填隙物,杂基,胶结物知识讲解
沉积学复习

杂基:杂基是碎屑岩中与粗碎屑一起沉积下来的细粒填隙组分,其粒级一般以泥为主,可包括一些细粉砂。
或:分布于碎屑颗粒之间,以悬移载荷方式与颗粒同时沉积粒级一般小于0.03mm的细小机械成因碎屑沉积物。
原杂基:代表原始沉积状态的杂基。
正杂基:原杂基经过明显重结晶后则转变为正杂基。
胶结物:是沉积岩中以化学沉淀方式形成于粒间孔隙中的自生矿物。
或:碎屑岩在沉积、成岩阶段,以化学沉淀方式从胶体或真溶液中沉淀出来,充填在碎屑颗粒之间的各种自生矿物。
自生矿物:沉淀和成岩阶段以化学或生物化学方式形成的沉积矿产。
沉积构造:指沉积物沉积时,或沉积之后,由于物理作用、化学作用及生物作用形成的各种构造。
原生构造:在沉积物沉积过程中及沉积物固结成岩之前形成的构造。
次生构造:固结成岩之后形成的构造。
胶结类型:碎屑岩中碎屑颗粒和填隙物间的关系。
孔隙:岩石中未被固体物质充填的部分,是碎屑岩重要的结构组分之一。
次生孔隙:是岩石中的矿物组分被溶解以及岩石组分破裂和收缩形成的孔隙。
碎屑岩构造:指岩石各组成部分的空间分布和排列方式。
成熟度:碎屑颗粒在风化、搬运、沉积等作用改造下接近终极产物的程度。
结构成熟度:是指碎屑物质经风化、搬运和沉积作用的改造,使之接近终极结构特征的程度。
结构成熟度愈高,表示碎屑物质分选性愈好,杂基含量越少。
成分成熟度:是指碎屑物质经风化、搬运和沉积作用的改造,使之接近终极成分特征的程度。
同生变形构造:也称变形构造,是沉积物沉积的同时或在沉积物固结成岩之前还处于富含孔隙水的塑性状态下发生的变形所形成的构造。
滑塌构造:已沉积的未固结沉积物在重力作用下发生运动和位移所产生的各种同生变形构造的总称。
流动成因构造:沉积物在搬运和沉积时,由于介质(如水、空气)的流动在沉积物内部或表面形成的构造,属于机械成因构造。
层理:是沉积物成层沉积时岩石性质沿垂向变化而产生的层状构造,可通过矿物成分、颜色、粒度、形状或填集方式的突变或渐变而显现出来。
沉积岩名词解释

名词解释1、sedimentary rock:沉积岩是组成岩石圈的三大类岩石(岩浆岩、变质岩、沉积岩)之一。
它是在地壳表层的条件下,由母岩的风化产物、火山物质、有机物质、宇宙物质等沉积岩的原始物质成分,经过搬运作用、沉积作用以及沉积后作用而形成的一类岩石。
3、结构成熟度:指碎屑物质结构上被改造趋向于最终产物的程度。
等大分选好圆状球形无杂基。
4、纹层:组成层里的最基本的最小的单位,纹层之内没有任何肉眼可看见的层,也成为细层。
5、鲕粒:具有核心和同心层结构的球状颗粒,像鱼子,大小2~0.25mm,常见的为1~0.5mm。
6、盐岩:指由于含盐度较高的溶液和卤水,通过蒸发作用产生化学程佃而形成的岩石,它们的主要组分都是盐类矿物,也就是蒸发岩。
7、成分成熟度::指碎屑物质成分上被改造趋向于最终产物的程度,亦称“化学成熟度”或“矿物成熟度”。
8、板状交错层理:层系之间的界面为平面而且彼此平行,纹层与层系界面斜交。
大型板状交错层理在河流沉积中最为典型。
9、胶结物:碎屑岩中以化学沉淀方式形成于粒间孔隙中的自生矿物10、硅岩:主要指自生二氧化硅含量达70%~80%的沉积岩,不包括主要碎屑石英组成的石英砂岩和石英岩。
11、重矿物(heavy mineral):风化稳定性的差别很大,如锆石、金红石、电气石等较稳定,为沉积岩中常见的稳定重矿物。
12、母岩:是供给沉积岩原始物质成分的岩石,包括岩浆岩、变质岩和早已形成的沉积岩。
13、埋藏成岩作用(buried diagenesis):碎屑沉积物随埋深增加,主要由于机械压实作用和化学胶结作用,致使岩石逐渐变致密、孔隙度减小、物性变差等一系列物理和化学变化直到变质作用。
14沉积后作用(postsedimentation process):泛指沉积物形成以后到沉积岩遭受风化作用和变质作用以前这一演化阶段的所有变化和作用。
15同生作用(syngenesis):指沉积物刚刚形成以后而尚与上覆水体相接触时的变化。
岩石学名词解释

岩浆是上地幔和地壳深处形成的、以硅酸盐为主要成分的炽热、粘稠、富含有挥发物质的熔融体。
砂状结构是砂岩的结构,主要由粒度在2-0.063mm的粒状碎屑颗粒和填隙物组成.灰岩和白云岩两者均属于碳酸盐岩。
灰岩主要矿物成分为方解石,白云岩主要矿物成分为白云石。
接触变质岩由接触变质作用形成的一大类变质岩石的总称。
岩浆作用:地下深处形成的岩浆,在其挥发份及地质应力作用下,沿着脆弱带上升到地壳上部或地表,岩浆在上升、运移过程中,由于物理化学条件的改变,不断改变自己的成分,最后凝固成岩浆岩这一复杂过程总体称为岩浆作用。
玢岩:岩石为浅成相岩石,具斑状结构,斑晶矿物以斜长石、暗色矿物为主,其成分一般为中-基性岩石系列。
花岗结构:岩石中,中粗粒-细粒状的暗色矿物呈自形-半自形、斜长石半自形、碱性长石和石英为他形状构成的半自形粒状结构,由于在花岗岩中常见,因此又称为花岗结构。
角岩:为泥质岩经中级热接触变质的产物,特点是原岩中的组份已经重新组合,以致原岩的结构,构造基本消失,但是没有化学成分的交代发生。
组成的主要矿物是云母、石英、钾长石、斜长石等。
岩石一般为黑至暗灰色的致密块状,常具斑状变晶结构,变基质为角岩结构;变斑晶为红柱石、堇青石、石榴石等,如红柱石角岩、堇青石角岩等变质作用:由地球内力作用促使岩石基本保持固态条件下,发生矿物成分及结构构造变化的作用称为变质作用。
内碎屑:沉积不久的处于固结半固结状态的岩层,经侵蚀,破碎和再沉积而形成的颗粒(海盆中已固结的碳酸钙沉积被海水冲击破碎者)分化作用:原来成分均匀的岩浆,在没有外来物质加入下,依靠自身的烟花,最终产生不同组分的岩浆的全部作用.。
层理:在岩石形成过程中形成的,有物质成分,颗粒大小,颜色,结构构造等的差异而变现出来的演示的成层结构。
沉积相:沉积环境及子啊该环境中形成的沉积岩(物)特征的综合。
杂基:碎屑岩中的细小的机械成因组分,其粒级以泥级为主,可包括一些细粉砂.陆源碎屑岩:由母岩经物理风化作用(机械破碎)所形成的碎屑物质,经过机械搬运和沉积,并进一步压实和胶结而形成的沉积岩类。
沉积成岩作用的类型和特征

砂岩的特征一、砂岩的成分特征1、碎屑颗粒成分:Q——石英,F——长石,R——岩屑,三者的成分特征取决于母岩的成分和沉积物的改造历史。
云母和绿泥石碎屑:量少重矿物碎屑:量少,有指示物源的作用成分成熟度=Q/(F+R):指碎屑沉积组分在其风化、搬运和沉积作用的改造下接近最稳定的终极产物的程度。
F/R反映物源特征, R反映气候和风化作用的特点。
2、填隙物的成分:杂基:粘土和小于0.03mm的细碎屑颗粒;胶结物:铁质、钙质和硅质为常见。
