握运用数学知识建立数学模型来研究科研问题或实际课题的基本技能与基本技巧,本课程教学除传授知识外还要求学生在实际建模中注意培养和提高自身的能力,以便提高自己的综合素质与实际本领。 二、主要内容及学时分配: 1.数学建模概论,3学时 2.初等模型,8学时:舰艇的汇合,双层玻璃的功效,崖高的估算,经验模型,参数 识别,量纲分析法建模,方桌问题、最短路径与最速方案等 3.微分方程建模,14学时:马尔萨斯模型和罗杰斯蒂克模型,为什么要用三级火箭发 射人造卫星,药物在体内的分布,传染病模型,捕食系统的P-P模型,双种群生态 系统研究等

数学建模之微分方程建模与平衡点理论

微分方程 列微分方程常用的方法: (1)根据规律列方程 利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立微分方程模型。 (2)微元分析法 利用已知的定理与规律寻找微元之间的关系式,与第一种方法不同的是对微元而不是直接对函数及其导数应用规律。 (3)模拟近似法 在生物、经济等学科的实际问题中,许多现象的规律性不很清楚,即使有所了解也是极其复杂的,建模时在不同的假设下去模拟实际的现象,建立能近似反映问题的微分方程,然后从数学上求解或分析所建方程及其解的性质,再去同实际情况对比,检验此模型能否刻画、模拟某些实际现象。 一、模型的建立与求解 1.1传染病模型 (1)基础模型 假设:t 时刻病人人数()x t 连续可微。每天每个病人有效接触(使病人治病的接触)的人数为λ,0t =时有0x 个病人。 建模:t 到t t +?病人人数增加 ()()()x t t x t x t t λ+?-=?(1) 0,(0)dx x x x dt λ==(2) 解得: 0()t x t x e λ=(3) 所以,病人人数会随着t 的增加而无限增长,结论不符合实际。 (2)SI 模型

假设:1.疾病传播时期,总人数N 保持不变。人群分为两类,健康者占总人数的比例为s(t),病人占总人数的比例为i(t)。 2.每位病人每天平均有效接触λ人,λ为日接触率。有效接触后健康者变为病人。 依据:患病人数的变化率=Ni(t)(原患病人数)*λs(t)(每个病人每天使健康人变为病人的人数) 建模: di N Nsi dt λ=(4) 由于 ()()1s t i t +=(5) 设t=0时刻病人所占的比例为0i ,则可建立Logistic 模型 0(1),(0)di i i i i dt λ=-=(6) 解得: 01()111kt i t e i -= ??+- ??? (7) 用Matlab 绘制图1()~i t t ,图2 ~di i dt 图形如下, 结论:在不考虑治愈情况下 ①当12i = 时di dt 达到最大值m di dt ?? ???,这时101ln 1m t i λ-??=- ???

线性规划与数学建模简介

第十三章线性规划与数学建模简介 【授课对象】理工类专业学生 【授课时数】6学时 【授课方法】课堂讲授与提问相结合 【基本要求】1、了解数学模型的基本概念、方法、步骤; 2、了解线性规划问题及其数学模型; 3、了解线性规划问题解的性质及图解法. 【本章重点】线性规划问题. 【本章难点】线性规划问题、线性规划问题解的性质、图解法. 【授课内容】 本章简要介绍数学建模的基本概念、方法、步骤,并以几个典型线性规划问题为例,介绍构建数学模型的方法及其解的性质。 §1 数学建模概述 一、数学建模 数学建模是构造刻划客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。运用这种科学方法,必须从实际问题出发,遵循从实践到认识再实践的认识规律,围绕建模的目的,运用观察力、想象力的抽象概括能力,对实际问题进行抽象、简化,反复探索,逐步完善,直到构造出一个能够用于分析、研究和解决实际问题的数学模型。因此,数学建模是一种定量解决实际问题的创新过程。 二、数学模型的概念

