广东中考数学复习各地区2018-2020年模拟试题分类(佛山专版)(2)——方程与不等式
广东中考数学复习各地区2018-2020年模拟试题分类(佛山专版)(4)——三角形

广东中考数学复习各地区2018-2020年模拟试题分类(佛山专版)(4)——三角形一.选择题(共11小题)1.(2020•南海区一模)如图,在等腰△ABC中,∠B=∠C=65°,DE垂直平分AC,则∠BCD的度数等于()A.10°B.15°C.20°D.25°2.(2020•禅城区二模)如图,含45°角的三角板的直角顶点A在直线a上,顶点C在直线b上.若a∥b,∠1=58°,则∠2的度数为()A.85°B.110°C.103°D.118°3.(2020•顺德区四模)如图,四边形ABCD为菱形,BF∥AC,DF交AC的延长线于点E,交BF于点F,且CE:AC=1:2.则下列结论:①△ABE≌△ADE;①∠CBE=∠CDF;①DE=FE;①S△BCE:S四边形ABFD =1:10.其中正确结论的个数是()A.1个B.2个C.3个D.4个4.(2020•顺德区校级模拟)判断下列几组数能作为直角三角形的三边长的是()A.8,10,7B.2,3,4C.12,15,20D.√3,1,25.(2020•南山区校级一模)等腰三角形的一边为4,另一边为9,则这个三角形的周长为()A.17B.22C.13D.17或226.(2019•南海区二模)如图,直线l1∥l2,将等边三角形如图放置若∠α=25°,则∠β等于()A.35°B.30°C.25°D.20°7.(2018•南海区二模)如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为40m,那么AB的长度为()A.40m B.80m C.160m D.不能确定8.(2018•南海区校级二模)如图,已知DE∥BC,AB=AC,∠1=125°,则∠C的度数是()A.55°B.45°C.35°D.65°9.(2020•南海区二模)如图,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A.3B.4C.5D.610.(2020•顺德区三模)下面是证明勾股定理的四个图形,其中是轴对称图形的是()A.B.C.D.11.(2020•三水区校级二模)一副三角板按如图所示放置,AB∥DC,则∠CAE的度数为()A .10°B .15°C .20°D .25°二.填空题(共13小题)12.(2020•三水区一模)三角形的外角和是 .13.(2020•顺德区模拟)如图,△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=7.点A 2,B 2,C 2分别是边B 1C 1,A 1C 1,A 1B 1的中点;点A 3,B 3,C 3分别是边B 2C 2,A 2C 2,A 2B 2的中点;…以此类推,则第2020个三角形的周长是 .14.(2020•顺德区模拟)如图,在正方形网格中,∠1+∠2+∠3= .15.(2019•佛山模拟)如图,G 为△ABC 的重心,点D 在CB 延长线上,且BD =12BC ,过D 、G 的直线交AC 于点E ,则AA AA = .16.(2019•顺德区三模)在Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 、E 、F 是三边的中点,则△DEF 的周长是 .17.(2019•禅城区模拟)如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等,若等腰直角△ABC 的三个顶点分别在这三条平行直线上,斜边AC 与l 3所夹的锐角为α,则tanα的值等于 .18.(2019•顺德区二模)如图,在四边形ABCD 中,AB ∥CD ,∠A =45°,∠B =120°,AB =5,BC =10,则CD的长为.19.(2019•佛山模拟)在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为.20.(2019•禅城区模拟)空调安装在墙上时,一般都会象如图所示的方法固定在墙上,这种方法应用的数学知识是.21.(2018•南海区二模)如图,在△ABC中,∠A=40°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是.22.(2020•顺德区模拟)如图,Rt△ABC中,∠C=90°,AB的垂直平分线DE交AC于点E,连接BE.若∠A=40°,则∠CBE的度数为.23.(2020•顺德区模拟)如图,在△ABC中,∠B与∠C的平分线交于点P.若∠BPC=130°,则∠A =°.24.(2020•顺德区模拟)如图,在△ABC中,∠B=60°,∠BAC与∠BCA的三等分线分别交于点D、E两点,则∠ADC的度数是.三.解答题(共9小题)25.(2020•南海区校级模拟)如图,△ABC与△DEC为正三角形,A,E,D三点在一条直线上,AD与BC 交于点F,BE⊥AD.(1)求证:△AEC≌△BDC;(2)求证:AE=2DE.26.(2020•禅城区二模)如图所示,在四边形ABCD中,AC与BD交于O,AB=AD,CB=CD.BE⊥CD 于E,BE与AC交于F.CF=2BO.(1)求证:△BEC是等腰直角三角形;(2)求tan∠ACD的值.27.(2020•禅城区一模)如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为圆心以AM为半径作圆弧,以B为圆心以BN为半径作圆弧,两圆弧相交于点C构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值;(3)当∠CAB是锐角时,求△ABC的最大面积?28.(2020•佛山模拟)如图,在正方形ABCD中,点E是BC边的中点,将△DCE沿DE折叠,使点C落在点F处,延长EF交AB于点G,连接DG、BF.(1)求证:DG平分∠ADF;(2)若AB=12,求△EDG的面积.29.(2020•顺德区校级模拟)已知:如图,在△ABC 中,∠B =∠C ,AD 平分外角∠EAC .求证:AD ∥BC .30.(2020•顺德区校级模拟)如图,四边形ABCD 中,AB =20,BC =15,CD =7,AD =24,∠B =90°.(1)判断∠D 是否是直角,并说明理由.(2)求四边形ABCD 的面积.31.(2019•禅城区模拟)如图,在等边三角形ABC 中,AE =CD ,AD ,BE 交于P 点,BF ⊥AD 于F .(1)求证:△ACD ≌△BAE ;(2)求证:BF =√3PF .32.(2019•禅城区模拟)如图,等腰直角△OAB 的斜边OA 在坐标轴上,顶点B 的坐标为(﹣2,2).点P从点A 出发,以每秒1个单位的速度沿x 轴向点O 运动,点Q 从点O 同时出发,以相同的速度沿x 轴的正方向运动,当点P 到达点O 时,点P 、点Q 同时停止运动.连接BP ,过P 点作∠BPC =45°,射线PC 与y 轴相交于点C ,过点Q 作平行于y 轴的直线l ,连接BC 并延长与直线l 相交于点D ,设点P 运动的时间为t (s ).(1)点P 的坐标为 (用t 表示);(2)当t 为何值,△PBE 为等腰三角形?(3)在点P 运动过程中,判断AA 2AA 的值是否发生变化?请说明理由.33.(2019•禅城区一模)已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC于E,点F是AE的中点(1)写出线段FD与线段FC的关系并证明;(2)如图2,将△BDE绕点B逆时针旋转α(0°<α<90°),其它条件不变,线段FD与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2√2,直接写出线段BF的范围.广东中考数学复习各地区2018-2020年模拟试题分类(佛山专版)(4)——三角形参考答案与试题解析一.选择题(共11小题)1.【答案】见试题解答内容【解答】解:∵∠ABC=∠ACB=65°.∴∠A=50°,∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=50°,∴∠BCD=∠ACB﹣∠ACD=15°.故选:B.2.【答案】C【解答】解:如图所示:∵△ABC是等腰直角三角形,∴∠BCA=45°,∵a∥b,∠1=58°,∴∠DAC=∠1=58°,∴∠2=∠DAC+∠ACB=103°,故选:C.3.【答案】D【解答】解:∵四边形ABCD为菱形,∴AB=AD,∠BAE=∠DAE,∵AE=AE,∴△ABE≌△ADE(SAS);故①正确;∴BE=DE,∠AEB=∠AED,∵CE=CE,∴△BCE≌△DCE(SAS),∴∠CBE=∠CDF,故①正确;∵BF∥AC,∴∠FBE=∠AEB,∠AED=∠F,∴∠FBE=∠F,∴BE=EF,∴DE=FE;故①正确;连接BD交AC于O,∵AO=CO,∵CE:AC=1:2,∴AO=CO=CE,设S△BCE=m,∴S△ABE=S△ADE=3m,∴S△BDE=4m,∴S△BEF=S△BDE=4m,∴S四边形ABFD=10m,∴S△BCE:S四边形ABFD=1:10,故①正确;故选:D.4.【答案】D【解答】解:A、82+72≠102,故不能作为直角三角形三边长;B、22+32≠42,故不能作为直角三角形三边长;C、122+152≠202,故不能作为直角三角形三边长;D、(√3)2+12=22,故能作为直角三角形三边长;故选:D.5.【答案】B【解答】解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故选:B.6.【答案】A【解答】解:过点B作BD∥l1,如图,则∠ABD=∠α=25°.∵l1∥l2,∴BD∥l2,∵∠DBC=∠β.∵△ABC是等边三角形,∴∠ABC=60°,∴∠β=∠CBD=∠ABC﹣∠ABD=60°﹣25°=35°.故选:A.7.【答案】B【解答】解:∵M、N分别是AC、BC中点,∴NM是△ACB的中位线,∴AB=2MN=80m,故选:B.8.【答案】A【解答】解:∵∠1=125°,∴∠ADE=180°﹣125°=55°,∵DE∥BC,AB=AC,∴AD =AE ,∠C =∠AED ,∴∠AED =∠ADE =55°,又∵∠C =∠AED ,∴∠C =55°.故选:A .9.【答案】C【解答】解:∵在△ABC 中,AB =AC =3,AE 平分∠BAC , ∴BE =CE =12BC =2,又∵D 是AB 中点,∴BD =12AB =32,∴DE 是△ABC 的中位线, ∴DE =12AC =32,∴△BDE 的周长为BD +DE +BE =32+32+2=5.故选:C .10.【答案】C【解答】解:A 、不是轴对称图形,故此选项不符合题意;B 、不是轴对称图形,故此选项不符合题意;C 、是轴对称图形,故此选项符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:C .11.【答案】B【解答】解:∵AB ∥CD ,∴∠BAC =∠ACD =30°,∵∠AED =45°,∴∠AEC =135°,∵∠CAE +∠AEC +∠ACE =180°,∴∠EAC =180°﹣∠AEC ﹣∠ACE =180°﹣30°﹣135°=15°, 故选:B .二.填空题(共13小题)12.【答案】360°.【解答】解:三角形的外角和是360°.故答案是:360°.13.【答案】见试题解答内容【解答】解:∵△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=7, ∴△A 1B 1C 1的周长是16,∵A 2,B 2,C 2分别是边B 1C 1,A 1C 1,A 1B 1的中点,∴B 2C 2,A 2C 2,A 2B 2分别等于A 1B 1、B 1C 1、C 1A 1的12, …,以此类推,则△A 4B 4C 4的周长是123×16, ∴△A n B n ①n 的周长是242A −1,则第2020个三角形的周长是2422019=122015. 故答案为:122015.14.【答案】见试题解答内容【解答】解:∵在△ABC 和△ADE 中{AA =AAAA =AA AA =AA ,∴△ABC ≌△ADE (SAS ),∴∠4=∠3,∵∠1+∠4=90°,∴∠3+∠1=90°,∵∠2=45°,∴∠1+∠2+∠3=135°,故答案为:135°.15.【答案】见试题解答内容【解答】解:如图所示,连接CG 并延长,交AB 于F ,连接AG 并延长,交BC 于H ,连接FH 交DE 于N ,则FH 是△ABC 的中位线,∴FH ∥AC ,∵BD =12BC ,∴BD =BH =CH ,∵NH ∥EC ,∴AA AA=AA AA =23,即EC =32NH , ∵NH ∥AE , ∴AA AA =AA AA =12,即AE =2NH , ∴AA AA=2AA 32AA =43, ∴AA AA =47.故答案为:47.16.【答案】见试题解答内容【解答】解:∵Rt △ABC 中,∠C =90°,AC =3,BC =4,∴AB =√32+42=5,∵点D 、E 、F 是三边的中点,∴DE =12AC ,DF =12AB ,EF =12BC ,∴△DEF 的周长=DE +EF +DF =12AC +12AB +12BC =12(AC +AB +BC )=12(3+4+5)=6, 故答案为:6.17.【答案】见试题解答内容【解答】解:如图1所示,过点A作l1的垂线,垂足为D,过点C作l1、l3的垂线,垂足为E、F,设l1、l2之间的距离为a,则l2与l3之间的距离也为a,∵∠ABC=90°,∴∠DBA+∠EBC=90°,∵∠DBA+∠DAB=90°,∴∠EBC=∠DAB,∵∠ADB=∠BEC,AB=BC,∴△ADB≌△BEC(AAS),∴AD=BE=2a,DB=EC=a,∴AF=DE=3a,∵CF=a,∴tanα=1 3.18.【答案】见试题解答内容【解答】解:如图,作DE⊥AB交AB的延长线于E,CF⊥AB交AB的延长线于F.∵DE⊥EF,CF⊥EF,∴DE∥CF,∵CD∥EF,∴四边形CDEF是平行四边形,∵∠F=90°,∴四边形CDEF是矩形,∴CD=EF,DE=CF,在Rt△BCF中,∵BC=10,∠CBF=60°,∴BF=12BC=5,CF=DE=5√3,在Rt△ADE中,∵∠A=45°,∴AE=DE=5√3,∴BE=5√3−5,∴CD=EF﹣5﹣(5√3−5)=10﹣5√3,故答案为10﹣5√3.19.【答案】见试题解答内容【解答】解:在Rt△ABD中,BD=√AA2−AA2=9;在Rt△ACD中,CD=√AA2−AA2=5,∴BC=BD+CD=14或BC=BD﹣CD=4,∴C△ABC=AB+BC+AC=15+14+13=42或C△ABC=AB+BC+AC=15+4+13=32.故答案为:32或42.20.【答案】见试题解答内容【解答】解:这种方法应用的数学知识是:三角形的稳定性.21.【答案】见试题解答内容【解答】解:∵∠A=40°,AB=AC,∴∠ABC=∠ACB=70°,又∵DE垂直平分AB,∴DB=AD∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.22.【答案】见试题解答内容【解答】解:∵DE是AB的垂直平分线,∴EA=EB,∴∠ABE=∠A=40°,∴∠CEB=80°,∵∠C=90°,∴∠CBE=10°,故答案为:10°.23.【答案】见试题解答内容【解答】解:在△PBC中,∵∠BPC=130°,∴∠PBC+∠PCB=180°﹣130°=50°.∵PB、PC分别是∠ABC和∠ACB的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB)=2×50°=100°,在△ABC中,∠A=180°﹣(∠ABC+∠ACB)=180°﹣100°=80°.故答案为:80°.24.【答案】见试题解答内容【解答】解:∵在△ABC中,∠B=60°,∴∠BAC+∠BCA=180°﹣∠B=120°.∵∠BAC与∠BCA的三等分线分别交于点D、E两点,∴∠DAC=23∠BAC,∠DCA=23∠BCA,∴∠DAC+∠DCA=23(∠BAC+∠BCA)=80°,∴∠ADC=180°﹣(∠DAC+∠DCA)=180°﹣80°=100°.故答案为:100°.三.解答题(共9小题)25.【答案】(1)证明过程见解答;(2)证明过程见解答.【解答】证明:(1)∵△ABC与△DEC为正三角形,∴∠ACB=∠DCE=60°,AC=BC,EC=DC,∴∠ACE=∠BCD,∴△AEC≌△BDC(SAS);(2)∵△AEC≌△BDC,∴AE=BD,∠BDC=∠AEC,∵△DEC为正三角形,∴∠EDC=60°∴∠AEC=∠EDC+∠ECD=60°+60°=120°,∴∠BDC=120°,∴∠ADB=60°,∵BE⊥AD,∴∠DBE=30°,∴BD=2DE,∴AE=2DE.26.【答案】见试题解答内容【解答】证明:(1)∵AB=AD,CB=CD,∴AC垂直平分BD,∴BD=2BO,∵CF=2BO,∴CF=BD,∵∠DBE+∠BDE=90°,∠BDE+∠DCO=90°,∴∠DBE=∠FCE,又∵∠BED=∠CEF,∴△BDE≌△CFE(AAS),∴BE=CE,又∵BE⊥CD,∴△BEC是等腰直角三角形;(2)如图,连接DF,∵△BDE≌△CFE,∴DE=EF,∴DF=√2EF,∵AC垂直平分BD,∴BF=DF=√2EF,∴BE=BF+EF=(√2+1)EF,∴CE=(√2+1)EF,∴tan∠ACD=AAAA=√2−1.27.【答案】见试题解答内容【解答】解:(1)∵在△ABC中,AC=1,AB=x,BC=3﹣x.{1+A >3−A 1+3−A >A, 解得1<x <2;(2)①若AC 为斜边,则1=x 2+(3﹣x )2,即x 2﹣3x +4=0,无解,①若AB 为斜边,则x 2=(3﹣x )2+1,解得x =53,满足1<x <2, ①若BC 为斜边,则(3﹣x )2=1+x 2,解得x =43,满足1<x <2,综上,x =53或43;(3)在△ABC 中,作CD ⊥AB 于D ,设CD =h ,△ABC 的面积为S ,则S =12xh ,由题意点D 在线段AB 上, 则√1−A 2+√(3−A )2−A 2=x ,∴(3﹣x )2﹣h 2=x 2﹣2x √1−A 2+1﹣h 2,即x √1−A 2=3x ﹣4,∴x 2(1﹣h 2)=9x 2﹣24x +16,即x 2h 2=﹣8x 2+24x ﹣16.∴S 2=14x 2h 2=﹣2x 2+6x ﹣4=﹣2(x −32)2+12(43≤x <2), 当x =32时(满足43≤x <2),S 2取最大值12,从而S 取最大值√22; ∴△ABC 的最大面积为√22.28.【答案】见试题解答内容【解答】解:(1)∵正方形ABCD ,∴∠C =∠A =90°,DC =DA ,∵△DCE 沿DE 对折得到△DFE ,∴DF =DC ,∠DFE =∠C =90°,∴∠DFG =∠A =90°,DF =DA ,在Rt △ADG 和Rt △FDG 中,{AA =AA AA =AA , ∴Rt △ADG ≌Rt △FDG (HL ),∴∠ADG =∠FDG ,即DG 平分∠ADF ;(2)∵正方形ABCD 中,AB =12,点E 是BC 边的中点,∴BE =EC =EF =6,设AG =x ,则EG =6+x ,BG =12﹣x ,在Rt △BEG 中,根据勾股定理得,EG 2=BE 2+BG 2,即(6+x )2=62+(12﹣x )2,解得x =4,∴EG =6+4=10,∴△EDG 的面积=12EG ×DF =12×10×12=60.29.