二、砂岩的结构特征具典型的陆源碎屑结构三、砂岩的构造特征发育各种层理、层面、同生变形构造和虫孔等砂岩的分类(三端元四组分分类)首先根据杂基的含量,将砂岩分为两大类,杂砂岩(杂基>15%)和净砂岩(杂基<15%);其次,根据砂岩的三种碎屑主要成分,按三角形图解进行成分划分;Q(石英)端元:石英、玉燧、石英岩和其他硅质岩屑;F(长石)端元:长石、花岗岩和花岗片麻岩类岩屑;R(岩屑)端元:除去花岗质和硅质岩屑之外的其他岩屑,以及碎屑云母和绿泥石。
成因意义:Q 端元反映砂岩的成分成熟度,F/R值反映物质来源和大地构造状况,F端元在一定程度上反映气候和风化作用的特点。
砂岩的名称及成分特征1、石英砂岩:Q>95%, F+R<5%;2、长石石英砂岩:Q=75-95%,F+R<25%,F >R3、岩屑石英砂岩:Q=75-95%,F+R<25%,R > F4、长石砂岩:Q < 75%,F >25%,F/R >35、岩屑长石砂岩:Q < 75%,F/R =3-16、长石岩屑砂岩:Q < 75%,F/R =1/3-17、岩屑砂岩:Q < 75%,R >25%,F/R < 1/3常见的砂岩岩石类型及成因(★北大岩石学科目重要考点★)(2005、2007、2008都考过此题!)1、石英砂岩和石英杂砂岩1)颜色:黄白色或浅灰白色、浅红褐色;2)成分:石英和各种硅质岩屑的含量占砂级碎屑总量的95%以上,以单晶石英为主,仅含少量的长石、岩屑和重矿物。
胶结物

胶结物胶结物指成岩期在岩石颗粒之间起粘结作用的化学沉淀物引。
主要胶结物为硅质(石英、玉髓等)、碳酸盐矿物(方解石、白云石等),其次是铁质(赤铁矿、褐铁矿等),有时可见硫酸盐矿物(石膏、硬石膏等)、沸石类矿物(方沸石、浊沸石等)、粘土矿物(高岭石、水云母、绿泥石等)。
碎屑颗粒和基质之外的化学沉淀物质。
在碎屑岩中含量一般不超过50%,它对碎屑颗粒起胶结作用,使其变成坚硬的岩石。
粘结岩土颗粒或结构面的物质,有钙质、硅质铁质、泥质及可溶盐等。
分类:基底式胶结、孔隙式胶结、接触式胶结和镶嵌式胶结。
命名:在同一岩石中可出现二种以上的胶结物结构和胶结类型,可用复合命名法,如再生孔隙胶结、连生基底胶结等。
胶结类型指碎屑物与填隙物(包括胶结物及杂基)之间的关系。
胶结类型或叫支撑性质,它首先与碎屑颗粒与杂基的相对数量比例(即基粒比)有关,另一重要因素是颗粒之间的相互关系。
如当水动力强时,和碎屑同时沉积下来的杂基将被冲走,使碎屑颗粒彼此相接触,颗粒之间留有空隙,造成“颗粒支撑”的结构,成岩后形成化学胶结物的碎屑岩;如果水动力弱或介质为密度流时,大小碎屑与泥质一起沉淀,造成“杂基支撑”的结构,碎屑呈“游离状”分布于杂基之中,成岩后形成杂基填充的碎屑岩。
在成岩期的压固作用下,特别是当压溶作用明显时,砂质沉积物中的碎屑颗粒会更紧密地接触。
颗粒之间由点接触发展为线接触、凹凸接触,甚至形成缝合状接触。
这种颗粒直接接触构成的镶嵌式胶结,有时不能将碎屑与其硅质胶结物区分开,看起来像是没有胶结物,因此有人称之为无胶结物式胶结。
A cement is a binder, a substance used in construction that sets and hardens and can bind other materials together. The most important types of cement are used as a component in the production of mortar in masonry, and of concrete- which is a combination of cement and an aggregate to form a strong building material.Cements used in construction can be characterized as being either hydraulic or non-hydraulic, depending upon the ability of the cement to set in the presence of water (see hydraulic and non-hydraulic lime plaster).Non-hydraulic cement will not set in wet conditions or underwater; rather, it sets as it dries and reacts with carbon dioxide in the air. It can be attacked by some aggressive chemicals after setting.Hydraulic cements(e.g., Portland cement) set and become adhesive due to a chemical reaction between the dry ingredients and water. The chemical reaction results in mineral hydrates that are not very water-soluble andso are quite durable in water and safe from chemical attack. This allows setting in wet condition or underwater and further protects the hardened material from chemical attack. The chemical process for hydraulic cement found by ancient Romans used volcanic ash (activated aluminium silicates[citation needed]) with lime (calcium oxide).The word "cement" can be traced back to the Roman term opus caementicium, used to describe masonry resembling modern concrete that was made from crushed rock with burnt lime as binder. The volcanic ash and pulverized brick supplements that were added to the burnt lime, to obtain a hydraulic