模型是人们对所研究的客观事物有关属性的模拟。例如在力学中描述力、 量和加速度之间关系的牛顿第二定律F=ma就是一个典型的(数学)模型。一般地,可以给数学模型下这样的定义:数学模型是磁于以部分现实世界为一定目的而做的抽象、简化的数学结构。 通俗而言,数学模型是为了一定目的对原型所作的一种抽象模拟,它用数学式子,数学符号以及程序、图表等描述客观事物的本质特征与内在联系。 三建立数学模型的方法和步骤 建立数学模型没有固定模式。下面介绍一下建立模型的大体过程: 1.建模准备 建模准备是确立建模课题的过程。这类课题是人们在生产和科研中为了使 认识和实践过一步发展必须解决的问题。因此,我们首先要发现这类需要解决的实际问题。其次要弄清所解决问题的目的要求并着手收集数据。进行建模筹划,组织必要的人力、物力等,确立建模课题。 2.模型假设 作为建模课题的实际问题都是错综复杂的、具体的。如果不对这些实际问题进行抽象简化,人们就无法准确把握它的本质属性,而模型假设就是根据建模的目的对原型进行抽象、简化,抓住反映问题本质属性的主要因素,简化掉那些非本质的次要因素。有了这些假设,就可以在相对简单的条件下,弄清各因素之间的关系,建立相应的模型。 合理的假设是建立理想模型的必要条件和基本保证。如果假设是合理的,则模型切合实际,能解决实际问题;如果假设不合理中或过于简化,则模型与实际情况不符或部分相符,就解决不了问题,就要修改假设,修改模型。 3.构造模型

微分方程建模学习

微分方程建模 一般说来,微分方程建模的方法大致可以分为以下的几个步骤: 1.根据实际问题的要求确定要研究的量,包括自变量、未知函数、必要的参数等以及它们各自的变化区间; 2.列方程。可以在合理假设的前提下,利用导数表示斜率、速度、变化率的实际意义,根据一些基本定理(几何的、物理的、化学的或生物学的等等)或规律,找出未知函数的导数(或微分)与相关各量之间的等量关系式,建立微分方程并确定定解条件(注:如果没有现成的定理可供利用,也可以用微元分析法与模拟近似法列出微分方程); 3.解微分方程; 4.对模型的适用性作出评价,即用已知的数据检验微分方程的解是否与实际相符。若结果与实际存在一定的差距,则还要对方程进行修正和调整,直到得出较满意的结果为止。 下面,我们就通过一些实例说明微分方程建模的具体步骤。 一.增长模型 在自然界和社会的经济活动中,许多量的变化都遵循着一个基本的规律:任一单位时间的增量都与该量自身当时的大小成正比。运用这一基本规律,就可以建立起各种各样的增长模型。 1.马尔萨斯人口模型 严格地讲,讨论人口问题所建立的模型应属于离散型模型。但在人口基数很大的情况下,突然增加或减少的只是单一的个体或少数几个个体,相对于全体数量而言,这种改变量是极其微小的,因此,我们可以近似地假设人口随时间连续变化甚至是可微的。这样,我们就可以采用微分方程的工具来研究这一问题。 最早研究人口问题的是英国的经济系家马尔萨斯(Malthus )(1766—1834)。他根据百余年的人口资料,经过潜心研究,在1798年发表的《人口论》中首先提出了人口增长模型。他的基本假设是:任一单位时刻人口的增长量与当时的人口总数成正比,且比例系数为常数。于是,设t 时刻的人口总数为)(t y ,则单位时间人口的增长量即为 t t y t t y ?-?+)()( 根据基本假设,有 t t y t t y ?-?+)()()(t y r ?= (r 为比例系数) 令0→?t ,可得微分方程