【答案】见试题解答内容【解答】证明:由三角形的外角性质得,∠EAC=∠B+∠C,∵∠B=∠C,∴∠EAC=2∠B,∵AD平分外角∠EAC,∴∠EAC=2∠EAD,∴∠B=∠EAD,∴AD∥BC.30.【答案】见试题解答内容【解答】解:(1)∠D是直角.理由:连接AC,∵∠B=90°,∴AC2=BA2+BC2=400+225=625,∵DA2+CD2=242+72=625,∴AC2=DA2+DC2,∴△ADC是直角三角形,即∠D是直角;(2)∵S四边形ABCD=S△ABC+S△ADC,∴S四边形ABCD=12AB•BC+12AD•CD=1 2×20×15+12×24×7=234.31.【答案】见试题解答内容【解答】解:如图所示:(1)∵△ABC是等边三角形,∴在△ABE和△CAD中,{AA =AA AAAA =AA AA =AA ;∴△ABE ≌△CAD (SAS )(2)∵△ABE ≌△CAD ,∴∠ABE =∠CAD ,又∵∠BAE =∠BAP +∠P AE =60°,∴∠BAP +∠ABP =60°,又∵∠BPF =∠BAP +∠ABP ,∴∠BPF =60°,∵BF ⊥AD∴tan ∠BPF =AA AA ,∴tan60°=AA AA =√3,∴BF =√3PF .32.【答案】见试题解答内容【解答】解:(1)∵△OAB 是等腰直角三角形,且B 的坐标为(﹣2,2),∴OA =4由题意得:AP =t ,OP =4﹣t∴P (t ﹣4,0);故答案为:(t ﹣4,0);(2)分三种情况:①当PB =PE 时,如图1,∵∠BPC =45°,∴∠PBE =∠BEP =67.5°,∵∠ABC =90°,∴∠ABP =90°﹣67.5°=22.5°,∴∠ABP =∠OPE =22.5°,∵∠A =∠BOP =45°,∴△BAP ≌△POE (AAS ),∴AB =PO =2√2,∴AP =t =4﹣2√2;①当PB =BE ,则t =0,符合题意;①当BE =PE 时,如图2,∴∠BPE =∠PBE =45°,∵∠AOB =45°,∴∠BPO =90°,即BP ⊥AO ,∵AB =BO ,∴AP =PO =t =12×4=2, 综上,当t 为4﹣2√2或0或2时,△PBE 为等腰三角形;(3)在点P 运动过程中,AA 2AA 的值不发生变化,是定值;如图3,过B 作BG ⊥x 轴于G ,过B 作BH ⊥y 轴于H ,∵∠AOB =∠BOH =45°,∴BG =BH ,∵∠BPC =∠BOC =45°,∴B 、P 、O 、C 四点共圆,∴∠BCH =∠BPG ,∵∠BGP =∠BHC =90°,∴△BHC ≌△BGP (AAS ),∴BC =BP ,∠PBG =∠CBH ,∵∠BGO =∠GOH =∠OHB =90°,∴四边形BGOH 是正方形,∴∠GBH =90°,∴∠PBC =∠GBH =90°,∵∠ABO =∠PBC ,∴∠ABP =∠OBC ,∵AB =BO ,PB =BC ,∴△ABP ≌△OBC (SAS ),∴OC =AP =t ,∴CH =2﹣t ,延长BD 交x 轴于M ,∵BH ∥OM ,∴△BHC ∽△MOC ,∴AA AA =AA AA , ∴22−A =AA A,OM =2A2−A , ∴MQ =2A 2−A −A =A 22−A , ∵DQ ∥OC ,∴AA AA =AA AA ,∴AA A =A 22−A 2A 2−A =A 2, ∴t 2=2DQ ,∴AA 2AA =2.33.【答案】见试题解答内容【解答】解:(1)结论:FD =FC ,DF ⊥CF .理由:如图1中,∵∠ADE =∠ACE =90°,AF =FE ,∴DF =AF =EF =CF ,∴∠F AD =∠FDA ,∠F AC =∠FCA ,∴∠DFE =∠FDA +∠F AD =2∠F AD ,∠EFC =∠F AC +∠FCA =2∠F AC ,∵CA =CB ,∠ACB =90°,∴∠BAC =45°,∴∠DFC =∠EFD +∠EFC =2(∠F AD +∠F AC )=90°,∴DF =FC ,DF ⊥FC .(2)结论不变.理由:如图2中,延长AC 到M 使得CM =CA ,延长ED 到N ,使得DN =DE ,连接BN 、BM .EM 、AN ,延长ME 交AN 于H ,交AB 于O .∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE(SAS),∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=12EM,FC∥EM,同法FD=12AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.方法二:延长CF到M.使得CF=FM,连接EM,CD,CE,DM,证明△CDM是等腰直角三角形即可解决问题.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3√2如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=√2.综上所述,√2≤BF≤3√2.21/ 21。
广东中考数学复习各地区2018-2020年模拟试题分类(佛山专版)(6)——圆(含解析)

广东中考数学复习各地区2018-2020年模拟试题分类(佛山专版)(6)——圆一.选择题(共11小题)1.(2020•南海区校级模拟)如图,在⊙O中,直径AB⊥CD,∠A=26°,则∠D度数是()A.26°B.38°C.52°D.64°2.(2020•顺德区三模)如图,AB是半圆O的直径,AC,BC是弦,OD⊥AC于点D,若OD=1.5,则BC 等于()A.1.5 B.2 C.3 D.4.53.(2020•顺德区校级模拟)如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=30°,.则∠DAC 等于()A.70°B.45°C.30°D.25°4.(2019•禅城区模拟)如图,已知圆周角∠A=50°,则∠OBC的大小是()A.50°B.40°C.130°D.80°5.(2019•南海区一模)如图,AB是⊙O的直径,CD是弦,连接BD,OC,若∠AOC=120°,∠D的度数是()A.60°B.45°C.30°D.20°6.(2019•禅城区模拟)如图,AB为⊙O的直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD,点D与圆心O不重合,∠BAC=26°,则∠DCA的度数为()A.38°B.40°C.42°D.44°7.(2019•佛山模拟)如图,以点O为圆心、2cm为半径作半圆,以圆心O为直角顶点作等腰Rt△AOB,斜边AB刚好与半圆相切于点C,两直角边都与半圆所在弧相交,则图中阴影部分的面积为()A.4cm2B.2cm2C.πcm2D.2πcm28.(2019•禅城区一模)如图,△ABC内接于⊙O,AC是⊙O的直径,∠ACB=40°,点D是劣弧上一点,连结CD、BD,则∠D的度数是()A.50°B.45°C.140°D.130°9.(2018•禅城区一模)如图,△ABC内接于⊙O,若∠A=40°,则∠BCO=()A.40°B.50°C.60°D.80°10.(2018•顺德区模拟)三角形的内心是三角形中()A.三条高的交点B.三边垂直平分线的交点C.三条中线的交点D.三条角平分线的交点11.(2018•顺德区模拟)如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则sin∠EDB的值是()A.B.C.D.二.填空题(共14小题)12.(2020•南海区一模)从一块直径为4m的圆形铁皮上剪出一个如图所示圆周角为90°的最大扇形,则阴影部分的面积为m2(结果保留π).13.(2020•三水区校级二模)如图,在边长为4的正方形ABCD中,以B为圆心,AB长为半径画,分别以AB、CD的中点E、F为圆心,AE、CF的长为半径画弧交于点G,则图中阴影部分面积为.14.(2020•顺德区四模)如图,正五边形ABCDE内接于⊙O,点F在上,则∠CFD=度.15.(2020•顺德区三模)如图,已知点A、B、C、D都在⊙O上,且∠BOD=110°,则∠BCD为.16.(2020•禅城区模拟)如图,A、B、C在⊙O上,OA,OB是圆的半径,连接AB,BC,AC.若∠ABO =55°,则∠ACB的度数是.17.(2020•佛山模拟)将大小相同的正三角形按如图所示的规律拼图案,其中第①个图案中有6个小三角形和1个正六边形;第②个图案中有10个小三角形和2个正六边形;第③个图案中有14个小三角形和3个正六边形;…;按此规律排列下去,已知一个小三角形的面积为a,一个正六边形的面积为b,则第⑧个图案中所有的小三角形和正六边形的面积之和为.(结果用含a、b的代数式表示)18.(2019•顺德区三模)如图,⊙O的半径为4,点P到圆心的距离为8,过点P画⊙O的两条切线PA和PB,A、B为切点,则阴影部分的面积是.(结果保留π)19.(2019•南海区模拟)如图,A、B、C是⊙O上的三点,∠AOB=76°,则∠ACB的度数是.20.(2019•顺德区二模)如图,⊙O的两条直径分别为AB、CD,弦CE∥AB,∠COE=40°,则∠BOD=°.21.(2019•南海区模拟)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,AC=6,现将Rt△ABC绕点A顺时针旋转30°得到△AB′C′,则图中阴影部分面积为.22.(2019•南海区一模)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积为.23.(2018•南海区一模)如图,直线yx+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转后得到△AO′B′,其中AB′⊥x轴,则线段AB扫过的面积为.24.(2018•顺德区模拟)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD =8cm,则圆形螺母的外直径是.25.(2018•南海区校级二模)如图,在正方形ABCD中,AB=2,连接AC,以点C为圆心、AC长为半径画弧,与BC的延长线交于点E,则图中的长为.三.解答题(共16小题)26.(2020•三水区一模)如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(I)求证:AC平分∠FAB;(2)求证:BC2=CE•CP;(3)当AB=4且时,求弦BC与其所对的劣弧所组成的弓形面积.27.(2020•南海区校级模拟)如图,AC是四边形ABCD外接圆O的直径,AB=BC,∠DAC=30°,延长AC到E使得CE=CD,作射线ED交BO的延长线于F,BF交AD于G.(1)求证:△ADE是等腰三角形;(2)求证:EF与⊙O相切;(3)若AO=2,求△FGD的周长.28.(2020•顺德区四模)如图,四边形ABEC是平行四边形,过A、B、C三点的⊙O与CE相交于点D.连接AD、OD,DB是∠ADE的角平分线.(1)判断△BDE的形状,并说明理由;(2)求证:BE是⊙O的切线;(3)如果AB=4,DE=2,求⊙O的面积.29.(2020•南海区一模)如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG.(1)判断CG与⊙O的位置关系,并说明理由;(2)求证:2OB2=BC•BF;(3)如图2,当∠DCE=2∠F,DG=2时,求DE的长.30.(2020•顺德区三模)探索应用材料一:如图1,在△ABC中,AB=c,BC=a,∠B=θ,用c和θ表示BC边上的高为,用a.c 和θ表示△ABC的面积为.材料二:如图2,已知∠C=∠P,求证:CF•BF=QF•PF.材料三:蝴蝶定理(ButterflyTheorem)是古代欧氏平面几何中最精彩的结果之一,最早出现在1815年,由W.G.霍纳提出证明,定理的图形象一只蝴蝶.定理:如图3,M为弦PQ的中点,过M作弦AB和CD,连结AD和BC交PQ分别于点E和F,则ME =MF.证明:设∠A=∠C=α,∠B=∠D=β,∠DMP=∠CMQ=γ,∠AMP=∠BMQ=ρ,PM=MQ=a,ME=x,MF=y由•••1,即•••1化简得:MF2•AE•ED=ME2•CF•FB则有:又∵CF•FB=QF•FP,AE•ED=PE•EQ,∴,即即,从而x=y,ME=MF.请运用蝴蝶定理的证明方法解决下面的问题:如图4,B、C为线段PQ上的两点,且BP=CQ,A为PQ外一动点,且满足∠BAP=∠CAQ,判断△PAQ的形状,并证明你的结论.31.(2020•顺德区三模)如图,在正方形ABCD中,以BC为直径作半圆O,以点D为圆心、DA为半径做圆弧交半圆O于点P.连结DP并延长交AB于点E.(1)求证:DE为半圆O的切线;(2)求的值.32.(2020•佛山模拟)如图,⊙O是△ABC的外接圆,AB为⊙O的直径,过点A作AD平分∠BAC交⊙O 于点D,过点D作BC的平行线分别交AC、AB的延长线于点E、F,DG⊥AB于点G,连接BD.(1)求证:△AED∽△DGB;(2)求证:EF是⊙O的切线;(3)若,OA=4,求劣弧的长度(结果保留π).33.(2020•南海区校级模拟)如题图,以△ABC的边AB为直径的⊙O分别交AC边于点E,交BC边于点D,点D为BC中点,过D点的切线GF交AC于点F,交AB延长线于点G.(1)求证:AC=2BO;(2)猜想:当∠G=时,有DG成立,请证明你的猜想;(3)若BG=4,CF=4,求弧AD的长.(结果不必进行分母有理化)34.(2019•南海区二模)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AO交BC于点O,以O 为圆心,OC长为半径作⊙O,⊙O交AO所在的直线于D、E两点(点D在BC左侧).(1)求证:AB是⊙O的切线;(2)连接CD,若ACAD,求tan∠D的值;(3)在(2)的条件下,若⊙O的半径为5,求AB的长.35.(2019•顺德区三模)如图,点C是等边△ABD的边AD上的一点,且∠ACB=75°,⊙O是△ABC的外接圆,连结AO并延长交BD于E、交⊙O于F.(1)求证:∠BAF=∠CBD;(2)过点C作CG∥AE交BD于点G,求证:CG是⊙O的切线;(3)在(2)的条件下,当AF=2时,求的值.36.(2019•佛山模拟)如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交边BC与点E,经过A、D、E三点的即的圆心F恰好在y轴上,⊙F与y轴交于另一点G.(1)求证:BC是⊙F的切线;(2)试探究线段AG、AD、CD之间的关系,并证明;(3)若点A(O,﹣1)、D(2,0),求AB的长.37.(2019•禅城区模拟)如图,平行四边形ABCD中,AC=BC,过A、B、C三点的⊙O与AD相交于点E,连接CE.(1)证明:AB=CE;(2)证明:DC与⊙O相切;(3)若⊙O的半径r=5,AB=8,求sin∠ACE的值.38.(2019•南海区三模)如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.39.(2019•南海区模拟)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tan∠G,AH=3,求EM的值.40.(2019•禅城区一模)如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.(1)求∠BAC的度数;(2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;(3)在点P的运动过程中①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.41.(2018•南海区一模)已知AB是⊙O的直径,C是圆上一点,∠BAC的平分线交⊙O于点D,过D作DE⊥AC交AC的延长线于点E,如图①.(1)求证:DE是⊙O的切线;(2)若AB=5,AC=3,求BD的长;(3)如图②,若F是OA的中点,FG⊥OA交直线DE于点G,若FG,tan∠BAD,求⊙O的半径.广东中考数学复习各地区2018-2020年模拟试题分类(佛山专版)(6)——圆参考答案与试题解析一.选择题(共11小题)1.【答案】B【解答】解:连接OC,如图,∵∠A=26°,∴∠BOC=2∠A=52°,∵AB⊥CD,∴∠OCD=90°﹣∠BOC=90°﹣52°=38°,∵OC=OD,∴∠D=∠OCD=38°.故选:B.2.【答案】C【解答】解:∵OD⊥AC,∴AD=CD,而OA=OB,∴OD为△ABC的中位线,∴BC=2OD=2×1.5=3.故选:C.3.【答案】C【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°﹣∠BAC=90°﹣30°=60°,∴∠D=180°﹣∠B=120°,∵,∴AD=CD,∴∠DAC=∠DCA(180°﹣120°)=30°.故选:C.4.【答案】B【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°.在△BOC中,OB=OC,∠BOC=100°,∴∠OBC=∠OCB(180°﹣∠BOC)=40°.故选:B.5.【答案】C【解答】解:∵∠AOC=120°∴∠BOC=180°﹣∠AOC=60°∴∠BDC∠BOC=30°.故选:C.6.【答案】A【解答】解:连接BC,∵AB是直径,∴∠ACB=90°,∵∠BAC=26°,∴∠B=90°﹣∠BAC=90°﹣26°=64°,根据翻折的性质,所对的圆周角为∠B,所对的圆周角为∠ADC,∴∠DCA=∠B﹣∠BAC=64°﹣26°=38°,故选:A.7.【答案】A【解答】解:连接OC,∵AB切半圆O于C,∴OC⊥AB,∵△BOA是等腰直角三角形,∴∠AOB=90°,OA=OB,∠A=∠B=45°,∴AC=BC,OC=BC=AC=2cm,即AB=4cm,∠DOF+∠EOG=180°﹣90°=90°,∴阴影部分的面积S4(cm2),故选:A.8.【答案】D【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∴∠A=90°﹣∠ACB=90°﹣40°=50°,∵∠D+∠A=180°,∴∠D=180°﹣50°=130°.故选:D.9.【答案】B【解答】解:由圆周角定理得,∠BOC=2∠A=80°,∵OB=OC,∴∠BCO=∠CBO=50°,故选:B.10.【答案】D【解答】解:三角形的内心是三角形中3条角平分线的交点;故选:D.11.【答案】B【解答】解:设圆O与小正方形网格的另一个切点为F,连接BF、BE,∵,∴∠EDB=∠EFB,由题意知:EB=BF,∴∠EFB=45°,∴sin∠EDB=sin∠EFB,故选:B.二.填空题(共14小题)12.【答案】2π.