binder, were later referred to as cementum, cimentum, cäment, and cement.CaCO3→ CaO + CO2The calcium oxide is then spent (slaked) mixing it with water to make slaked lime (calcium hydroxide):CaO + H2O → Ca(OH)2Once the excess water is completely evaporated (this process is technically called setting), the carbonation starts:Ca(OH)2 + CO2→ CaCO3 + H2OThis reaction takes a significant amount of time because the partial pressure of carbon dioxide in the air is low. The carbonation reaction requires the dry cement to be exposed to air, and for this reason the slaked lime is a non-hydraulic cement and cannot be used under water. This whole process is called the lime cycle.Conversely, hydraulic cement hardens by hydration when water is added. Hydraulic cements (such as Portland cement) are made of a mixture of silicates and oxides, the four main components being:Belite (2CaO·SiO2);Alite (3CaO·SiO2);Tricalcium aluminate (3CaO·Al2O3) (historically, and stilloccasionally, called 'celite');Brownmillerite (4CaO·Al2O3·Fe2O3).Cements in the 20th centuryThe National Cement Share Company of Ethiopia's new plant in Dire Dawa.Calcium aluminate cements were patented in 1908 in France by Jules Bied for better resistance to sulfates.In the US, the long curing time of at least a month for Rosendale cement made it unpopular after World War One in the construction of highways and bridges and many states and construction firms turned to the use of Portland cement. Because of the switch to Portland cement, by the end of the 1920s of the 15 Rosendale cement companies, only one had survived. But in the early 1930s it was discovered that, while Portland cement had a faster setting time it was not as durable, especially for highways, to the point that some states stopped building highways and roads with cement. Bertrain H. Wait, an engineer whose company had worked on the construction of the New York City's Catskill Aqueduct, was impressed with the durability of Rosendale cement, and came up with a blend of both Rosendale and synthetic cements which had the good attributes of both: it was highly durable and had a much faster setting time. Mr. Wait convinced the New York Commissioner of Highways to construct an experimental section of highway near New Paltz, New York, using one sack of Rosendale to six sacks of synthetic cement. It was proved a success and for decades the Rosendale-synthetic cement blend became common use in highway and bridge construction.