常微分方程的建模训练

常微分方程的建模训练 各位同学: 欢迎大家开始《高等数学》课程的第二阶段的学习。本次辅导材料是关于建立微分方程的模型,主要目的有2个。一是开阔大家的视野,二是练习如何将一个实际问题用数学语言描述出来,也就是平时讲的建模,这是一个理工科学生的最重要的基本功之一。希望大家努力掌握之。 建立微分方程的途径主要有: 1)根据问题的性质,利用相应学科已经知道的客观规律,比如研究物体的运动,在已知外力的情况下,可运用著名的牛顿第二定律;研究热力学问题,可以用热力学定律,研究电路问题就可以用电路的基尔霍夫定律等。 2)对于一些没有明显规律可用时,可以考虑应用微元法(上学期学习积分时已经学习过),这时,需要考虑的是在自变量[,d] +的微段d x中,函数的增 x x x 量的微分表达式。 本次材料包括的题目不少,你可能没有太多的时间做。没有关系,可以边学边做,或有空时做,拳不离手,曲不离口,功夫是逐渐炼成的。要注意的是,对一个确定的问题,仅仅列出微分方程是不够的,还要有一组初始条件或边界条件,才能使微分方程的通解具体化,称为一个对应与问题本身的特解!如何列出这样的条件,也需要训练你的观察能力,因为很多题目中,这些条件常隐含在题目的叙述中。 本次练习不要求你去求解这些方程,但随着我们课堂的进度,当你学会微分方程的求解后,你再去求解它们。 好,开始吧! 1. 有一类物质具有放射性,根据观察,放射性元素的质量随时间推移而逐渐减少,这种现象称为衰变。由实验测定,每一时刻放射性元素镭的衰变率(即质量减少的速率)与该时刻 λ>。求镭的衰变规律。 的镭的质量成正比,比例系数0 又由经验判断,镭经过1600年后,只剩下原始量的一半,求镭的质量R与时间t的函数关系。 2. 物理上把已知物体质量和外力的条件下,求物体的运动规律的问题称为动力学问题。物 s t来表示。 体的运动可用它的位移量() 已知物体质量为m的物体在外力F的作用下沿外力的方向作直线运动。试根据下列提供的外力特点,求物体的运动规律: 1)外力为地球重力; 2)外力为与其速度的平方成反比的阻力; 3)外力为与其位移成正比,但方向相反的弹性恢复力;

最新微分方程建模简介

微分方程建模简介

第三章微分方程模型 3.1微分方程与微分方程建模法 一、微分方程知识简介 我们要掌握常微分方程的一些基础知识,对一些可以求解的微分方程及其方程组,要求掌握其解法,并了解一些方程的近似解法。 微分方程的体系:(1)初等积分法(一阶方程及几类可降阶为一阶的方程) ?Skip Record If...?(2)一阶线性微分方程组(常系数线性微分方程组的解法) ?Skip Record If...?(3)高阶线性微分方程(高阶线性常系数微分方程解法)。其中还包括了常微分方程的基本定理。 0.常数变易法:常数变易法在上面的(1)(2)(3)三部分中都出现过,它是由线性齐次方程(一阶或高阶)或方程组的解经常数变易后求相应的非齐次方程或方程组的解的一种方法。 1.初等积分法:掌握变量可分离方程、齐次方程的解法,掌握线性方程的解法,掌握全微分方程(含积分因子)的解法,会一些一阶隐式微分方程的解法(参数法),会几类可以降阶的高阶方程的解法(恰当导数方程)。 分离变量法:(1)可分离变量方程: ?Skip Record If...? (2) 齐次方程:?Skip Record If...? 常数变易法:(1) 线性方程,?Skip Record If...??Skip Record If...?

(2) 伯努里方程,?Skip Record If...??Skip Record If...? 积分因子法:化为全微分方程,按全微分方程求解。 对于一阶隐式微分方程?Skip Record If...?有 参数法:(1) 不含x或y的方程:?Skip Record If...? (2) 可解出x或y的方程:?Skip Record If...? 对于高阶方程,有 降阶法:?Skip Record If...? 恰当导数方程 一阶方程的应用问题(即建模问题)。 2.一阶线性微分方程组:本部分主要内容有:一是一阶线性微分方程组的基本理论(线性齐次、非齐次微分方程组的通解结构,刘维尔公式等),二是常系数线性微分方程组的解法(求特征根,单根与重根[待定系数法]),三是常数变易法。本部分内容与线性代数关系密切,如线性空间,向量的线性相关与线性无关,基与维数,特征方程、特征根与特征向量,矩阵的若当标准型等。3.高阶线性微分方程:了解高阶线性微分方程的基本理论(线性齐次、非齐次微分方程的通解结构,刘维尔公式等); n阶线性常系数微分方程解法:(1)求常系数齐次线性微分方程基本解组的待定指数函数法;(2)求一般非齐次线性方程解的常数变易法;(3)求特