【解答】解:∵∠ABC=90°,∴AC为⊙O的直径,即AC=4m,∴ABAC=2m;∴S阴影=S圆﹣S扇形=π×222π;故答案为2π.13.【答案】见试题解答内容【解答】解:根据题意得,S阴影部分=S扇形BAC﹣2S小正方形,∵S扇形BAC4π,S小正方形=2×2=4,∴S阴影部分=4π﹣2×4=4π﹣8.故答案为4π﹣8.14.【答案】见试题解答内容【解答】解:如图,连接OC,OD.∵五边形ABCDE是正五边形,∴∠COD72°,∴∠CFD∠COD=36°,故答案为:36.15.【答案】见试题解答内容【解答】解:∵∠A∠BOD,∠BOD=110°,∴∠A=55°,∵∠BCD+∠A=180°,∴∠BCD=180°﹣55°=125°,故答案为125°.16.【答案】见试题解答内容【解答】解:∵OA=OB,∴∠OAB=∠OBA=55°,∴∠AOB=180°﹣2×55°=70°,∴∠ACB∠AOB=35°,故答案为:35°.17.【答案】见试题解答内容【解答】解:∵第①个图案中有6个小三角形和1个正六边形;第②个图案中有10=6+4×1个小三角形和2个正六边形;第③个图案中有14=6+4×2个小三角形和3个正六边形;…,∴第n个图案中有6+4(n﹣1)个小三角形和n个正六边形;∴第⑧个图案中有4×8+2=34个小三角形和8个正六边形,∵一个小三角形的面积为a,一个正六边形的面积为b,∴第⑧个图案中所有的小三角形和正六边形的面积之和为:34a+8b;故答案为:34a+8b.18.【答案】见试题解答内容【解答】解:连接OP,∵PA、PB是⊙O的两条切线,∴PA=PB,∠OAP=90°,∴PA4,∠OPA=30°,∴∠AOP=60°,∴∠AOB=120°,∴阴影部分的面积4×4216,故答案为:16.19.【答案】见试题解答内容【解答】解:∵∠AOB=76°,∴∠ACB∠AOB=38°.故答案为:38°20.【答案】见试题解答内容【解答】解:∵OC=OE,∴∠ECO=∠OEC,∴∠OCE(180°﹣∠COE)(180°﹣40°)=70°,∵CE∥AB,∴∠AOD=∠OCE=70°,∴∠BOD=180°﹣70°=110°,故答案为110.21.【答案】见试题解答内容【解答】解:∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AC=6,∴∠CAB=60°,∵Rt△ABC绕点A顺时针旋转30°后得到△AB′C′,∴AC′=AC=6,∠CAC′=30°,∴∠C′AB=30°,过D作DE⊥AC于E,∴DE,∴图中阴影部分的面积=S扇形CAC′﹣S△ADC63π﹣3故答案为:3π﹣3.22.【答案】见试题解答内容【解答】解:连结DC1,∵∠CAC1=∠DCA=∠COB1=∠DOC1=45°,∴∠AC1B1=45°,∵∠ADC=90°,∴A,D,C1在一条直线上,∵四边形ABCD是正方形,∴AC,∠OCB1=45°,∴CB1=OB1∵AB1=1,∴CB1=OB1=AC﹣AB11,∴S△OB1C•OB1•CB1(1)2,∵S△AB1C1AB1•B1C11×1,∴图中阴影部分的面积(1)22.故答案为2.23.【答案】见试题解答内容【解答】解:令y=0,则x+2=0,解得x=2,令x=0,则y=2,所以,点A(2,0),B(0,2),所以,OA=2,OB=2,∵tan∠OAB,∴∠OAB=30°,由勾股定理得,AB4,∵AB′⊥x轴,∴∠OAB′=90°,∴旋转角∠BAB′=60°,∴AB扫过的面积,故答案为:.24.【答案】见试题解答内容【解答】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:∵AD,AB分别为圆O的切线,∴AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,∴∠OAE=∠OAD∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=8cm,∴tan∠OAD=tan60°,即,∴OD=8cm,则圆形螺母的直径为16cm.故答案为:16cm.25.【答案】见试题解答内容【解答】解:∵四边形ABCD为正方形,∴CAAB=2,∠ACB=45°,∴∠ACE=135°,∴的长度π.故答案为.三.解答题(共16小题)26.【答案】见试题解答内容【解答】证明:(1)∵PF是切线,∴OC⊥PF,∵AF⊥PF,∴AF∥OC.∴∠FAC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠FAC=∠CAB,即AC平分∠FAB;(2)∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∵CD是直径,∴∠CBD=∠CBP=90°,∴△CBE∽△CPB,∴,∴BC2=CE•CP;(3)作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵∠MCB+∠P=90°,∠P+∠PBM=90°,∴∠MCB=∠PBM,∵CD是直径,BM⊥PC,∴∠CMB=∠BMP=90°,∴△BMC∽△PMB,∴,∴BM2=CM•PM=3a2,∴BMa,∴tan∠BCM,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∵AB=4,∴BC=OC=OB=2,∴弦BC与其所对的劣弧所组成的弓形面积12=2π﹣3.27.【答案】见试题解答内容【解答】证明:(1)∵AC是直径,∴∠ADC=90°,∵∠DAC=30°,∴∠ACD=60°,∵CE=CD,∴∠E=∠CDE,∵∠CDE+∠E=∠ACD=60°,∴∠E=30°=∠CDE,∴∠E=∠DAC,∴AD=DE,∴△ADE是等腰三角形;(2)如图,连接OD,∵OC=OD,∠OCD=60°,∴△OCD是等边三角形,∴∠ODC=60°,∴∠ODE=∠ODC+∠CDE=90°,又∵OD是半径,∴EF是⊙O的切线;(3)∵AB=BC,AO=CO,∴BO⊥AC,∴∠AOG=∠EOF=90°,∵∠DAC=∠E=30°,∴∠AGO=∠F=60°,∴∠F=∠FGD=60°,∴△FGD是等边三角形,∴FD=DG=FG,∵AO=2,∠DAC=30°,∠ADC=∠AOG=90°,∴AC=4,DCAC=2,ADDC=2,AG=2OG,AOOG,∴OG,AG,∴DG,∴△FGD的周长=3×DG=2.28.【答案】见试题解答内容【解答】解:(1)△BDE是等腰三角形;理由:∵四边形ABEC是平行四边形,∴∠CAB=∠E,∵∠EDB=∠CAB,∴∠E=∠EDB,∴BD=BE,∴△BDE是等腰三角形;(2)连接OB,∵DB是∠ADE的角平分线,∴∠ADB=∠BDE,∵CE∥AB,∴∠BDE=∠ABD,∴∠ADB=∠ABD,∴∠ADB=∠ABD=∠BDE=∠E,∴∠BAD=∠DBE,∵OD=OB,∴∠ODB=∠OBD,延长DO交⊙O于G,∴∠DBG=90°,∴∠G+∠BDG=90°,∵∠DAB=∠G,∴∠DBE=∠G,∴∠DBO+∠DBE=90°,∴∠DBG=90°,∴BE是⊙O的切线;(3)过C作CM⊥AB于M,DN⊥AB于N,∵四边形ABEC是平行四边形,∴AC=BE,AB=CE,∴AC=BD,∵CM∥DN,CD∥MN,∴四边形CMND是矩形,∴CM=DN,MN=CD,∴Rt△ACM≌Rt△BDN(HL),∴AM=BN,∵AB=CE=AD=4,DE=2,∴CD=MN=2,∴AM=BN=1,∴AN=3,∴DN,∴BD2,∵∠BAD=∠G,∠AND=∠DBG=90°,∴△ADN∽△GDB,∴,∴,∴DG,∴OD,∴⊙O的面积=OD2π=()2ππ.29.【答案】见试题解答内容【解答】解:(1)CG与⊙O相切,理由如下:如图1,连接OC,∵AB是⊙O的直径,∴∠ACB=∠ACF=90°,∵点G是EF的中点,∴GF=GE=GC,∴∠AEO=∠GEC=∠GCE,∵OA=OC,∴∠OCA=∠OAC,∵OF⊥AB,∴∠OAC+∠AEO=90°,∴∠OCA+∠GCE=90°,即OC⊥GC,∴CG与⊙O相切;。
广东省佛山市2020年中考数学二模试卷(II)卷

广东省佛山市2020年中考数学二模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·信阳模拟) 比较﹣1 ,,﹣1 ,的大小,结果正确的是()A . ﹣1 <﹣1 <<B . ﹣1 <﹣1 <<C . ﹣1 <﹣1 <<D . ﹣1 <﹣1 <<2. (2分) (2019七下·虹口开学考) 下列等式正确的是()A .B .C .D .3. (2分)如图竖直放置的圆柱体的俯视图是()A . 长方体B . 正方体C . 圆D . 等腰梯形4. (2分)已知甲、乙、丙三个旅行团的游客人数都相等,且毎一个旅行团游客的平均年龄都是35岁,这三个旅行团游客年龄的方差分别是S甲2=17,S乙2=14.6,S丙3=19,如果你最喜欢带游客年龄相近的旅行团,若在三个旅行团中选一个,则你应选择()A . 甲团B . 乙团C . 丙团D . 采取抽签方式,随便选一个5. (2分)如图,已知点A为⊙O内一点,点B、C均在圆上,∠C=30°,∠A=∠B=45°,线段OA=﹣1,则阴影部分的周长为()A .B .C .D .6. (2分)若一个多边形每一个内角都是120º,则这个多边形的边数是()A . 6B . 8C . 10D . 127. (2分)(2018·路北模拟) 如图,A,B分别为反比例函数y=﹣(x<0),y= (x>0)图象上的点,且OA⊥OB,则sin∠ABO的值为()A .B .C .D .8. (2分)(2018·道外模拟) Rt△ACB中,∠C=90°,AB=5,BC=4,则tan∠A= ()A .B .C .D .9. (2分)一个不透明的布袋装有4个只有颜色不同的球,其中2个红色,1个白色,1个黑色,搅匀后从布袋里摸出1个球,摸到红球的概率是()A .B .C .D .10. (2分) (2015高二上·昌平期末) 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A . 50B . 64C . 68D . 72二、填空题 (共5题;共5分)11. (1分)对于任意不相等的两个实数a、b,定义一种运算如下:a⊗b= ,如3⊗2= = ,那么8⊗5=________.12. (1分)(2011·南通) 如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为________ m(结果保留根号).13. (1分)如图,在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E.若BC=5cm,DC=4cm,则△DEB的周长为________ cm.14. (1分)二次函数y=x2+4x+3与坐标轴交于A,B,C三点,则三角形ABC的面积为________.15. (1分) (2016八上·灌阳期中) 如图所示,在△ABC中,AB=5,BC=7,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.三、解答题 (共8题;共100分)16. (5分)先化简,再求值:(1﹣)÷ ,其中a=3.17. (20分)(2018·河北模拟) 某校要求200名学生进行社会调查,每人必须完成3~6份报告,调查结束后随机抽查了20名学生每人完成报告的份数,并分为四类,A:3份;B:4份;C:5份;D:6份各类的人数绘制成扇形图(如图1)和尚未完整的条形图(如图2),回答下列问题:(1)请将条形统计图2补充完整;(2)写出这20名学生每天完成报告份数的众数和中位数;(3)在求出20名学生每人完成报告份数的平均数时,小明是这样分析的第一步:求平均数的公式是 = + + +…+ )第二步:在该问题中,n=4 =3, =4, =5 =6第三步 = (3+4+5+6)=4.5(份)小明的分析对不对?如果对,请说明理由,如果不对,请求出正确结果;(4)现从“D类”的学生中随机选出2人进行采访,若“D类”的学生中只有1名男生,则所选两位同学中有男同学的概率是多少?请用列表法或树状图的方法求解.18. (15分) (2019九上·慈溪期中) 已知如图,二次函数的图象经过A(3,3),与x轴正半轴交于B点,与y轴交于C点,△ABC的外接圆恰好经过原点O.(1)求B点的坐标及二次函数的解析式;(2)抛物线上一点Q(m,m+3),(m为整数),点M为△ABC的外接圆上一动点,求线段QM长度的范围;(3)将△AOC绕平面内一点P旋转180°至△A'O'C'(点O'与O为对应点),使得该三角形的对应点中的两个点落在的图象上,求出旋转中心P的坐标.19. (5分)如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A、B、D三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.(1)求点B到AC的距离;(2)求线段CD的长度.20. (10分) (2017八上·西安期末) “国美”、“苏宁”两家电器商场出售同样的空气净化器和过滤网,空气净化器和过滤网在两家商场的售价一样.已知买一个空气净化器和个过滤网要花费元,买个空气净化器和个过滤网要花费元.(1)请用方程组求出一个空气净化器与一个过滤网的销售价格分别是多少元?(2)为了迎接新年,两家商场都在搞促销活动,“国美”规定:这两种商品都打九五折;“苏宁”规定:买一个空气净化器赠送两个过滤网.若某单位想要买个空气净化器和个过滤网,如果只能在一家商场购买,请问选择哪家商场购买更合算?请说明理由.21. (15分)(2019·玉州模拟) 已知:如图,直线与轴负半轴交于点,与轴正半轴交于点,线段的长是方程的一个根,请解答下列问题:(1)求点的坐标;(2)双曲线与直线交于点,且,求的值;(3)在(2)的条件下,点在线段上,,直线轴,垂足为,点在直线上,在直线上的坐标平面内是否存在点,使以点、、、为顶点的四边形是矩形?若存在,请求出点的坐标;若不存在,请说明理由。
2020年广东省佛山市八大名校中考数学模拟试卷(二) (含答案解析)

2020年广东省佛山市八大名校中考数学模拟试卷(二)一、选择题(本大题共10小题,共30.0分)1.25的算术平方根是()A. −5B. 5C. 0D. 252.“一带一路”是中国与世界的互利共赢之路.据统计,“一带一路”地区覆盖的总人口约为44亿人,则“44亿”用科学记数法可表示为()A. 44×108B. 4.4×108C. 4.4×109D. 44×10103.下列图案是轴对称图形但不是中心对称图形的是()A. B. C. D.4. 2.下列运算正确的是()A. a2⋅a2=2a2B. (a4)4=a8C. (−2a)2=−4a2D. a7÷a5=a25.在6件产品中,有2件次品,任取两件都是次品的概率是()A. 15B. 16C. 110D. 1156.七边形的内角和是A. 540°B. 720°C. 900°D. 1080°7.若2a+3c=0.则关于x的一元二次方程ax2+bx+c=0(a≠0)的根的情况是()A. 方程有两个相等的实数根B. 方程有两个不相等的实数根C. 方程必有一根是0D. 方程没有实数根8.已知,三个实数a,b,c在数轴上的点如图所示,|a−b|+|c−a|−|c+b|的值可能是()A. 2aB. 2bC. 2cD. −2a9.如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于()A. 1−π4B. π4C. 1−π8D.π810.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,−2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0;⑦方程ax2+bx+c=−4有实数解,正确的有()A. 3个B. 4个C. 5个D. 6个二、填空题(本大题共6小题,共24.0分)11.小明上周每天的睡眠时间为(单位:小时):8,9,10,7,10,9,9,这组数据的众数是________。
广东省佛山市中考数学模拟试卷(二)

广东省佛山市中考数学模拟试卷(二)姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)(2020·阳新模拟) -2的绝对值的相反数是()A .B .C . 2D . -22. (2分) (2019七上·松滋期末) 如图,将一副三角尺按不同的位置摆放,下列方式中,∠α与∠β互余的是()A . 图1B . 图2C . 图3D . 图43. (2分)(2018·柳州模拟) 下列运算正确的是()A . a-2a=aB . (-2a2)3=﹣8a6C . a6+a3=a2D . (a+b)2=a2+b24. (2分)不等式组的解集是()A . x>-1B . x≤1C . x<-1D . -1<x≤15. (2分)由几块大小相同的正方体搭成如图所示的几何体,它的左视图是()A .B .C .D .6. (2分)(2018·河南模拟) 九(1)班男生参加体育加试,经抽签分为①②③三个小组,已知小明不在①组,小华不在③组,那么小明与小华分在同一组的概率是()A .B .C .D .7. (2分) (2020七下·扬州期末) 下列各组图形中,能将其中一个图形经过平移变换得到另一个图形的是()A .B .C .D .8. (2分) (2019九下·东莞月考) 已知温州至杭州铁路长为380千米,从温州到杭州乘“G”列动车比乘“D”列动车少用20分钟,“G”列动车比“D”列动车每小时多行驶30千米,设“G”列动车速度为每小时x千米,则可列方程为()A .B .C .D .9. (2分)(2020·百色模拟) 某射击俱乐部将11名成员在某次射击训练中取得的成绩制成如图所示的条形统计图,由图可知,11名成员射击成绩的众数和中位数分别是()A . 8,9B . 8,8C . 8,10D . 9,810. (2分)(2019·乐清模拟) 如图,半径为3的扇形AOB,∠AOB=120°,以AB为边作矩形ABCD交弧AB 于点E,F,且点E,F为弧AB的四等分点,矩形ABCD与弧AB形成如图所示的三个阴影区域,其面积分别为,,,则为()(取)A .B .C .D .11. (2分) (2019七上·海安期中) 一只小球落在数轴上的某点P0处,第一次从P0处向右跳1个单位到P1处,第二次从P1向左跳2个单位到P2处,第三次从P2向右跳3个单位到P3处,第四次从P3向左跳4个单位到P4处…,若小球按以上规律跳了(2n+3)次时,它落在数轴上的点P2n+3处所表示的数恰好是n-3,则这只小球的初始位置点P0所表示的数是()A . -5B . 2C . -1D . -212. (2分)如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,的面积为y,如果y关于x的函数图象如图2所示,则当时,点R应运动到()A . N处B . P处C . Q处D . M处13. (2分)如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为()A .B .C .D .14. (2分) (2016九下·海口开学考) 一次函数y1=kx+b(k≠0)与反比例函数,在同一直角坐标系中的图象如图所示,若y1>y2 ,则x的取值范围是()A . ﹣2<x<0或x>1B . x<﹣2或0<x<1C . x>1D . ﹣2<x<1二、填空题 (共5题;共5分)15. (1分)(2017·株洲) 分解因式:m3﹣mn2=________.16. (1分)(2017·桂林) 若,,,…;则a2011的值为________.