[22]Portland cement[edit]Main article: Portland cementPortland cement is by far the most common type of cement in general use around the world. This cement is made by heating limestone (calcium carbonate) with other materials (such as clay) to 1450 °C in a kiln, in a process known as calcination, whereby a molecule of carbon dioxide is liberated from the calcium carbonate to form calcium oxide, orquicklime, which is then blended with the other materials that have been included in the mix to form calcium silicates and other cementitious compounds. The resulting hard substance, called 'clinker', is then ground with a small amount of gypsum into a powder to make 'Ordinary Portland Cement', the most commonly used type of cement (often referred to as OPC). Portland cement is a basic ingredient of concrete, mortar and mostnon-specialty grout. The most common use for Portland cement is in the production of concrete. Concrete is a composite material consisting of aggregate (gravel and sand), cement, and water. As a construction material, concrete can be cast in almost any shape desired, and once hardened, can become a structural (load bearing) element. Portland cement may be grey or white.Portland cement blends[edit]Portland cement blends are often available as inter-ground mixtures from cement producers, but similar formulations are often also mixed from the ground components at the concrete mixing plant.[26]Portland blast-furnace slag cement, or Blast furnace cement (ASTM C595 and EN 197-1 nomenclature respectively), contains up to 95% ground granulated blast furnace slag, with the rest Portland clinker and a little gypsum. All compositions produce high ultimate strength, but as slag content is increased, early strength is reduced, while sulfate resistance increases and heat evolution diminishes. Used as an economic alternative to Portland sulfate-resisting and low-heat cements.[27]Portland-fly ash cement contains up to 40% fly ash under ASTM standards (ASTM C595), or 35% under EN standards (EN 197-1). The fly ash is pozzolanic, so that ultimate strength is maintained. Because fly ash addition allows a lower concrete water content, early strength can also be maintained. Where good quality cheap fly ash is available, this can be an economic alternative to ordinary Portland cement.[28]Portland pozzolan cement includes fly ash cement, since fly ash is a pozzolan, but also includes cements made from other natural or artificial pozzolans. In countries where volcanic ashes are available (e.g. Italy, Chile, Mexico, the Philippines) these cements are often the most common form in use. The maximum replacement ratios are generally defined as for Portland-fly ash cement.Portland silica fume cement. Addition of silica fume can yield exceptionally high strengths, and cements containing 5–20% silica fume are occasionally produced, with 10% being the maximum allowed additionunder EN 197-1. However, silica fume is more usually added to Portland cement at the concrete mixer.