数学建模简介及数学建模常用方法

数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等)来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。 随着社会的发展,生物、医学、社会、经济……各学科、各行业都涌现现出大量的实际课题,亟待 人们去研究、去解决。但 是,社会对数学的需求并 不只是需要数学家和专门 从事数学研究的人才,而 更大量的是需要在各部门 中从事实际工作 的人善于运用数 学知识及数学的 思维方法来解决 他们每天面临的 大量的实际问题, 取得经济效益和社会效 益。他们不是为了应用数 学知识而寻找实际问题 (就像在学校里做数学应 用题),而是为了解决实 际问题而需要用到数学。 而且不止是要用到数学, 很可能还要用到别的学 科、领域的知识,要用到 工作经验和常识。特别是 在现代社会,要真正解决 一个实际问题几乎都离不 开计算机。可以这样说, 在实际工作中 遇到的问题, 完全纯粹的只 用现成的数学 知识就能解决 的问题几乎是 没有的。你所能遇到的都 是数学和其他东西混杂在 一起的问题,不是“干净 的”数学,而是“脏”的 数学。其中的数学奥妙不 是明摆在那里等着你去解 决,而是暗藏在深处等着

你去发现。也就是说,你 要对复杂的实际问题进行 分析,发现其中的可以用 数学语言来描述的关系或 规律,把这个实际问题化 成一个数学问题,这就称 为数学模型。 数学模型具有下列特 征:数学模型的一个重要 特征是高度的抽象性。通 过数学模型能够将形象思 维转化为抽象思维,从而 可以突破实际系统的约 束,运用已有的数学研究 成果对研究对象进行深入 的研究。数学模型的另一 个特征是经济性。用数学 模型研究不需要过多的专 用设备和工具,可以节省 大量的设备运行和维护费 用,用数学模型可以大大 加快研究工作的进度,缩 短研究周期,特别是在电 子计算机得到广泛应用的 今天,这个优越性就更为 突出。但是,数学模型具 有局限性,在简化和抽象 过程中必然造成某些失 真。所谓“模型就是模型” (而不是原型),即是该性 质。 数学建模是利用数学方法解决实际问题的一种实践。即通过抽象、简化、假设、引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解。简而言之,建立数学模型的这个过程就称为数学建模。 模型是客观实体有关属性的模拟。陈列 在橱窗中的飞机模型外形应当像真正的飞 机,至于它是否真的能飞则无关紧要;然而 参加航模比赛的飞机模型则全然不同,如果 飞行性能不佳,外形再 像飞机,也不能算是一 个好的模型。模型不一 定是对实体的一种仿照,也可以是对实体的 某些基本属性的抽象,例如,一张地质图并 不需要用实物来模拟,它可以用抽象的符 号、文字和数字来反映出该地区的地质结 构。数学模型也是一种模拟,是用数 学符号、数学式子、程序、图形等对 实际课题本质属性的抽象而又简洁

数学建模微分方程的应用举例

第八节数学建模——微分方程的应用举例 微分方程在物理学、力学、经济学和管理科学等实际问题中具有广泛的应用,本节我们将集中讨论微分方程的实际应用,读者可从中感受到应用数学建模的理论和方法解决实际问题的魅力. 内容分布 ★衰变问题 ★逻辑斯谛方程 ★价格调整问题 ★人才分配问题模型 ★追迹问题 内容要点: 一、衰变问题 镭、铀等放射性元素因不断放射出各种射线而逐渐减少其质量, 这种现象称为放射性物质的衰变. 根据实验得知, 衰变速度与现存物质的质量成正比, 求放射性元素在时刻t的质量. 用x表示该放射性物质在时刻t的质量, 则 表示x在时刻t的衰变速度, 于是“衰变速度与现存的质量成正比”可表示为 (8.1)

这是一个以x为未知函数的一阶方程, 它就是放射性元素衰变的数学模型, 其中 是比例常数, 称为衰变常数, 因元素的不同而异. 方程右端的负号表示当时间t增加时, 质量x减少. 解方程(8.1)得通解 若已知当 时, 代入通解 中可得 则可得到方程(8.1)特解 它反映了某种放射性元素衰变的规律. 注: 物理学中, 我们称放射性物质从最初的质量到衰变为该质量自身的一半所花费的时间为半衰期, 不同物质的半衰期差别极大. 如铀的普通同位素( )的半衰期约为50亿年;通常的镭( )的半衰期是1600年.半衰期是上述放射性物质的特征, 然而半衰期却不依赖于该物质的初始量, 一克 衰变成半克所需要的时间与一吨 衰变成半吨所需要的时间同样都是1600年, 正是这种事实才构成了确定考古发现日期时使用的著名的碳-14测验的基础. 二、逻辑斯谛(Logistic)方程:

逻辑斯谛方程是一种在许多领域有着广泛应用的数学模型, 下面我们借助树的增长来建立该模型. 一棵小树刚栽下去的时候长得比较慢, 渐渐地, 小树长高了而且长得越来越快, 几年不见, 绿荫底下已经可乘凉了; 但长到某一高度后, 它的生长速度趋于稳定, 然后再慢慢降下来. 这一现象很具有普遍性. 现在我们来建立这种现象的数学模型. 如果假设树的生长速度与它目前的高度成正比, 则显然不符合两头尤其是后期的生长情形, 因为树不可能越长越快; 但如果假设树的生长速度正比于最大高度与目前高度的差, 则又明显不符合中间一段的生长过程. 折衷一下, 我们假定它的生长速度既与目前的高度,又与最大高度与目前高度之差成正比. 设树生长的最大高度为H(m), 在t(年)时的高度为h(t), 则有 (8.2) 其中 是比例常数. 这个方程为Logistic方程. 它是可分离变量的一阶常数微分方程. 下面来求解方程(8.2). 分离变量得 两边积分 得

数学建模简介及数学建模常用方法

数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构。简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数、图形、代数方程、微分方程、积分方程、差分方程等) 来描述(表述、模拟)所研究的客观对象或系统在某一方面的存在规律。 随着社会的发展,生物、医学、社会、经济……各学科、各行业都涌现现出大量的实际课题,亟待人们去研究、去解决。但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益。 他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学。而且不止是要用到数学,很可能还要用到别的学科、领域的知识,要用到工作经验和常识。特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机。可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的。你所能遇到的都是数学和其他东西混杂 在一起的问题,不是“干净的”数学,而是“脏”的数学。其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现。也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题 化成一个数学问题,这就称为数学模型。 数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性。通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入 的研究。数学模型的另一个特征是经济性。用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数 学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出。但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真。所谓“模型就是模型”(而不是原型),即是该性质。

扩散问题的偏微分方程模型_数学建模

实验一SDH网元基本配置 一、实验目的: 通过本实验,了解SDH光传输的原理和系统组成,了解ZXMP S325设备的硬件构成和单板功能,学习ZXONM 300 网管软件的使用方法,掌握SDH 网元配置的基本操作。 二、实验器材: 1、SDH 设备:3 套ZXMP 325; 2、实验用维护终端。 三、实验原理 1、SDH 原理 同步数字体制(SDH)是为高速同步通信网络制定的一个国际标准,其基础在于直接同步复用。按照SDH 组建的网络是一个高度统一的、标准化的、智能化的网络,采用全球统一的接口以实现多环境的兼容,管理操作协调一致,组网与业务调度灵活方便,并且具有网络自愈功能,能够传输所有常见的支路信号,应用于多种领域(如光纤传输,微波和卫星传输等)。 SDH 具有以下特点: (1)接口:接口的规范化是设备互联的关键。SDH对网络节点接口(NNI)作了统一的规范,内容包括数字信号数率等级、帧结构、复接方法、线路接口、监控管理等。 电接口:STM-1是SDH的第一个等级,又叫基本同步传送模块,比特率为155.520Mb/s;STM-N是SDH第N个等级的同步传送模块,比特率是STM-1的N 倍(N=4n=1,4,16,- - -)。 光接口:采用国际统一标准规范。SDH仅对电信号扰码,光口信号码型是加扰的NRZ 码,信号数率与SDH 电口标准信号数率相一致。 (2)复用方式 a)低速SDH----高速SDH,字节间插; b) 低速PDH-----SDH,同步复用和灵活的映射。 (3)运行维护:用于运行维护(OAM)的开销多,OAM功能强——这也是线路编码不用加冗余的原因. (4)兼容性:SDH 具有很强的兼容性,可传送PDH 业务,异步转移模式信号(ATM)及其他体制的信号。 (5)SDH 复用映射示意图

相关文档
最新文档