(用含m的代数式表示)17. (1分) (2018·黔西南模拟) 如图,在正方形ABCD中,对角线AC、BD交于点O,延长CD至点G,使GD=CD,过点D作DE⊥AG,将△ADE沿着AD翻折得到△ADF,连结OF交CD于点H.当CD=3时,求FH的长度为________.18. (1分)(2017·宁夏) 如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为________.19. (1分) (2019八下·重庆期中) 计算: ________.三、解答题 (共7题;共73分)20. (5分)(2018·泸县模拟) 计算:﹣4cos45°﹣(π﹣3.14)0 .21. (13分) (2020七下·武汉期末) 武汉市教育局为了解七年级学生在疫情期间参加体育锻炼的情况,随机抽样调查了某校七年级学生2020年4月某周参加体育锻炼的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图),请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为________,“锻炼时间为4天”的扇形所对圆心角的度数为________,该校初一学生的总人数为________;(2)补全条形统计图;(3)如果全市共有初一学生60000人,请你估计“锻炼时间不少于4天“的大约有多少人?22. (5分)(2017·罗山模拟) 我市规划中某地段地铁线路要穿越护城河PQ,站点A和站点B在河的两侧,要测算出A、B间的距离.工程人员在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q 出,测得A位于北偏东49°方向,B位于南偏西41°方向.根据以上数据,求A、B间的距离.(参考数据:cos41°≈0.75)23. (10分) (2018九上·卫辉期末) 己知AB是⊙0的直径,AP是⊙0的切线,A是切点,BP与⊙0交于点C.(1)如图①,若AB=2,∠P=30 ,求AP的长.(结果保留根号)(2)如图②,若D为AP的中点,∠P=30 ,求证:直线CD是⊙O的切线.24. (10分) (2019九下·秀洲月考) 嘉兴素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)25. (15分)(2019·海宁模拟) 定义:从三角形的一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中有一个与原三角形相似,那么我们称这条线段为原三角形的相似线,记此小三角形与原三角形的相似比为k.(1)【理解】如图1,△ABC中,已知D是AC边上一点,∠CBD=∠A.求证:BD是△ABC的相似线;(2)【探究】如图2,△ABC中,AB=4,BC=2,AC=2 .请用尺规作图法在平面内找一点D、使BC是以A、D为其中两个顶点的三角形的相似线,并直接写出k的值,(提醒:保留作图痕迹,在确认无误后用黑色签字笔将作图痕迹描黑)(3)【应用】如图3,扇形AOB中,∠AOB=90°,AO=OB=2,C,D分别是OA,OB的中点,P是弧AB上的一个动点,求PC+2PD的最小值.26. (15分)(2018·嘉定模拟) 已知在平面直角坐标系(如图)中,已知抛物线点经过、 .(1)求该抛物线的表达式;(2)设该抛物线的对称轴与轴的交点为,第四象限内的点在该抛物线的对称轴上,如果以点、、所组成的三角形与△ 相似,求点的坐标;(3)设点在该抛物线的对称轴上,它的纵坐标是,联结、,求 .参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共5题;共5分)15-1、16-1、17-1、18-1、19-1、三、解答题 (共7题;共73分)20-1、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
广东省专版 佛山市中考数学模拟试卷(附答案)

广东省佛山市中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1.sin60°的值为()A. B. C. D.2.在△ABC中,∠C=90°,AB=10,cos A=,则BC的长为()A. 6B.C. 8D.3.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 不能确定4.抛物线y=(x-1)2+3()A. 有最大值1B. 有最小值1C. 有最大值3D. 有最小值35.如图,⊙O是△ABC的外接圆,已知∠ACO=30°,则∠B的度数是()A.B.C.D.6.三角形的内心是三角形中()A. 三条高的交点B. 三边垂直平分线的交点C. 三条中线的交点D. 三条角平分线的交点7.正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.B. 2C.D.8.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A. 函数有最小值B.C. 当时,D. 当时,y随x的增大而减小9.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则sin∠EDB的值是()A.B.C.D.10.当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C. D.二、填空题(本大题共6小题,共24.0分)11.在Rt△ABC中,∠C=90°,如果AC=3,BC=4,那么sin A=______.12.已知扇形的圆心角是120°,半径是6,则它的面积是______.13.抛物线y=2x2-1的对称轴是______.14.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为______.15.已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为______.16.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=8cm,则圆形螺母的外直径是______.三、计算题(本大题共3小题,共24.0分)17.计算:(π-3.14)0+18.为了美化生活环境,小兰的爸爸要在院墙外的一块空地上修建一个矩形花圃.如图所示,矩形花圃的一边利用长10米的院墙,另外三条边用篱笆围成,篱笆的总长为32米.设AB的长为x米,矩形花圃的面积为y平方米.(1)用含有x的代数式表示BC的长,BC=______;(2)求y与x的函数关系式,写出自变量x的取值范围;(3)当x为何值时,y有最大值?最大值为多少?19.如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、BC边分别交于点E、F、G,连接OD,已知BD=2,AE=3,tan∠BOD=.(1)求⊙O的半径OD;(2)求证:AE是⊙O的切线;(3)求图中两部分阴影面积的和.四、解答题(本大题共6小题,共42.0分)20.求二次函数y=-2x2-4x+1的顶点坐标,并在下列坐标系内画出函数的大致图象.说出此函数的三条性质.21.如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为8cm,AB=10cm,求OA长.22.如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.23.一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m,宽4m,能否从该隧道内通过,为什么?24.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置测角仪AB,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果精确到0.1米,参考数据:≈1.414,≈1.732).25.如图,抛物线y=-x2+bx+c交x轴于点A(-3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S△BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.答案和解析1.【答案】B【解析】解:sin60°=.故选:B.直接根据特殊角的三角函数值进行计算即可.本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.2.【答案】A【解析】解:如图:∵cosA==,AB=10,∴AC=8,由勾股定理得:BC===6.故选:A.解直角三角形求出AC,根据勾股定理求出BC即可.本题考查了解直角三角形,勾股定理的应用,解直角三角形求出AC是解此题的关键,难度不是很大.3.【答案】A【解析】解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选:A.根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.本题主要考查对直线与圆的位置关系的性质的理解和掌握,能熟练地运用性质进行判断是解此题的关键.4.【答案】D【解析】解:由函数关系式可知,x的系数为1>0,抛物线y=(x-1)2+3有最小值,于是当x=1时y=3.故选:D.本题考查利用二次函数顶点式求最大(小)值的方法.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.5.【答案】C【解析】解:连接OA,如图,∵OA=OC,∠ACO=30°,∴∠ACO=∠CAO=30°,∴∠AOC=120°,∴∠B=60°.故选:C.连接OA,要求∠B,可求与它同弧所对的圆心角∠AOC;而∠AOC是等腰三角形AOC的顶角,在已知底角的前提下可求出顶角.本题考查了圆周角定理及三角形内角和定理的知识,解题的关键是正确地构造圆心角.6.【答案】D【解析】解:三角形的内心是三角形中3条角平分线的交点;故选:D.利用三角形的内心的性质解答即可.此题主要考查了三角形的内心的性质,熟练掌握相关性质是解题关键.7.【答案】B【解析】解:连接OB,OC,∵多边形ABCDEF是正六边形,∴∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=BC,∵正六边形的周长是12,∴BC=2,∴⊙O的半径是2,故选:B.连接OA,OB,根据等边三角形的性质可得⊙O的半径,进而可得出结论.本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键.8.【答案】C【解析】解:A、由图象可知函数有最小值,故正确;B、由抛物线与y轴的交点在y的负半轴,可判断c<0,故正确;C、由抛物线可知当-1<x<2时,y<0,故错误;D、由图象可知在对称轴的左侧y随x的增大而减小,故正确;故选:C.观察可判断函数有最小值;由抛物线可知当-1<x<2时,可判断函数值的符号;由抛物线与y轴的交点,可判断c的符号;由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.本题考查了二次函数图象的性质,解析式的系数的关系.关键是掌握各项系数与抛物线的性质之间的联系.9.【答案】B【解析】解:设圆O与小正方形网格的另一个切点为F,连接BF、BE,∵,∴∠EDB=∠EFB,由题意知:EB=BF,∴∠EFB=45°,∴sin∠EDB=sin∠EFB=,故选:B.由于所求的∠EDB是圆周角,因此可将其转化到另外一个圆周角来求解,设圆O与小正方形网格的另外一个切点为F,连接EF、BF、BE,因此∠EDB=∠EFB=45°,所以sin∠EDB=.本题考查圆周角定理的应用,如若条件出现的角是圆周角,可考虑圆周角定理将其转移到适合的位置进行求解.10.【答案】D【解析】解:根据题意,ab>0,即a、b同号,当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;此时,没有选项符合,当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;此时,D选项符合,故选:D.根据题意,ab>0,即a、b同号,分a>0与a<0两种情况讨论,分析选项可得答案.本题考查二次函数与一次函数的图象的性质,要求学生理解系数与图象的关系.11.【答案】【解析】解:在Rt△ABC中,∠C=90°,∵AC=3,BC=4,∴AB===5.∴sinA==.先由勾股定理求出AB,再利用锐角三角函数的定义求解.本题考查勾股定理及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.12.【答案】12π【解析】解:由题意得,n=120°,R=6,故可得扇形的面积S===12π.故答案为:12π.直接根据扇形的面积公式计算即可.此题考查了扇形的面积计算,属于基础题,解答本题的关键是掌握扇形的面积公式,难度一般.13.【答案】y轴【解析】解:∵y=2x2-1,∴抛物线对称轴为y轴,故答案为:y轴.由二次函数解析式即可求得.本题主要考查二次函数的性质,熟练掌握二次函数y=ax2+c的性质是解题的关键.14.【答案】65°【解析】解:∵∠CBE=50°,四边形ABCD为⊙O的内接四边形,∴∠D=∠CBE=50°,∵DA=DC,∴∠DAC==65°,故答案为:65°根据圆内接四边形的一个外角等于内对角求出∠D的度数,再由等腰三角形的性质求得∠DAC的度数.本题考查的是圆内接四边形的性质及等腰三角形的性质.15.【答案】x1=4,x2=-2【解析】解:根据图象可知,二次函数y=-x2+2x+m的部分图象经过点(4,0),所以该点适合方程y=-x2+2x+m,代入,得-42+2×4+m=0解得m=8 ①把①代入一元二次方程-x2+2x+m=0,得-x2+2x+8=0,②解②得x1=4,x2=-2,故答案为x1=4,x2=-2.根据图象可知,二次函数y=-x2+2x+m的部分图象经过点(4,0),把该点代入方程,求得m值;然后把m值代入关于x的一元二次方程-x2+2x+m=0,求根即可.本题考查的是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,根据图象提取有用条件来解答,这样可以降低题的难度,从而提高解题效率.16.【答案】16cm【解析】解:设圆形螺母的圆心为O,与AB切于E,连接OD,OE,OA,如图所示:∵AD,AB分别为圆O的切线,∴AO为∠DAB的平分线,OD⊥AC,OD⊥AC,又∠CAB=60°,∴∠OAE=∠OAD=∠DAB=60°,在Rt△AOD中,∠OAD=60°,AD=8cm,∴tan∠OAD=tan60°=,即=,∴OD=8cm,则圆形螺母的直径为16cm.故答案为:16cm.设圆形螺母的圆心为O,连接OD,OE,OA,如图所示:根据切线的性质得到AO为∠DAB的平分线,OD⊥AC,又∠CAB=60°,得到∠OAE=∠OAD=∠DAB=60°,根据三角函数的定义求出OD的长,即为圆的半径,进而确定出圆的直径.此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.17.【答案】解:(π-3.14)0+=1+2-8-2=-7.【解析】本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、特殊角的三角函数值、二次根式等考点的运算.18.【答案】32-2x【解析】解:(1)由题意可得,BC=32-2x,故答案为:32-2x;(2)由题意可得,y=x(32-2x)=-2x2+32x,∵,∴11≤x<16,即y与x的函数关系式是y=-2x2+32x(11≤x<16);(3)∵y=-2x2+32x=-2(x-8)2+128,11≤x<16,∴x=11时,y取得最大值,此时y=110,即当x=11时,y取得最大值,最大值为110.(1)根据题意可以用含x的代数式表示出BC的长;(2)根据题意可以得到y与x的函数关系式,并求出自变量x的取值范围;(3)将(2)中函数关系式化为顶点式,然后根据x的取值范围即可解答本题.本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.19.【答案】解:(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD==,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,∵DA⊥AE,∴OE⊥AC,又∵OE为圆的半径,∴AE为圆O的切线;(3)∵OD∥AC,∴=,即=,∴AC=7.5,∴EC=AC-AE=7.5-3=4.5,∴S阴影=S△BDO+S△OEC-S扇形FOD-S扇形EOG=×2×3+×3×4.5-=3+-=.【解析】(1)由AB为圆O的切线,利用切线的性质得到OD垂直于AB,在直角三角形BDO中,利用锐角三角函数定义,根据tan∠BOD及BD的值,求出OD的值即可;(2)连接OE,由AE=OD=3,且OD与AE平行,利用一组对边平行且相等的四边形为平行四边形,根据平行四边形的对边平行得到OE与AD平行,再由DA与AE垂直得到OE与AC垂直,即可得证;(3)阴影部分的面积由三角形BOD的面积+三角形ECO的面积-扇形DOF的面积-扇形EOG的面积,求出即可.此题考查了切线的判定与性质,扇形的面积,锐角三角函数定义,平行四边形的判定与性质,以及平行线的性质,熟练掌握切线的判定与性质是解本题的关键.20.【答案】解:∵y=-2x2-4x+1=-2(x+1)2+3,∴抛物线开口向下,对称轴为x=-1,顶点坐标为(-1,3),在y=-2x2-4x+1中,令y=0可求得x=1±,令x=0可得y=1,∴抛物线与x轴的交点坐标为(1+,0)和(1-,0),与y轴的交点坐标为(0,1),其图象如图所示,其性质有:①开口向上,②有最大值3,③对称轴为x=-1.【解析】把二次函数解析式化为顶点式,则可求得其顶点坐标、对称轴及开口方向,再求其与坐标轴的交点,则可画出函数图象,可结合图象说出其性质.本题主要考查二次函数的性质,掌握画抛物线图象时所需要确定的几个关键点是解题的关键.21.【答案】解:连接OC,∵AB与⊙O相切于点C,∴OC⊥AB,∵OA=OB,∴AC=BC=5,在Rt△AOC中,OA===(cm),答:OA的长为cm.【解析】直接利用切线的性质得出AC的长,再利用勾股定理得出答案.此题主要考查了切线的性质以及等腰三角形的性质,正确应用勾股定理是解题关键.22.