[29]Masonry cements are used for preparing bricklaying mortars and stuccos, and must not be used in concrete. They are usually complex proprietary formulations containing Portland clinker and a number of other ingredients that may include limestone, hydrated lime, air entrainers, retarders, waterproofers and coloring agents. They are formulated to yield workable mortars that allow rapid and consistent masonry work. Subtle variations of Masonry cement in the US are Plastic Cements and Stucco Cements. These are designed to produce controlled bond with masonry blocks.Expansive cements contain, in addition to Portland clinker, expansive clinkers (usually sulfoaluminate clinkers), and are designed to offset the effects of drying shrinkage that is normally encountered with hydraulic cements. This allows large floor slabs (up to 60 m square) to be prepared without contraction joints.White blended cements may be made using white clinker (containing little or no iron) and white supplementary materials such as high-purity metakaolin.Colored cements are used for decorative purposes. In some standards, the addition of pigments to produce "colored Portland cement" is allowed. In other standards (e.g. ASTM), pigments are not allowed constituents of Portland cement, and colored cements are sold as "blended hydraulic cements".Very finely ground cements are made from mixtures of cement with sand or with slag or other pozzolan type minerals that are extremely finely ground together. Such cements can have the same physical characteristics as normal cement but with 50% less cement particularly due to their increased surface area for the chemical reaction. Even with intensive grinding they can use up to 50% less energy to fabricate than ordinary Portland cements.[30]Other cements[edit]Pozzolan-lime cements. Mixtures of ground pozzolan and lime are the cements used by the Romans, and can be found in Roman structures still standing (e.g. the Pantheon in Rome). They develop strength slowly, but their ultimate strength can be very high. The hydration products thatproduce strength are essentially the same as those produced by Portland cement.Slag-lime cements.Ground granulated blast-furnace slag is not hydraulic on its own, but is "activated" by addition of alkalis, most economically using lime. They are similar to pozzolan lime cements in their properties. Only granulated slag (i.e. water-quenched, glassy slag) is effective as a cement component.Supersulfated cements contain about 80% ground granulated blast furnace slag, 15% gypsum or anhydrite and a little Portland clinker or lime as an activator. They produce strength by formation of ettringite, with strength growth similar to a slow Portland cement. They exhibit good resistance to aggressive agents, including sulfate. Calcium aluminate cements are hydraulic cements made primarily from limestone and bauxite. The active ingredients are monocalcium aluminate CaAl2O4(CaO · Al2O3 or CA in Cement chemist notation, CCN) and mayenite Ca12Al14O33(12 CaO · 7 Al2O3, or C12A7 in CCN). Strength forms by hydration to calcium