【答案】解:(1)如图1,点O为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为的中点,∴OC⊥AB,∴AD=BD=AB=40,设⊙O的半径为r,则OA=r,OD=OC-CD=r-20,在Rt△OAD中,∵OA2=OD2+AD2,∴r2=(r-20)2+402,解得r=50,即所在圆的半径是50m.【解析】(1)连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;(2)连接OA,OC,OC交AB于D,如图2,根据垂径定理的推论,由C为的中点得到OC⊥AB,AD=BD=AB=40,则CD=20,设⊙O的半径为r,在Rt△OAD中利用勾股定理得到r2=(r-20)2+402,然后解方程即可.本题考查了垂径定理及勾股定理的应用,在利用数学知识解决实际问题时,要善于把实际问题与数学中的理论知识联系起来,能将生活中的问题抽象为数学问题.23.【答案】(1)解:设抛物线的解析式为(),∵顶点(4,6),∴y=a(x-4)2+6,∵它过点(0,2),∴a(0-4)2+6=2,解得a=-,∴抛物线的解析式为;(2)当x=2时,y=5>4,∴该货车能通过隧道.【解析】(1)设出抛物线的解析式,根据抛物线顶点坐标,代入解析式;(2)令x=2,解出y与4作比较.此题主要考查了抛物线的性质及其应用,求出横坐标与货车作比较,从而来解决实际问题是解题关键.24.【答案】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2,∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==4+≈5.7(米),答:拉线CE的长约为5.7米.【解析】过点A作AH⊥CD,垂足为H,在Rt△ACH中求出CH,在Rt△ECD中,再求出EC即可.本题考查直角三角形的应用-仰角俯角问题,矩形的判定和性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.25.【答案】解:(1)把A(-3,0),C(0,3)代入y=-x2+bx+c,得,解得.故该抛物线的解析式为:y=-x2-2x+3.(2)由(1)知,该抛物线的解析式为y=-x2-2x+3,则易得B(1,0).∵S△AOP=4S△BOC,∴×3×|-x2-2x+3|=4××1×3.整理,得(x+1)2=0或x2+2x-7=0,解得x=-1或x=-1±2.则符合条件的点P的坐标为:(-1,4)或(-1+2,-4)或(-1-2,-4);(3)设直线AC的解析式为y=kx+t,将A(-3,0),C(0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(-3≤x≤0),则D点坐标为(x,-x2-2x+3),QD=(-x2-2x+3)-(x+3)=-x2-3x=-(x+)2+,∴当x=-时,QD有最大值.【解析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P点坐标为(x,-x2-2x+3),根据S△AOP=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+3,再设Q点坐标为(x,x+3),则D点坐标为(x,x2+2x-3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.。
2020年广东省佛山市中考数学模拟试卷及答案
2020年广东省佛山市中考数学模拟试卷
(本卷满分120分,考试时间100分钟)
一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.
1.﹣的相反数是()
A.1.5 B .C.﹣1.5 D .﹣
2.有理数a,b在数轴上对应点的位置如图,下列各式正确的是()
A.a+b<0 B.a﹣b<0 C.a•b>0 D .>0
3.下列图形既是轴对称图形,又是中心对称图形的是()
A.三角形B.菱形C.角D.平行四边形
4.今年“五一”假期,我市某主题公园共接待游客77 800人次,将77 800用科学记数法表示为()
A.0.778×105B.7.78×104C.77.8×103D.778×102
5.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()
A.35°B.45°C.55°D.65°
6.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()
A.9分 B.8分 C.7分 D.6分
7.在平面直角坐标系中,点(1,5)所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
8.如图,A,B,C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC 的值为()
第1 页共13 页。
备战2020中考【6套模拟】佛山市中考模拟考试数学试题
备战2020中考【6套模拟】佛山市中考模拟考试数学试题中学数学二模模拟试卷一.选择题(满分12分,每小题2分)1.化简(﹣x3)2的结果是()A.﹣x6B.﹣x5C.x6D.x52.已知a,b为两个连续整数,且a<<b,则a+b的值为()A.9 B.8 C.7 D.63.﹣a一定是()A.正数B.负数C.0 D.以上选项都不正确4.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72 B.2.0 C.1.125 D.不能确定5.已知:如右图,O为圆锥的顶点,M为底面圆周上一点,点P在OM上,一只蚂蚁从点P 出发绕圆锥侧面爬行回到点P时所经过的最短路径的痕迹如图.若沿OM将圆锥侧面剪开并展平,所得侧面展开图是()A.B.C.D.6.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11 B.t≥2 C.6<t<11 D.2≤t<6二.填空题(满分20分,每小题2分)7.将数12000000科学记数法表示为.8.当x时,分式的值为0;若分式有意义,则x的取值范围是.9.分解因式:x4﹣16=.10.计算:=.11.已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.12.如图,△ABC中,AB=AC,BE⊥AC,D为AB中点,若DE=5,BE=8.则EC=.13.把点A(a,﹣2)向左平移3个单位,所得的点与点A关于y轴对称,则a等于.14.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC 于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.15.如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为.16.如图,在正方形ABCD中,点E是BC上一点,BF⊥AE交DC于点F,若AB=5,BE=2,则AF=.三.解答题17.(7分)计算或化简:(1)(2)18.(7分)如图,在数轴上,点A、B分别表示数1、﹣2x+5(1)求x的取值范围;(2)数轴上表示数﹣x+3的点应落在.A.点A的左边,B.线段AB上,C.点B的右边19.(7分)某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:(1)这次抽样调查的样本容量是,请补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中B等级所对应的圆心角为.(3)该校九年级学生有1600人,请你估计其中A等级的学生人数.20.(8分)如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.21.(8分)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.22.(9分)小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用40min.小亮骑自行车以300m/min的速度直接到甲地,两人离甲地的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示,(1)甲、乙两地之间的路程为m,小明步行的速度为m/min;(2)求小亮离甲地的路程y关于x的函数表达式,并写出自变量x的取值范围;(3)求两人相遇的时间.23.(8分)在某海域,一艘海监船在P处检测到南偏西45°方向的B处有一艘不明船只,正沿正西方向航行,海监船立即沿南偏西60°方向以40海里/小时的速度去截获不明船只,经过1.5小时,刚好在A处截获不明船只,求不明船只的航行速度.(≈1.41,≈1.73,结果保留一位小数).24.(9分)已知:分别以△ABC的各边为边,在BC边的同侧作等边三角形ABE、等边三角形CBD和等边三角形ACF,连结DE,DF.(1)试说明四边形DEAF为平行四边形.(2)当△ABC满足什么条件时,四边形DEAF为矩形?并说明理由;(3)当△ABC满足什么条件时,四边形DEAF为菱形.直接写出答案.25.(8分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.26.(8分)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.27.(9分)在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB.(1)如图1,图2,若△ABC为等腰直角三角形,问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是,数量关系是;深入探究:②当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC=,当BM=时,BP的最大值为.参考答案一.选择题1.解:原式=x6,故选:C.2.解:∵9<13<16,∴3<<4,即a=3,b=4,则a+b=7,故选:C.3.解:﹣a中a的符号无法确定,故﹣a的符号无法确定.故选:D.4.解:∵AB=1.5,BC=0.9,AC=1.2,∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,∴AB2=BC2+AC2,∴∠ACB=90°,∵CD是AB边上的高,∴S=,△ABC1.5CD=1.2×0.9,CD=0.72,故选:A.5.解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.6.解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.二.填空题7.解:12 000 000=1.2×107,故答案是:1.2×107,8.解:若分式的值为0,则x﹣1=0,且x+1≠0,解得x=1;若分式有意义,则x+5≠0,解得x≠﹣5,故答案为:=1;x≠﹣5.9.解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).10.解:原式=+=2+3=5.故答案为5.11.解:把x=2+代入方程得(2+)2﹣4(2+)+m=0,解得m=1.故答案为1.12.解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=AC=2DE=2×5=10,∵BE=8,∴AE==6,∴EC=AC﹣AE=4,故答案为:4.13.解:点A(a,﹣2)向左平移3个单位后为(a﹣3,﹣2),∵所得的点与点A关于y轴对称,∴a﹣3=﹣a,解得a=.故答案为:.14.解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m, n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,=BE•BF=mn=∴S△BEF故答案为.15.解:由图可知,∠AOB=75°﹣45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°.16.解:∵四边形ABCD是正方形,∴AB=BC,∠A BE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF===.故答案为:.三.解答题17.解:(1)原式=+==;(2)原式=÷(x+2)•=••=;18.解:(1)由数轴上点的位置得:﹣2x+5>1,解得:x<2;(2)由x<2,得到﹣x+3>1,且﹣2x+5>﹣x+3,则数轴上表示数﹣x+3的点在线段AB上,故选B19.解:(1)样本容量为16÷32%=50,B等级人数为50﹣16﹣10﹣4=20,如图所示:故答案为:50;(2)D等级学生人数占被调查人数的百分比为×100%=8%;B等级所对应的圆心角为×360°=144°;故答案为:8%,144°;(3)全校A等级的学生人数约有×1600=512(人).20.(1)证明:∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴=,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)解:∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴=,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴=,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=AB=BC,∴=,∴BC2=2DF•BF.21.解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A,B,C,D,∵垃圾要按A,B,C、D类分别装袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿的两袋垃圾不同类的概率为=.22.解:(1)结合题意和图象可知,线段CD为小亮路程与时间函数图象,折线O﹣A﹣B为小明路程与时间图象,则甲、乙两地之间的路程为8000米,小明步行的速度==100m/min,故答案为8000,100(2)∵小亮从离甲地8000m处的乙地以300m/min的速度去甲地,则xmin时,∴小亮离甲地的路程y=8000﹣300x,自变量x的取值范围为:0≤x≤(3)∵A(20,6000)∴直线OA解析式为:y=300x∴8000﹣300x=300x,∴x=∴两人相遇时间为第分钟.23.解:作PQ垂直于AB的延长线于点Q,由题意得:∠BPQ=45°,∠APQ=60°,AP=1.5×40=60海里,∴在△APQ中,AQ=AP•sin60°=30海里,PQ=AP•cos60°=30海里,∵在△BQP中,∠BPQ=45°,∴PQ=BQ=30海里,∴AB=AQ﹣BQ=30﹣30≈21.9海里,∴=14.6海里/小时,∴不明船只的航行速度是14.6海里/小时.24.解:(1)如图1,∵△ABE和△CBD为等边三角形,∴∠ABE=∠CBD=60°,AB=BE=AE,CB=BD=CD,∴∠ABC=∠EBD,在△ABC和△EBD中,∴△ABC≌△EBD(SAS),∴AC=DE,∵△ACF为等边三角形,∴AC=AF,∴AF=DE,同理可证得△ACB≌△FCD,∴AB=DF,而AB=AE,∴AE=DF,∴四边形DEAF是平行四边形;(2)如图2,当△ABC满足∠BAC=150°时,四边形DEAF是矩形.理由如下:由(1)知:四边形DEAF是平行四边形,∵∠BAC=150°,∠EAB=∠FAC=60°∴∠EAF=360°﹣150°﹣60°﹣60°=90°∴四边形DEAF是矩形;(3)如图3,△ABC满足AB=AC时,四边形DEAF是菱形.理由如下:由(1)知:四边形DEAF是平行四边形,∵AB=AC,AE=AB,AC=AF,∴AE=AF,∴四边形DEAF是菱形.故答案为:AB=AC.25.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F 1(,8),F2(,4),F3(,6+),F4(,6﹣).26.解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°.27.解:问题初现:(1)①AM与BN位置关系是AM⊥BN,数量关系是AM=BN.理由:如图1,∵△ABC,△CMN为等腰直角三角形,∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°∴∠ACM=∠BCN,且AC=BC,CM=CN,∴△ACM≌△BCN(SAS)∴∠CAM=∠CBN=45°,AM=BN.∵∠CAB=∠CBA=45°,∴∠ABN=45°+45°=90°,即AM⊥BN故答案为:AM⊥BN;AM=BN深入探究:②当点M在线段AB的延长线上时,AM与BN位置关系是AM⊥BN,数量关系是AM=BN.理由如下:如图,∵△ABC,△CMN为等腰直角三角形,∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°∴∠ACM=∠BCN,且AC=BC,CM=CN,∴△ACM≌△BCN(SAS)∴∠CAM=∠CBN=45°,AM=BN.∵∠CAB=∠CBA=45°,∴∠ABN=45°+45°=90°,即AM⊥BN类比拓展:(2)如图,过点C作CE⊥AB于点E,过点N作NF⊥CE于点F,则FN∥AB∵△MCN是等腰直角三角形∴CM=CN,∠MCN=90°∴∠ECM+∠FCN=90°,且∠ECM+∠CME=90°∴∠FCN=∠CME,且CM=CN,∠F=∠CEM=90°∴△CNF≌△CME(AAS)∴FN=EC,EM=CF∵BC=4,CE⊥AB,∠CBA=45°∴CE=BE=4,∴FN=BE=CE,且FN∥BA∴四边形FNBE是平行四边形,且∠F=90°∴四边形FNBE是矩形∴∠CEM=∠ABN=90°∴∠PMB+∠MPB=90°∵CM⊥MP∴∠CME+∠PMB=90°∴∠CME=∠MPB,且∠CEM=∠ABN=90°∴△CEM∽△MBP∴∴BP==﹣(BM﹣2)2+1∴当BM=2时,BP有最大值为1.故答案为:2,1中学数学二模模拟试卷一.选择题(满分12分,每小题2分)1.化简(﹣x3)2的结果是()A.﹣x6B.﹣x5C.x6D.x52.已知a,b为两个连续整数,且a<<b,则a+b的值为()A.9 B.8 C.7 D.63.﹣a一定是()A.正数B.负数C.0 D.以上选项都不正确4.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72 B.2.0 C.1.125 D.不能确定5.已知:如右图,O为圆锥的顶点,M为底面圆周上一点,点P在OM上,一只蚂蚁从点P 出发绕圆锥侧面爬行回到点P时所经过的最短路径的痕迹如图.若沿OM将圆锥侧面剪开并展平,所得侧面展开图是()A.B.C.D.6.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11 B.t≥2 C.6<t<11 D.2≤t<6二.填空题(满分20分,每小题2分)7.将数12000000科学记数法表示为.8.当x时,分式的值为0;若分式有意义,则x的取值范围是.9.分解因式:x4﹣16=.10.计算:=.11.已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.12.如图,△ABC中,AB=AC,BE⊥AC,D为AB中点,若DE=5,BE=8.则EC=.13.把点A(a,﹣2)向左平移3个单位,所得的点与点A关于y轴对称,则a等于.14.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC 于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.15.如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为.16.如图,在正方形ABCD中,点E是BC上一点,BF⊥AE交DC于点F,若AB=5,BE=2,则AF=.三.解答题17.(7分)计算或化简:(1)(2)18.(7分)如图,在数轴上,点A、B分别表示数1、﹣2x+5(1)求x的取值范围;(2)数轴上表示数﹣x+3的点应落在.A.点A的左边,B.线段AB上,C.点B的右边19.(7分)某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:(1)这次抽样调查的样本容量是,请补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中B等级所对应的圆心角为.(3)该校九年级学生有1600人,请你估计其中A等级的学生人数.20.(8分)如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.21.(8分)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.22.(9分)小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用40min.小亮骑自行车以300m/min的速度直接到甲地,两人离甲地的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示,(1)甲、乙两地之间的路程为m,小明步行的速度为m/min;(2)求小亮离甲地的路程y关于x的函数表达式,并写出自变量x的取值范围;(3)求两人相遇的时间.23.(8分)在某海域,一艘海监船在P处检测到南偏西45°方向的B处有一艘不明船只,正沿正西方向航行,海监船立即沿南偏西60°方向以40海里/小时的速度去截获不明船只,经过1.5小时,刚好在A处截获不明船只,求不明船只的航行速度.(≈1.41,≈1.73,结果保留一位小数).24.(9分)已知:分别以△ABC的各边为边,在BC边的同侧作等边三角形ABE、等边三角形CBD和等边三角形ACF,连结DE,DF.(1)试说明四边形DEAF为平行四边形.(2)当△ABC满足什么条件时,四边形DEAF为矩形?并说明理由;(3)当△ABC满足什么条件时,四边形DEAF为菱形.直接写出答案.25.(8分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.26.(8分)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.27.(9分)在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB.(1)如图1,图2,若△ABC为等腰直角三角形,问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是,数量关系是;深入探究:②当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC=,当BM=时,BP的最大值为.参考答案一.选择题1.解:原式=x6,故选:C.2.解:∵9<13<16,∴3<<4,即a=3,b=4,则a+b=7,故选:C.3.解:﹣a中a的符号无法确定,故﹣a的符号无法确定.故选:D.4.解:∵AB=1.5,BC=0.9,AC=1.2,∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,∴AB2=BC2+AC2,∴∠ACB=90°,∵CD是AB边上的高,∴S=,△ABC1.5CD=1.2×0.9,CD=0.72,故选:A.5.解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.6.解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.二.填空题7.解:12 000 000=1.2×107,故答案是:1.2×107,8.解:若分式的值为0,则x﹣1=0,且x+1≠0,解得x=1;若分式有意义,则x+5≠0,解得x≠﹣5,故答案为:=1;x≠﹣5.9.解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).10.解:原式=+=2+3=5.故答案为5.11.解:把x=2+代入方程得(2+)2﹣4(2+)+m=0,解得m=1.故答案为1.12.解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=AC=2DE=2×5=10,∵BE=8,∴AE==6,∴EC=AC﹣AE=4,故答案为:4.13.解:点A(a,﹣2)向左平移3个单位后为(a﹣3,﹣2),∵所得的点与点A关于y轴对称,∴a﹣3=﹣a,解得a=.故答案为:.14.解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m, n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,=BE•BF=mn=∴S△BEF故答案为.15.解:由图可知,∠AOB=75°﹣45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°.16.解:∵四边形ABCD是正方形,∴AB=BC,∠A BE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF===.故答案为:.三.解答题17.解:(1)原式=+==;(2)原式=÷(x+2)•=••=;18.解:(1)由数轴上点的位置得:﹣2x+5>1,解得:x<2;(2)由x<2,得到﹣x+3>1,且﹣2x+5>﹣x+3,则数轴上表示数﹣x+3的点在线段AB上,故选B19.解:(1)样本容量为16÷32%=50,B等级人数为50﹣16﹣10﹣4=20,如图所示:故答案为:50;(2)D等级学生人数占被调查人数的百分比为×100%=8%;B等级所对应的圆心角为×360°=144°;故答案为:8%,144°;(3)全校A等级的学生人数约有×1600=512(人).20.(1)证明:∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴=,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)解:∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴=,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴=,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=AB=BC,∴=,∴BC2=2DF•BF.21.解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A,B,C,D,∵垃圾要按A,B,C、D类分别装袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿的两袋垃圾不同类的概率为=.22.解:(1)结合题意和图象可知,线段CD为小亮路程与时间函数图象,折线O﹣A﹣B为小明路程与时间图象,则甲、乙两地之间的路程为8000米,小明步行的速度==100m/min,故答案为8000,100(2)∵小亮从离甲地8000m处的乙地以300m/min的速度去甲地,则xmin时,∴小亮离甲地的路程y=8000﹣300x,自变量x的取值范围为:0≤x≤(3)∵A(20,6000)∴直线OA解析式为:y=300x∴8000﹣300x=300x,∴x=∴两人相遇时间为第分钟.23.解:作PQ垂直于AB的延长线于点Q,由题意得:∠BPQ=45°,∠APQ=60°,AP=1.5×40=60海里,∴在△APQ中,AQ=AP•sin60°=30海里,PQ=AP•cos60°=30海里,∵在△BQP中,∠BPQ=45°,∴PQ=BQ=30海里,∴AB=AQ﹣BQ=30﹣30≈21.9海里,∴=14.6海里/小时,∴不明船只的航行速度是14.6海里/小时.24.解:(1)如图1,∵△ABE和△CBD为等边三角形,∴∠ABE=∠CBD=60°,AB=BE=AE,CB=BD=CD,∴∠ABC=∠EBD,在△ABC和△EBD中,∴△ABC≌△EBD(SAS),∴AC=DE,∵△ACF为等边三角形,∴AC=AF,∴AF=DE,同理可证得△ACB≌△FCD,∴AB=DF,而AB=AE,∴AE=DF,∴四边形DEAF是平行四边形;(2)如图2,当△ABC满足∠BAC=150°时,四边形DEAF是矩形.理由如下:由(1)知:四边形DEAF是平行四边形,∵∠BAC=150°,∠EAB=∠FAC=60°∴∠EAF=360°﹣150°﹣60°﹣60°=90°∴四边形DEAF是矩形;(3)如图3,△ABC满足AB=AC时,四边形DEAF是菱形.理由如下:由(1)知:四边形DEAF是平行四边形,∵AB=AC,AE=AB,AC=AF,∴AE=AF,∴四边形DEAF是菱形.故答案为:AB=AC.25.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F 1(,8),F2(,4),F3(,6+),F4(,6﹣).26.解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°.27.解:问题初现:(1)①AM与BN位置关系是AM⊥BN,数量关系是AM=BN.理由:如图1,∵△ABC,△CMN为等腰直角三角形,∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°∴∠ACM=∠BCN,且AC=BC,CM=CN,∴△ACM≌△BCN(SAS)∴∠CAM=∠CBN=45°,AM=BN.∵∠CAB=∠CBA=45°,∴∠ABN=45°+45°=90°,即AM⊥BN故答案为:AM⊥BN;AM=BN深入探究:②当点M在线段AB的延长线上时,AM与BN位置关系是AM⊥BN,数量关系是AM=BN.理由如下:如图,∵△ABC,△CMN为等腰直角三角形,∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°∴∠ACM=∠BCN,且AC=BC,CM=CN,∴△ACM≌△BCN(SAS)∴∠CAM=∠CBN=45°,AM=BN.∵∠CAB=∠CBA=45°,∴∠ABN=45°+45°=90°,即AM⊥BN类比拓展:(2)如图,过点C作CE⊥AB于点E,过点N作NF⊥CE于点F,则FN∥AB∵△MCN是等腰直角三角形∴CM=CN,∠MCN=90°∴∠ECM+∠FCN=90°,且∠ECM+∠CME=90°∴∠FCN=∠CME,且CM=CN,∠F=∠CEM=90°∴△CNF≌△CME(AAS)∴FN=EC,EM=CF∵BC=4,CE⊥AB,∠CBA=45°∴CE=BE=4,∴FN=BE=CE,且FN∥BA∴四边形FNBE是平行四边形,且∠F=90°∴四边形FNBE是矩形∴∠CEM=∠ABN=90°∴∠PMB+∠MPB=90°∵CM⊥MP∴∠CME+∠PMB=90°∴∠CME=∠MPB,且∠CEM=∠ABN=90°∴△CEM∽△MBP∴∴BP==﹣(BM﹣2)2+1∴当BM=2时,BP有最大值为1.故答案为:2,1中学数学二模模拟试卷一.选择题(每题3分,满分36分)1.3的倒数是()A.﹣3 B.﹣C.D.32.下列由年份组成的各项图形中,是中心对称图形的是()A.B.C.D.3.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数4.下列事件是必然事件的是()A.2018年5月15日宁德市的天气是晴天B.从一副扑克中任意抽出一张是黑桃C.在一个三角形中,任意两边之和大于第三边D.打开电视,正在播广告5.如图所示的某零件左视图是()A.B.C.D.6.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°7.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.8.如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则乙建筑物的高度为()米.A.30B.30﹣30 C.30 D.309.已知一次函数y=kx﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象可能是()A.B.C.D.10.某农场2016年蔬菜产量为50吨,2018年蔬菜产量为60.5吨,该农场蔬菜产量的年平均增长率相同.设该农场蔬菜产量的年平均增长率为x,则根据题意可列方程为()A.60.5(1﹣x)2=50 B.50(1﹣x)2=60.5C.50(1+x)2=60.5 D.60.5(1+x)2=5011.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,直线x=1是它的对称轴,有下列5个结论:①abc>0;②4a+2b+c>0;③b2﹣4ac>0;④2a﹣b=0;⑤方程ax2+bx+c﹣3=0有两个相等的实数根.其中正确的有()A.1个B.2个C.3个D.4个12.如图,Rt△ABC的两边OA,OB分别在x轴、y轴上,点O与原点重合,点A(﹣3,0),点B(0,3),将Rt△AOB沿x轴向右翻滚,依次得到△1,△2,△3,…,则△2020的直角顶点的坐标为()A.(673,0)B.(6057+2019,0)C.(6057+2019,)D.(673,)二.填空题(满分16分,每小题4分)13.已知一组数据2、﹣1、8、2、﹣1、a 的众数为2,则这组数据的平均数为 . 14.如图,C 、D 是线段AB 上两点,D 是线段AC 的中点若AB =12cm ,BC =5cm ,则AD 的长为 cm .15.在平面直角坐标系中,如果点P 坐标为(m ,n ),向量可以用点P 的坐标表示为=(m ,n ). 已知:=(x 1,y 1),=(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么与互相垂直,下列四组向量: ①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是 (填上所有正确答案的符号). 16.如图,点A 是反比例函数图象上的点,分别过点A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为 .三.解答题17.(12分)(1)计算:(﹣3)2+2﹣2÷sin30°﹣20120; (2)解方程组;(3)先化简再求值:÷,其中m =+1.18.(10分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A 、B 、C 、D 四个等次,绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c═,(2)请将条形统计图补充完整,并计算表示C等次的扇形所对的圆心角的度数为=,(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.19.(8分)甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?20.(12分)如图,矩形ABCD的对角线AC、BD相交于点O,△COD绕点O逆时针旋转得△C′O′D′,连接AC′,BD′,AC′与BD′相交于点P.(1)求证:AC′=BD′;(2)若∠ACB=26°,求∠APB的度数.21.(12分)如图,AB是⊙O的直径,点P是BA延长线上一点,过点P作⊙O的切线PC,切点是C,过点C作弦CD⊥AB于E,连接CO,CB.(1)求证:PD是⊙O的切线;(2)若AB=10,tan B=,求PA的长;(3)试探究线段AB,OE,OP之间的数量关系,并说明理由.22.(14分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△OD P中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.参考答案一.选择题1.解:3的倒数是:.故选:C.2.解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:B.3.解:A、0是有理数,所以A选项错误;B、π不是有理数,是无理数,所以B选项错误;C、4是有理数中的正整数,所以C选项正确;D、是一个无理数,所以选项D错误.故选: C.4.解:A、2018年5月15日宁德市的天气是晴天是随机事件;B、从一副扑克中任意抽出一张是黑桃是随机事件;C、在一个三角形中,任意两边之和大于第三边是必然事件;D、打开电视,正在播广告是随机事件;故选:C.5.解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.6.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,。
2020年广东省佛山市中考数学模拟试卷(2)