aluminate hydrates. They are well-adapted for use in refractory (high-temperature resistant) concretes, e.g. for furnace linings.Calcium sulfoaluminate cements are made from clinkers that includeye'elimite (Ca4(AlO2)6SO4or C4A3S in Cement chemist's notation) as a primary phase. They are used in expansive cements, in ultra-high early strength cements, and in "low-energy" cements. Hydration produces ettringite, and specialized physical properties (such as expansion or rapid reaction) are obtained by adjustment of the availability of calcium and sulfate ions. Their use as a low-energy alternative to Portland cement has been pioneered in China, where several million tonnes per year are produced.[31][32] Energy requirements are lower because of the lower kiln temperatures required for reaction, and the lower amount of limestone (which must be endothermically decarbonated) in the mix. In addition, the lower limestone content and lower fuel consumption leads to a CO2emission around half that associated with Portland clinker. However, SO2 emissions are usually significantly higher."Natural" cements correspond to certain cements of the pre-Portland era, produced by burning argillaceous limestones at moderate temperatures. The level of clay components in the limestone (around 30–35%) is such that large amounts of belite (the low-early strength, high-late strength mineral in Portland cement) are formed without the formation of excessive amounts of free lime. As with any natural material, such cements have highly variable properties.Geopolymer cements are made from mixtures of water-soluble alkali metal silicates and aluminosilicate mineral powders such as fly ash and metakaolin.Green cementGreen cement is a cementitious material that meets or exceeds the functional performance capabilities of ordinary Portland cement by incorporating and optimizing recycled materials, thereby reducing consumption of natural raw materials, water, and energy, resulting in a more sustainable construction material.New manufacturing processes for producing green cement are being researched with the goal to reduce, or even eliminate, the production and release of damaging pollutants and greenhouse gasses, particularly CO2.[56]Growing environmental concerns and increasing cost of fuels of fossil origin have resulted in many countries in sharp reduction of the resources needed to produce cement and effluents (dust and exhaust gases).[55]Peter Trimble, a design student at the University of Edinburgh has proposed 'DUPE' based on Sporosarcina pasteurii, a bacterium with binding qualities which, when mixed with sand and urine produces a concrete said to be 70% as strong as conventional materials.[57。
沉积岩石学复习资料

沉积岩石学复习资料一、名词解释沉积岩:沉积岩石学:成岩作用:沉积物沉积后转变为沉积岩直至变质作用以前或者因构造运动重新抬升到地表遭受风化作用以前所发生的一切作用。
风化作用:牛顿流体:重力流:一种在重力作用下发生流动的、弥散有大量沉积物的高密度流体。