2020年广东省佛山市中考数学模拟试卷(2)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各对数中,互为相反数的是()A.﹣2与3 B.﹣(+3)与+(﹣3)C.4与﹣4 D.5与152.(3分)随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学记数法表示为()A.×1011 B.×107C.×1012 D.×103 3.(3分)如图,几何体的主视图是()A.B.C.D.4.(3分)某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分,全班40名同学参加了此次竞赛,他们的得分情况如下表所示,已知这40名同学的成绩的众数是70.成绩(分)5060y8090100人数x3131073则全班40名同学的成绩的中位数是()A.70 B.75 C.80 D.855.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.6.(3分)不等式﹣3x+6≤4﹣x的解集在数轴上表示正确的是()A.B.C.D.7.(3分)如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°8.(3分)已知△ABC中,∠C=90°,AC=3,BC=4,则△ABC的外心与顶点C的距离为()A.1 B.C.3 D.59.(3分)已知关于x的一元二次方程(a﹣1)x2+2(a+2b)x+4b+2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.以上都可能10.(3分)如图,Rt△ABC中,AB=4,BC=2,正方形ADEF的边长为2,F、A、B在同一直线上,正方形ADEF向右平移到点F与B 重合,点F的平移距离为x,平移过程中两图重叠部分的面积为y,则y与x的关系的函数图象表示正确的是()A.B.C.D.二.填空题(共7小题,满分28分,每小题4分)11.(4分)把多项式x2y﹣6xy+9y分解因式的结果是.12.(4分)已知实数a、b在数轴上对应点的位置如图所示,则﹣a b.(填“<”“>”或“=”)13.(4分)用剪刀剪去一个多边形的一个角,所得的新的多边形的内角和为900°,则原多边形的边数为.14.(4分)若x﹣2y=1,则1+2x﹣4y=.15.(4分)如图,某景区门口的柱子上方挂着一块景点宣传牌CD,宣传牌的一侧用绳子AD和BC牵引着两排小风车,经过测量得到如下数据:AM=2米,AB=4米,∠MAD=45°,∠MBC=30°,则CD的长度约为米.(√3≈,结果精确到米)x与反比例16.(4分)如图,在平面直角坐标系中,直线l1:y=−12的图象交于A,B两点(点A在点B左侧),已知A点的函数y=kkx沿y向上平移后的直线l2与反比纵坐标是1;将直线l1:y=−12在第二象限内交于点C,如果△ABC的面积为3,则平例函数y=kk移后的直线l2的函数表达式为.17.(4分)⊙O的内接正方形的边长为a和外切正三角形的边长为b,=.则kk三.解答题(共3小题,满分18分,每小题6分))﹣1−√(−2)2+√1818.(6分)计算:(√3−1)0+(1319.(6分)先化简,再求值.(5k+3kk2−k2+8kk2−k2)÷1k2k+kk2,其中a=√2,b=1.20.(6分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于12kk长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是A.矩形B.菱形C.正方形D.无法确定(2)若四边形ABEF的周长为40,AE,BF相交于点O,且BF=10,试求①∠ABC的度数;②AE的长.四.解答题(共3小题,满分24分,每小题8分)21.(8分)十二中为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2(2)若学校每天需付给甲队的绿化费用为万元,乙队为万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天22.(8分)小明用两组相同的卡片,每组两张,卡片数字分别标有1和2,从每组卡片中各摸出一张称为一次次验,小明共计做了400次试验,并将卡片上取数字和的情况制成如图所示的频数分布直方图.(1)请计算两张卡片数字之和为3的频率为多少(2)能否根据(1)中结果估计两张卡片上数字之和为3的概率.(3)你能用列表的方法计算其理论概率吗23.(8分)如图,在正方形ABCD中,点E是BC边的中点,将△DCE 沿DE折叠,使点C落在点F处,延长EF交AB于点G,连接DG、BF.(1)求证:DG平分∠ADF;(2)若AB=12,求△EDG的面积.五.解答题(共2小题,满分20分,每小题10分)24.(10分)如图示,AB是⊙O的直径,点F是半圆上的一动点(F 不与A,B重合),弦AD平分∠BAF,过点D作DE⊥AF交射线AF 于点AF.(1)求证:DE与⊙O相切:(2)若AE=8,AB=10,求DE长;(3)若AB=10,AF长记为x,EF长记为y,求y与x之间的函数关系式,并求出AF•EF的最大值.x2+bx+c与x轴交于点A、点B(4,25.(10分)如图1,抛物线y=−12x+4经过点C,与x轴交于点D,0),与y轴交于点C;直线y=−43点P是第一象限内抛物线上一动点.(1)求抛物线的解析式;(2)若∠PCB=∠DCB,求△PCD的面积;(3)如图2,过点C作直线l∥x轴,过点P作PH⊥l于点H,将△CPH绕点C顺时针旋转,使点H的对应点H′恰好落在直线CD上,同时使点P的对应点P′恰好落在坐标轴上,请直接写出此时点P 的坐标.2020年广东省佛山市中考数学模拟试卷(2)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各对数中,互为相反数的是()A.﹣2与3 B.﹣(+3)与+(﹣3)C.4与﹣4 D.5与15【解答】解:A、只有符号不同的两个数互为相反数,故A错误;B、都是﹣3,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、互为倒数,故D错误;故选:C.2.(3分)随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学记数法表示为()A.×1011 B.×107C.×1012 D.×103【解答】解:2135亿=2=×1011,故选:A.3.(3分)如图,几何体的主视图是()A.B.C.D.【解答】解:如图,几何体的主视图是:.故选:B.4.(3分)某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分,全班40名同学参加了此次竞赛,他们的得分情况如下表所示,已知这40名同学的成绩的众数是70.成绩(分)5060y8090100人数x3131073则全班40名同学的成绩的中位数是()A.70 B.75 C.80 D.85【解答】解:由题意得:y=70,x=4,共40个分数,从小到大排列后,处于第20、21位的两个数的平均数为:(70+80)÷2=75分,故中位数是75分,故选:B.5.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.6.(3分)不等式﹣3x+6≤4﹣x的解集在数轴上表示正确的是()A.B.C.D.【解答】解:﹣3x+6≤4﹣x,﹣3x+x≤4﹣6,﹣2x≤﹣2,x≥1,在数轴上表示为:,故选:A.7.(3分)如图,把三角尺的直角顶点放在直尺的一边上,若∠1=32°,则∠2的度数为()A.68°B.58°C.48°D.32°【解答】解:如图所示:∵AD∥FE,∴∠2=∠3,又∵∠1+∠BAC+∠3=180°,∠BAC=90°,∴∠1+∠3=90°,又∵∠1=32°,∴∠3=58°,∴∠2=58°,故选:B.8.(3分)已知△ABC中,∠C=90°,AC=3,BC=4,则△ABC的外心与顶点C的距离为()A.1 B.C.3 D.5【解答】解:如图:∵在Rt△ABC中,∠C=90°,点O是Rt△ABC的外心,∴OA=OC=OB,又∵∠C=90°,∴AB是⊙O的直径,即点O是AB的中点,AB∴OA=OC=OB=12由勾股定理得AB=5,,∴OC=52即:它的外心与顶点C的距离为5,2故选:B.9.(3分)已知关于x的一元二次方程(a﹣1)x2+2(a+2b)x+4b+2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.以上都可能【解答】解:∵(a﹣1)x2+2(a+2b)x+4b+2=0,∴a﹣1≠0,解得a≠1,∵关于x的一元二次方程(a﹣1)x2+2(a+2b)x+2(a+2b)=0的二次项系数是a﹣1,一次项系数是2(a+2b),常数项是4b+2,∴△=4(a+2b)2﹣4(a﹣1)(4b+2)=4a2+16ab+16b2﹣16ab﹣8a+16b+8=4(a﹣1)2+4(2b+1)2>0,∴方程有两个不相等的实数根.故选:A.10.(3分)如图,Rt△ABC中,AB=4,BC=2,正方形ADEF的边长为2,F、A、B在同一直线上,正方形ADEF向右平移到点F与B 重合,点F的平移距离为x,平移过程中两图重叠部分的面积为y,则y与x的关系的函数图象表示正确的是()A.B.C .D .【解答】解:当0<x ≤2时,平移过程中两图重叠部分为Rt △AA 'M ,∵Rt △ABC 中,AB =4,BC =2,正方形ADEF 的边长为2 ∴tan ∠CAB =k′k kk′=kkkk∴A 'M =12x其面积y =12x •12x =14x 2故此时y 为x 的二次函数,排除选项D .当2<x ≤4时,平移过程中两图重叠部分为梯形F 'A 'MN其面积y =12x •12x −12(x ﹣2)•12(x ﹣2)=x ﹣1 故此时y 为x 的一次函数,故排除选项C .当4<x ≤6时,平移过程中两图重叠部分为梯形F 'BCNAF '=x ﹣2,F 'N =12(x ﹣2),F 'B =4﹣(x ﹣2)=6﹣x ,BC =2其面积y =12[12(x ﹣2)+2]×(6﹣x )=−14x 2+x +3 故此时y 为x 的二次函数,其开口方向向下,故排除A 综上,只有B 符合题意. 故选:B .二.填空题(共7小题,满分28分,每小题4分)11.(4分)把多项式x 2y ﹣6xy +9y 分解因式的结果是 y (x ﹣3)2 .【解答】解:原式=y (x 2﹣6x +9)=y (x ﹣3)2, 故答案为:y (x ﹣3)212.(4分)已知实数a 、b 在数轴上对应点的位置如图所示,则﹣a < b .(填“<”“>”或“=”)【解答】解:如图所示:|a |>|b |. ∴﹣a 在b 的左边,∴﹣a<b.故答案为:<.13.(4分)用剪刀剪去一个多边形的一个角,所得的新的多边形的内角和为900°,则原多边形的边数为6或7或8 .【解答】解:由多边形内角和,可得(n﹣2)×180°=900°,∴n=7,∴新的多边形为七边形,原来的多边形可以是六边形,可以是七边形,可以是八边形,故答案为6或7或8.14.(4分)若x﹣2y=1,则1+2x﹣4y= 3 .【解答】解:若x﹣2y=1,1+2x﹣4y=1+2(x﹣2y)=1+2×1=1+2=3故答案为:3.15.(4分)如图,某景区门口的柱子上方挂着一块景点宣传牌CD,宣传牌的一侧用绳子AD和BC牵引着两排小风车,经过测量得到如下数据:AM=2米,AB=4米,∠MAD=45°,∠MBC=30°,则CD的长度约为米.(√3≈,结果精确到米)【解答】解:在Rt△AMD中,∠MAD=45°,∴DM=AM⋅tan45°=2(m),在Rt△BMC中,∠MBC=30°,∴CM=BM⋅tan30°,∵BM=AM+AB=2+4=6(m),≈(m),∴CM=×√33∴CD=CM﹣DM=﹣2≈(米),答:警示牌的高CD为米.16.(4分)如图,在平面直角坐标系中,直线l1:y=−12x与反比例函数y=kk的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是1;将直线l1:y=−12x沿y向上平移后的直线l2与反比例函数y=kk在第二象限内交于点C,如果△ABC的面积为3,则平移后的直线l2的函数表达式为y=−12x+32.【解答】解:直线l2与y轴交于点D,连接DA、DB,如图,当y=1时,−12x=1,解得x=﹣2,则A(﹣2,1),∴B点坐标为(2,﹣1),∵y=−12x沿y向上平移得到直线l2,∴可设直线l2的解析式为y=−12x+b,则D(0,b),∵l1∥l2,∴S△DAB=S△CAB=3,即S△DAO+S△BOD=3,∴12×b×2+12×b×2=3,解得b=32,∴直线l2的解析式为y=−12x+32.故答案为y=−12x+32.17.(4分)⊙O的内接正方形的边长为a和外切正三角形的边长为b,则kk =√66.【解答】解:如图,连接GE、OA;则GE必过点O;∵△ABC为⊙O的外切正三角形,∴OE⊥AB,∠OAE=∠OAH=12×60°=30°;∵四边形EFGH为⊙O的内接正方形,∴EF=FG=a,∠EFG=90°,由勾股定理得:EG2=EF2+FG2=2a2,∴EG =√2a ,EO =√2k2;在直角△AOE 中, ∵tan30°=kkkk, ∴AE =√62a ;同理可求BE =√62a ,∴AB =√6a ,即该圆外切正三角形边长为√6a , ∴k k=√66,故答案为:√66.三.解答题(共3小题,满分18分,每小题6分) 18.(6分)计算:(√3−1)0+(13)﹣1−√(−2)2+√18 【解答】解:原式=1+3﹣2+3√2 =2+3√2.19.(6分)先化简,再求值.(5k+3kk2−k2+8kk2−k2)÷1k2k+kk2,其中a=√2,b=1.【解答】解:原式=5k+3k−8kk2−k2÷1kk(k+k)=5(k−k)(k+k)(k−k)•ab(a+b)=5ab,当a=√2,b=1时,原式=5√2.20.(6分)如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于12kk长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是BA.矩形B.菱形C.正方形D.无法确定(2)若四边形ABEF的周长为40,AE,BF相交于点O,且BF=10,试求①∠ABC的度数;②AE的长.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∵AB=AF,∴四边形ABEF是菱形.故答案为:B;(2)①∵四边形ABEF是菱形,且周长为40,∴AB=AF=40÷4=10.∵BF=10,∴△ABF是等边三角形,∴∠ABF=60°,∴∠ABC=2∠ABF=120°;②∵AF=10,∴OF=5.∵AE垂直平分BF,∴AO=√2−kk2=5√3,∴AE=2AO=10√3.四.解答题(共3小题,满分24分,每小题8分)21.(8分)十二中为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2(2)若学校每天需付给甲队的绿化费用为万元,乙队为万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),则甲工程队每天能完成绿化的面积为2xm2,根据题意得:400k −4002k=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:×,+1800−100k50解得:y≥50,3天.答:至少应安排甲队工作50322.(8分)小明用两组相同的卡片,每组两张,卡片数字分别标有1和2,从每组卡片中各摸出一张称为一次次验,小明共计做了400次试验,并将卡片上取数字和的情况制成如图所示的频数分布直方图.(1)请计算两张卡片数字之和为3的频率为多少(2)能否根据(1)中结果估计两张卡片上数字之和为3的概率.(3)你能用列表的方法计算其理论概率吗【解答】解:(1)203;400(2)估计203;400(3)数字和为3的概率是,列表如下:第一次12第二次1(1,1)(1,2)2(2,1)(2,2)23.(8分)如图,在正方形ABCD中,点E是BC边的中点,将△DCE 沿DE折叠,使点C落在点F处,延长EF交AB于点G,连接DG、BF.(1)求证:DG平分∠ADF;(2)若AB=12,求△EDG的面积.【解答】解:(1)∵正方形ABCD , ∴∠C =∠A =90°,DC =DA , ∵△DCE 沿DE 对折得到△DFE , ∴DF =DC ,∠DFE =∠C =90°, ∴∠DFG =∠A =90°,DF =DA , 在Rt △ADG 和Rt △FDG 中,{kk =kk kk =kk, ∴Rt △ADG ≌Rt △FDG (HL ),∴∠ADG =∠FDG ,即DG 平分∠ADF ;(2)∵正方形ABCD 中,AB =12,点E 是BC 边的中点, ∴BE =EC =EF =6,设AG =x ,则EG =6+x ,BG =12﹣x ,在Rt △BEG 中,根据勾股定理得,EG 2=BE 2+BG 2, 即(6+x )2=62+(12﹣x )2, 解得x =4,∴EG =6+4=10,∴△EDG 的面积=12EG ×DF =12×10×12=60.五.解答题(共2小题,满分20分,每小题10分)24.(10分)如图示,AB 是⊙O 的直径,点F 是半圆上的一动点(F 不与A ,B 重合),弦AD 平分∠BAF ,过点D 作DE ⊥AF 交射线AF 于点AF .(1)求证:DE 与⊙O 相切:(2)若AE =8,AB =10,求DE 长;(3)若AB =10,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF •EF 的最大值.【解答】(1)证明:连接OD,如图1所示:∵OD=OA,∴∠OAD=∠ODA,∵AD平分∠BAF,∴∠OAD=∠FAD,∴∠ODA=∠FAD,∴OD∥AF,∵DE⊥AF,∴DE⊥OD,又∵OD是⊙O的半径,∴DE与⊙O相切:(2)解:连接BD,如图2所示:∵AB是⊙O的直径,∴∠ADB=90°,∵DE⊥AF,∴∠AED=90°=∠ADB,又∵∠EAD=∠DAB,∴△AED∽△ADB,∴AD:AB=AE:AD,∴AD2=AB×AE=10×8=80,在Rt△AED中,由勾股定理得:DE=√kk2−kk2=√80−8=4;(3)连接DF,过点D作DG⊥AB于G,如图3所示:在△AED和△AGD中,{∠kkk=∠kkk=90°∠kkk=∠kkkkk=kk,∴△AED≌△AGD(AAS),∴AE=AG,DE=DG,∵∠FAD=∠DAB,∴kk̂=kk̂,∴DF=DB,在Rt△DEF和Rt△DGB中,{kk=kkkk=kk,∴Rt△DEF≌Rt△DGB(HL),∴EF=BG,∴AB=AG+BG=AF+EF=AF+EF+EF=AF+2EF,即:x+2y=10,∴y=−12x+5,∴AE•EF=−12x2+5x=−12(x﹣5)2+252,∴AF•EF有最大值,当x=5时,AF•EF的最大值为252.x2+bx+c与x轴交于点A、点B(4,25.(10分)如图1,抛物线y=−12x+4经过点C,与x轴交于点D,0),与y轴交于点C;直线y=−43点P是第一象限内抛物线上一动点.(1)求抛物线的解析式;(2)若∠PCB=∠DCB,求△PCD的面积;(3)如图2,过点C作直线l∥x轴,过点P作PH⊥l于点H,将△CPH绕点C顺时针旋转,使点H的对应点H′恰好落在直线CD上,同时使点P的对应点P′恰好落在坐标轴上,请直接写出此时点P 的坐标.x+4=4【解答】解:(1)∵当x=0时,y=−43∴C (0,4)∵抛物线y =−12x 2+bx +c 过点B (4,0)、C ∴{−8+4k +k =00+0+k =4 解得:{k =1k =4∴抛物线解析式为y =−12x 2+x +4(2)如图1,直线CP 与x 轴交于点G ,过点D 作DE ⊥CB 于点E ,交直线CP 于点F ,连接BF . ∴∠CED =∠CEF =90° 在△CDE 与△CFE 中{∠kkk =∠kkk kk =kk∠kkk =∠kkk∴△CDE ≌△CFE (ASA ) ∴DE =FE ,即BC 垂直平分DF ∴BD =BF∵B (4,0),C (0,4) ∴OB =OC ∴∠OBC =45°∴∠CBF =∠OBC =45° ∴∠DBF =90°∵当y =−43x +4=0时,解得:x =3 ∴D (3,0) ∴BF =BD =4﹣3=1 ∴F (4,1)设直线CF 解析式为y =kx +4 ∴4k +4=1 解得:k =−34∴直线CP :y =−34x +4当y =0时,−34x +4=0,解得:x =163∴G (163,0),DG =163−3=73 ∵{k =−34k +4k =−12k 2+k +4 解得:{k 1=0k 1=4(即点C ),{k 2=72k 2=118 ∴P (72,118)∴S △PCD =S △CDG ﹣S △PDG =12DG •OC −12DG •y P =12DG •(OC ﹣y P )=12×73×(4−118)=4916∴△PCD的面积为4916.(3)①若点P'落在y轴上,如图2,∵△CPH绕点C旋转得△CP'H',H'在直线CD上∴∠PCH=∠P'CH'∵∠OCB=∠BCH=45°∴∠OCB﹣∠OCH'=∠BCH﹣∠PCH即∠DCB=∠PCB由(2)可得此时点P(72,118).②若点P'落在x轴上,如图3,过点H'作MN⊥x轴于点M,交直线l于点N∴四边形OCNM是矩形∴MN=OC=4,∵OD=3,∠COD=90°∴CD=√kk2+kk2=5∴sin∠OCD=kkkk =35,cos∠OCD=kkkk=45,设点P 坐标(p ,−12p 2+p +4)(0<p <4)∴CH '=CH =p ,P 'H '=PH =4﹣(−12p 2+p +4)=12p 2﹣p ∵MN ∥y 轴 ∴∠CH 'N =∠OCD∴Rt △CNH '中,cos ∠CH 'N =kk′kk′=45∴NH '=45CH '=45p ∴MH '=MN ﹣NH '=4−45p ∵∠P 'MH '=∠P 'H 'C =90°∴∠P 'H 'M +∠CH 'N =∠P 'H 'M +∠H 'P 'M =90° ∴∠H 'P 'M =∠CH 'N∴Rt △H 'P 'M 中,sin ∠H 'P 'M =kk′k′k′=35∴4−45k 12k 2−k=35解得:p 1=﹣4(舍去),p 2=103∴−12p 2+p +4=−509+103+4=169∴P (103,169)综上所述,点P坐标为(72,118)或(103,169).。