非牛顿流体:急流:障碍物处激起浪花,一涌而过,只在障碍物附近的水面有所升高,而对稍远的上游水不发生任何影响缓流:在障碍物处发生水面跌落,而障碍物上游水面发生壅高,并延伸到上游相当远处层流:一种平缓的流动,水质点做直线运动,流体上下层之间无质量交换紊流:一种急湍的流动,水质点运动轨迹极不规则,流体上下层之间经常有质量交换碎屑流:一种砾、砂、泥和水相混合的高密度流体,泥和水相混合组成的依靠杂基支撑着砂、砾使之呈悬浮状态搬运,沿着斜坡运动。
颗粒流:由松散的颗粒(砾、砂)所构成的重力流。
由颗粒之间的相互碰撞所产生的支撑应力,保持颗粒呈悬浮状态被搬运。
液化沉积物流:沉积物孔隙中富含水,当孔隙水的压力超过静水压力时,即可产生超孔隙压力,使流体向上流动来支撑颗粒,使之呈悬浮状,即沉积物发生“液化”。
浊流:主要由砂、泥和水充分混合的高密度流体、靠液体的湍流来支撑碎屑颗粒,并使之呈悬浮状态。
30-40%泥+砂;极少的砾。
密度高者达1.5-2g/cm3。
机械分异作用:碎屑物质在沉积的过程中,按粒度、密度、形状等差异发生有序沉积的现象。
胶体溶液:介于粗分散系(悬浮液)和离子分散系(真溶液)间,粒子直径介于1~100nm间,多呈分子状态。
化学沉积分异作用:泼性或溶解度的差异,以及受所处环境pH和Eh的影响,按一定顺序依次从溶液中沉淀出来的现象。
沉积岩的构造:指沉积岩各个组成部分的空间分布、排列方式和相互关系流动成因构造:沉积物在搬运和沉积时,由于介质(如水、空气)的流动,在沉积物内部或表面形成的构造,属流动成因构造。
层理构造:沉积岩岩石性质沿垂向上的变化或差异而产生的层状构造,可通过矿物成分、颜色、粒度、形状、排列或填集方式的突变或渐变显现出来。
沉积学 第三章 碎屑岩的结构
2. 次生孔隙 在埋藏成岩过程中受次生溶解作用形成的孔隙,
也包括岩石因破碎或收缩造成的缝隙。
次生孔隙是最重要的油气储集空间
3. 孔隙的演化 原生孔隙因压实作用、胶结作用→随深度增加而减少。
性质不很稳定的组分溶解 岩石破碎和收缩
次生孔隙 ↓
次生孔隙发育带 ↓
有效的储集空间
四、胶结类型和颗粒接触类型 1.支撑方式、胶结类型:
(三)粒度参数 平均粒径和中值——粒度的集中趋势 Mz=(φ16+φ50+φ84)/3 中值Md是累积区县上50%对应的粒径。 标准偏差和分选系数——分选程度 σ1=(φ84-φ16)/4+(φ95-φ5)/6.6 So=P25/P75 偏度(SK1)——判别粒度分布的不对称程度 正、负偏态 峰度(尖度)——频率曲线尖锐程度
颗粒磨圆度分级标准
磨圆度
颗粒形状
差
较差
中等
较好 好 ∣
极好
尖棱角状 棱角状
次棱角状
次圆状 圆状
滚圆状
(五)颗粒的表面结构
碎屑颗粒表面形态 成因:机械磨蚀作用、化学溶蚀和沉淀作用 类型:
1.霜面:似毛玻璃,表面模糊、不透明。 2.磨光面:光滑的磨亮表面。 3.刻蚀痕和撞击痕 :碰撞形成
(六)颗粒的组构
第二节 碎屑岩的结构
碎屑岩内各结构组分的特点和相互关系。 包括:碎屑颗粒的结构、杂基、胶结物和孔隙结构, 以及其间的关系。
沉积岩鉴别、描述、分类命名的依据,成因分析的重要标志。
一、 碎屑颗粒的结构 (一)粒度
碎屑颗粒的大小。
(1)体积值:同体积球体直径。 (2)线性值——直观测量
含大(A)、中(B)、小 (C)三个直径 实际工作中常用线性值。
《沉积岩石学》第三章 碎屑岩的成分
表3—8 化学成分与粒度的关系(引自裴蒂庄,1975)
组成 SiO2 TiO2
AL2O3 氧化铁 MgO
CaO Na2O K2O
细砂 71.15 0.50 10.16 3.72 1.66 3.65 0.86 2.20
粉砂 61.24 0.85 13.30 3.94 3.31 5.11 1.32 2.33
镇川1井,h8,黑云母受压变形 100倍
3、重矿物
指碎屑岩中比重大于2.86的矿物。
在岩石中含量很少,一般<1%,主要分布在在0.25~ 0.05mm的粒级范围内(细砂—粗粉砂岩) 根据风化稳定性
稳定重矿物
电气石、锆英石、金红石、石榴石、榍石、磁 铁矿 等
不稳定重矿物
重晶石、磷灰石、绿帘石、黄铁矿等
长石砂岩中,砾岩、粉砂岩中含量较少。
(2)来源:主要来自花岗岩、花岗片麻岩 (3)长石大量出现的有利因素:
地壳运动比较剧烈,地形高差大,气候干燥, 物理风化作用为主,搬运距离近,快速堆积。
(4)稳定性:钾长石>钠长石>钙长石;正长石>微 斜长石。
长石
斜长石,白云石胶结,细砂岩,东濮,100(+)
锆石,石榴石,角闪石
各类岩石的轻重矿物组合
母岩 花岗岩 花岗闪长岩 安山岩和玄武
岩 橄榄岩和辉长
岩 变质岩
沉积岩
重矿物 轻矿物 重矿物 轻矿物 重矿物 轻矿物 重矿物 轻矿物
重矿物
轻矿物
矿物组合(包括部分岩屑) 锆石 金红石 榍石 磷灰石 黑云母 石英 正长石 微斜长石 酸性斜长石
辉石 角闪石 安山岩或玄武岩岩屑 中性和基性斜长石
碎屑岩的成分可以用其所含的矿物成分表示,也可用化学成 分表示。
沉积岩名词解释
名词解释1、sedimentary rock:沉积岩是组成岩石圈的三大类岩石(岩浆岩、变质岩、沉积岩)之一。
它是在地壳表层的条件下,由母岩的风化产物、火山物质、有机物质、宇宙物质等沉积岩的原始物质成分,经过搬运作用、沉积作用以及沉积后作用而形成的一类岩石。
3、结构成熟度:指碎屑物质结构上被改造趋向于最终产物的程度。
等大分选好圆状球形无杂基。
4、纹层:组成层里的最基本的最小的单位,纹层之内没有任何肉眼可看见的层,也成为细层。
5、鲕粒:具有核心和同心层结构的球状颗粒,像鱼子,大小2~0.25mm,常见的为1~0.5mm。
6、盐岩:指由于含盐度较高的溶液和卤水,通过蒸发作用产生化学程佃而形成的岩石,它们的主要组分都是盐类矿物,也就是蒸发岩。
7、成分成熟度::指碎屑物质成分上被改造趋向于最终产物的程度,亦称“化学成熟度”或“矿物成熟度”。
8、板状交错层理:层系之间的界面为平面而且彼此平行,纹层与层系界面斜交。
大型板状交错层理在河流沉积中最为典型。
9、胶结物:碎屑岩中以化学沉淀方式形成于粒间孔隙中的自生矿物10、硅岩:主要指自生二氧化硅含量达70%~80%的沉积岩,不包括主要碎屑石英组成的石英砂岩和石英岩。
11、重矿物(heavy mineral):风化稳定性的差别很大,如锆石、金红石、电气石等较稳定,为沉积岩中常见的稳定重矿物。
12、母岩:是供给沉积岩原始物质成分的岩石,包括岩浆岩、变质岩和早已形成的沉积岩。
13、埋藏成岩作用(buried diagenesis):碎屑沉积物随埋深增加,主要由于机械压实作用和化学胶结作用,致使岩石逐渐变致密、孔隙度减小、物性变差等一系列物理和化学变化直到变质作用。
14沉积后作用(postsedimentation process):泛指沉积物形成以后到沉积岩遭受风化作用和变质作用以前这一演化阶段的所有变化和作用。
15同生作用(syngenesis):指沉积物刚刚形成以后而尚与上覆水体相接触时的变化。
微观孔隙及分类
(1)粒间孔
无论从储集能力或渗滤能力的观点来看,最好的砂岩储集岩是以粒问孔隙为主的。
粒间孔隙为颗粒之间的孔隙,包括原生粒间孔隙、粒间溶孔、铸模孔和超粒孔等。
原生粒间孔隙:指在沉淀时期形成的颗粒之间的孔隙。
粒间溶孔:指颗粒之间的溶蚀再生孔隙,主要是颗粒边缘以及粒间胶结物和杂基大部溶解所形成的分布于颗粒之间的孔隙。
铸模孔:指颗粒,碎屑,或胶结物等被完全溶解而形成的孔隙,其外形与原组分外形特征相同。
(碎屑是指陆源区的母岩经过物理风化作用或机械破碎所形成的碎屑物质)。
超粒孔:指孔径超过相邻颗粒直径的溶孔。
在超粒孔范围内,颗粒,胶结物均被溶解,一般是在原生粒间孔隙的基础上形成的,其次生部分多于原生部分。
(2)粒内孔(溶蚀孔隙)
溶蚀孔隙是由碳酸盐、长石、硫酸盐或其它可溶组分溶解而形成的。
可溶组分可以是碎屑颗粒、白生矿物胶结物或者交代矿物。
(3)填隙物内孔隙
填隙物内孔隙包括杂基内微孔隙、胶结物内溶孔等。
杂基内微孔隙为粘土杂基和碳酸盐泥中存在的微孔隙。
这类孔隙的成因有两类:其一为沉积杂基内的原始微孔隙;其二为杂基遭受部分溶解作用形成的溶孔。
胶结物内溶孔及晶间孔为胶结物内发生溶解作用形成的溶孔及胶结物晶体之间的残留孔隙。
(4)裂缝
裂缝包括沉积成因的层面缝以及成岩和构造作用形成的裂缝。
由于构造力作用而形成的微裂缝有时可以十分发育。
微裂缝呈细小片状,缝面弯曲,绕过颗粒边界,其排列方向受构造力控制。
在砂岩储集岩中,裂缝宽度一般为几微米到几十微米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 似杂基:杂基应属于原始机械沉积产物,但在碎 屑岩的粒间孔隙中有时会出现一些在成分和产状 上和杂基相似,而并非原始机械沉积成因的细粒 物质,称为似杂基。
• 似杂基按照成因可以分为三种:
• 1.外杂基
• 是指碎屑沉积物堆积之后至成岩期间充填于粒间 孔隙中的外来杂基物质,如凝灰质等,在岩石中 有时含量较高,蚀变现象普遍,有时则分布不均 匀,污浊、透明度差。此外,在成岩过程中由于 孔隙水的运动,在局部孔隙中,充填着一些渗流 泥,这些粘土矿物在砂岩的石化作用中却占有重 要的地位,能将碎屑颗粒紧密地粘结在一起,虽 然它们是一类特殊的“胶结物”,但它们是否应 该属杂基的范畴,的确需要进一步的斟酌。
自生长石,云母及自生重矿物 • 其他物质:铁的氧化物及氢氧化物,卤化
物,硫化物等
胶结物的结构
非晶质结构:蛋白石、磷酸盐、铁质等
• 隐晶质结构:粒度极细,只有在显微镜下 才能分出光性,பைடு நூலகம்玉髓、隐晶质的磷酸盐
• 显晶质结构:明显的晶粒结构,根据晶体 的排列方式可进一步划分为:
嵌晶结构(连生结构):胶结物结晶形成粗大晶体,将一个 或数个碎屑颗粒包于其内部。
栉状结构(丛生结构):胶结物呈纤维状或短柱状垂直碎
屑颗粒表面生长;当胶结物围绕碎屑颗粒呈带状分布时则称 为带状胶结。
再生(次生加大边)结构:硅质胶结物沿碎屑石英颗粒边缘 呈次生加大边,而且二者光性方位一致。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
• 2.淀杂基 • 是在成岩作用过程中,由孔隙水中析出的粘土矿
物胶结物,它们常是单矿物物质的,晶体干净, 透明度好,常见鳞片状或蠕虫状自生晶体集合体, 在碎屑颗粒周围可成栉壳状或薄膜状分布;它们 应该属于胶结物。 • 3.假杂基 • 则是软碎屑经压实碎裂形成的类似杂基的填隙物, 如蚀变强烈的云母碎屑、泥质岩屑、灰质岩屑, 特别是具类似成分的盆内碎屑性质都很软弱,在 压实作用下会被压扁、压断、压裂甚至压碎,从 而形成假杂基。假杂基在碎屑岩中以不均匀的斑 状产出为特征。正像它们的名字一样,它们只能 算是假杂基,而不能统计到杂基当中。
• 另外,化学结晶中,也会形成少部分的孤 立矿物晶体,对碎屑不起胶结作用,称为 自生矿物。
胶结物类型
• 硅质矿物:蛋白石,石英,玉髓 • 硫酸盐矿物:石膏,硬石膏,重晶石,天
青石 • 碳酸盐矿物:方解石,白云石,菱铁矿,
菱锰矿 • 磷酸盐矿物:磷灰石,胶磷矿 • 硅酸盐矿物:海绿石,鲕绿泥石,沸石,
碎屑岩类填隙物
碎屑岩由三部分组成,分别是:
碎屑颗粒 孔隙 填隙物:杂基、胶结物
其中填隙物分为杂基与胶结物。由 于杂基与填隙物不好区分,这里只 介绍填隙物。
杂基与胶结物在成因意义上是截然不同的,但成分上它们可以 相同,也可以不同。 对它们的理解主要以成因为主,以物质为辅。
杂基
杂基:重填于碎屑颗粒之间的细机械混入物。粒度<0.03mm, 主要是1粘土物质(粒度<0.005mm),2细粉砂级别的陆源 矿物碎屑(粒度0.03mm-0.005mm)。所以杂基对于砾岩尤 其是砂岩才有成因意义。对粉砂岩则意义不大。
碳酸盐灰质杂基
碳酸盐灰质杂基
粒间填隙物多为陆源杂基,沿碎屑颗粒具交代现象
填隙物为蚀变凝灰质,普遍析出钛铁质
胶结物
• 胶结物:由化学结晶作用形成充填在碎屑 颗粒孔隙中的化学物质,其结构特征与本 身的结晶程度、晶粒大小和分布的均匀性 有密切的关系。
• 主要形成于成岩后期,也有少数形成于沉 积同期。
杂基的成因分类
• 杂基按成因可分为原杂基和正杂基两种类型: • 1.原杂基:是同生期的产物(原始沉积物), • 表现为泥质结构,由未重结晶的粘土质点组成,可含有碳
酸盐泥及石英、长石、云母等矿物的细碎屑,与碎屑颗粒 的界限清楚,二者间无交代现象 • 2.正杂基:是经过了成岩变化的明显重结晶的原杂基。重 结晶的粘土物质多呈显微鳞片结构,正杂基在含量和分布 上继承了原杂基的特点,因发生了重结晶,粘土物质表现 为显微鳞片结构,在杂基与碎屑颗粒间常见交代现象,有 时由于重结晶作用发育不均匀,局部仍可见残余的原杂基 结构。
非化学成因,而化学沉淀的胶结物,虽然也有粒度<0.03mm的粘土矿物,但不属 于原生杂基。
杂基的含量和性质可以反映搬运介质的流动特性,反映碎屑组分的分选 性,是碎屑结构成熟度的重要标志。沉积物重力流中含有大量杂基,由 此形成的沉积物是以杂基支撑结构为特征;而牵引流中主要搬运床砂载 荷,最终形成的砂质沉积物以颗粒支撑为特征,杂基含量很少,填隙物 多为化学沉淀胶结物。因而,杂基含量是识别流体密度和粘度的标志。 此外,杂基含量也是重要的水动力强度标志。在高能环境中,水流的簸 选能力强,粘土会被移去,从而形成干净的砂质沉积物;相反,砂岩中 杂基含量高表明分选能力差,结构成熟度低。