广东省佛山市2020届中考数学仿真模拟试卷 (含解析)
广东省佛山市2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.−2011的相反数是()A. −2011B. −12011C. 2011 D. 120112.数据−1,0,0,1,2的中位数是()A. −1B. 0C. 1D. 23.点M(−1,−2)关于x轴对称的点的坐标为()A. (−1,−2)B. (1,−2)C. (−1,2)D. (1,2)4.若多边形的边数增加1,则其内角和的度数()A. 增加180°B. 其内角和为360°C. 其内角和不变D. 其外角和减少5.使式子√3x+2有意义的实数x的取值范围是()A. x≥0B. x>−23C. x≥−32D. x≥−236.若以△ABC各边中点为顶点的三角形的周长是18cm,则△ABC的周长是()A. 9cmB. 36cmC. 54cmD. 72cm7.抛物线y=(x+1)2的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=x2+bx+c,则b、c的值为()A. b=6,c=7B. b=−6,c=−11C. b=6,c=11D. b=−6,c=118.不等式组{3x−1≥x+1x+4<4x−2的解集是()A. x>2B. x≥1C. 1≤x<2D. x≥−19.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()A. 12B. √33C. 13D. √310.如图,抛物线y=ax2+bx+c与x轴交于点(−1,0),对称轴为x=1,则下列结论中正确的是()A. a>0B. 当x>1时,y随x的增大而增大C. c<0D. x=3是一元二次方程ax2+bx+c=0的一个根二、填空题(本大题共7小题,共28.0分)11.分解因式:3x2−6xy=______ .12.若单项式2a x+1b与−3a3b y+4是同类项,则x y=______.13.已知√2a+8+|b−√3|=0,则ab=______.14.若2x+3y的值为−2,则4x+6y+2的值为______ .BC长为半径画弧,两弧15.如图,分别以线段BC的两个端点为圆心,以大于12分别相交于D、E两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若AB=12cm,∠C=60°,则CF=______cm.16.如图,有一直径是√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为______ 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______米.17.如图,在平面直角坐标系中,A(4,0)、B(0,−3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+2y)(x−2y)+(20xy3−8x2y2)÷4xy,其中x=2018,y=2019.四、解答题(本大题共7小题,共56.0分)19.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.20.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.21. 已知方程组{5x +y =3ax +5y =4与方程组{x −2y =55x +by =1有相同的解,求a 、b 的值.22. 在⊙O 中,弦AB 与弦CD 交于点G ,OA ⊥CD 于点E ,过点B 的直线交CD 的延长线于点F ,且FG =FB .(1)如图1,求证:BF 为⊙O 的切线:(2)如图2,连接BD 、AC ,若BD =BG ,求证:AC//BF ;(3)在(2)的条件下,若,CD =1,求⊙O 的半径.23.某社区去年购买了A,B两种型号的共享单车,购买A种单车共花15000元,购买B种单车共花费14000元,购买A种单车的数量是购买B种单车数量的1.5倍,且购买一辆A种单车比购买一辆B种单车少200元.(1)求去年购买一辆A种和一辆B种单车各需要多少元?(2)为积极响应政府提出的“绿色发展·低碳出行”号召,该社区决定今年再买A,B两种型号的单车共60辆,恰逢厂家对A,B两种型号单车的售价进行调整,A种单车售价比去年购买时提高了10%,B种单车售价比去年购买时降低了10%,如果今年购买A,B两种单车的总量用不超过34000元,那么该社区今年最多购买多少辆B种单车?24.如图,已知直线y=−x+4与反比例函数y=k的图象相交于点A(−2,a),并且与x轴相交于点xB.(1)求a的值.(2)求反比例函数的表达式(3)求△AOB的面积.25.如图,抛物线y=−x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.-------- 答案与解析 --------1.答案:C解析:本题主要考查了相反数的定义,a的相反数是−a.根据相反数的定义即可求解.解:−2011的相反数是2011.故选C.2.答案:B解析:解:从小到大排列为:−1,0,0,1,2,则处于中间位置的是第3个数,所以中位数是0,故选B.先把这组数据从小到大排列起来,再根据中位数的定义进行解答即可.本题考查了中位数的定义:掌握中位数的定义即把数据按从小到大排列,最中间那个数或最中间两个数的平均数叫这组数据的中位数是解题的关键.3.答案:C解析:解:点M(−1,−2)关于x轴对称的点的坐标为(−1,2).故选:C.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.答案:A解析:解:是多边形的边数为n,则原多边形的内角和为(n−2)⋅180°,边数增加后的多边形的内角和为(n+1−2)⋅180°,∴(n+1−2)⋅180°−(n−2)⋅180°=180°,∴其内角和的度数增加180°.故选:A.根据多边形的内角和公式(n−2)⋅180°列式求解即可.本题考查了多边形的内角和公式,熟记公式是解题的关键.5.答案:D解析:根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式有意义的条件,二次根式的被开方数是非负数.解:由题可得,3x+2≥0,x≥−2,3故选D6.答案:B解析:本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的关键.如图:根据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.解:如图:∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴BC=2DF,AB=2EF,AC=2DE;∴AB+BC+AC=2EF+2DF+2DE=2(EF+DF+DE)=2×18=36.故选B.7.答案:C解析:此题主要考查了二次函数图象与几何变换,关键是掌握“左加右减,上加下减”的平移规律.根据平移的规律求得解析式,化成一般式即可求得.解:∵抛物线y=(x+1)2的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y= (x+1+2)2+2,即y=x2+6x+11,∴b=6,c=11.故选C.8.答案:A解析:解:解不等式3x−1≥x+1,得:x≥1,解不等式x+4<4x−2,得:x>2,则不等式组的解集为x>2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.答案:B解析:本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=1√3.3∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°,解:∵∠CBQ=∠PBQ=12∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=1√3.3故选:B.10.答案:D解析:解:A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;B、当x>1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;D、∵抛物线与x轴的一个交点坐标是(−1,0),对称轴是x=1,设另一交点为(x,0),−1+x=2×1,x=3,∴另一交点坐标是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一个根,故本选项正确.故选D.根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.11.答案:3x(x−2y)解析:解:3x2−6xy=3x(x−2y).故答案为:3x(x−2y).直接找出公因式提取进而得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:18解析:解:单项式2a x+1b与−3a3b y+4是同类项,∴x+1=3,y+4=1,∴x=2,y=−3.∴x y=2−3=1.8.故答案为:18依据同类项的相同字母指数相同列方程求解即可.本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.答案:−4√3解析:解:∵√2a+8+|b−√3|=0,∴2a+8=0,b−√3=0,解得a=−4,b=√3,ab=−4√3,故答案为−4√3.先根据非负数的性质求出a,b的值,代入求得ab的值.本题考查了非负数的性质,几个非负数的和为0,这几个数都为0.14.答案:−2解析:解:∵2x+3y=−2,∴原式=2(2x+3y)+2=2×(−2)+2=−2,故答案为:−2.将2x+3y=−2整体代入原式=2(2x+3y)+2即可得出答案.本题主要考查代数式的求值,熟练掌握整体代入的思想是解题的关键.15.答案:6解析:解:由作图可知:AE垂直平分线段BC,∴AB=AC,BF=CF,∴∠B=∠C=60°,∵AB=12cm,∠BAF=90°−60°=30°,∴BF=12AB=6(cm)故答案为:6.首先证明AB=AC,BF=CF,在Rt△ABF中求出BF即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.16.答案:(1)1;(2)14解析:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=√2,∴AB=√22BC=1;故答案为:1(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=90⋅π⋅1180,解得r=14.故答案为:14.(1)根据圆周角定理由∠BAC=90°得BC为⊙O的直径,即BC=√2,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=90⋅π⋅1,然后解180方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.17.答案:1.5解析:本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C的位置是解题关键,也是本题的难点.先确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=2.5,所以OC的最小值是1.5.解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5−2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5−1.5=2,即⊙D的半径为1,∵AD=1.5+1=2.5=1AB,2AB=2.5,∴OD=12∴OC=2.5−1=1.5,故答案为:1.5.18.答案:解:原式=x2−4y2+5y2−2xy=x2−2xy+y2,=(x−y)2,当x=2018,y=2019时,原式=(2018−2019)2=(−1)2=1.解析:先根据整式的混合运算顺序和运算法则化简原式,再将x与y的值代入计算可得.本题主要考查整式的混合运算−化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.19.答案:解:(1)根据题意得:n=6+33+26+20+15=100,答:n的值为100;×1100=385(人),(2)根据题意得:20+15100答:估计该校1100名学生中一年的课外阅读量超过10本的人数为385人.解析:(1)可直接由条形统计图,求得n的值;(2)首先求得统计图中课外阅读量超过10本的人数所占的百分比,继而求得答案.此题考查了条形统计图的知识以及由样本估计总体的知识.注意能准确分析条形统计图是解此题的关键.20.答案:证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC−∠ABD=∠ACB−∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC 是等腰三角形.解析:(1)由“SAS ”可证△ABD≌△ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE ,由等腰三角形的性质可得∠ABC =∠ACB ,可求∠OBC =∠OCB ,可得BO =CO ,即可得结论.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.21.答案:解:由题意得出:方程组{5x +y =3x −2y =5的解与题中两方程组解相同,解得:{x =1y =−2, 将x =1,y =−2代入ax +5y =4,解得:a −10=4,∴a =14,将x =1,y =−2,代入5x +by =1,得5−2b =1,∴b =2.解析:根据题意得出方程组{5x +y =3x −2y =5的解与题中两方程组解相同,进而得出x ,y 的值代入另两个方程求出a ,b 的值即可.此题主要考查了二元一次方程的解,根据题意得出两方程的同解方程是解题关键.22.答案:证明:(1)如图,连接OB ,∵FG =FB ,∴∠FGB =∠FBG ,∵OA =OB ,∴∠OAB =∠OBA ,∵OA ⊥CD ,∴∠OAB +∠AGC =90°,又∵∠FGB =∠FBG ,∠FGB =∠AGC ,∴∠FBG+∠OBA=90°,即∠OBF=90°,∴OB⊥FB,∵AB是⊙O的弦,∴点B在⊙O上,∴BF是⊙O的切线;(2)∵BD=BG,∴∠DGB=∠GDB,∵∠CAB和∠BDC都是弧BC所对的圆周角,∴∠CAB=∠BDC,∴∠CAB=∠FGB,∵∠FGB=∠FBG,∴∠CAB=∠GBF,∴AC//FB;(3)∵OA⊥CD,CD=1,∴CE=CD=.∵AC//BF,∴∠ACE=∠F,∴tan∠ACE=tan∠F,∵tan∠F=,∴tan∠ACE=,∴,即,∴AE=.如图,连接OC,设⊙O的半径为R,在Rt△CEO中,CO2=CE2+OE2,即,解得R=,即⊙O的半径为.解析:本题考查的是圆的综合题,涉及到切线的判定,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,熟练掌握和各种几何图形有关的定理及性质是解本题的关键.(1)连接OC,OB,根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可;(2)由已知条件易证∠DGB=∠GDB,因为∠CAB和∠BDC都是弧BC所对的圆周角,所以∠CAB=∠BDC,进而可证明∠CAB=∠GBF,则AC//BF;(3)根据垂径定理求得CE=.再根据已知条件易证∠ACE=∠F,所以tan∠F=tan∠ACE=,易求AE的长度.设⊙O的半径为R,在Rt△CEO中,CO2=CE2+OE2,,解方程求出R的值即可.23.答案:解:(1)设购买一辆B型单车的成本为x元,则购买一辆A型单车的成本为(x−200)元,可得:15000 x−200=1.5×14000x,解得:x=700,经检验x=700是原方程的解,700−200=500,答:去年购买一辆A种和一辆B种单车各需要500元,700元;(2)设购买B型单车m辆,则购买A型单车(60−m)辆,可得;700×(1−10%)m+500×(1+10%)(60−m)≤34000,解得:m≤12.5,∵m是正整数,∴m的最大值是12,答:该社区今年最多购买B种单车12辆.解析:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程:(2)根据总价=单价×数量结合总成本不超过3.4万元,列出关于m的一元一次不等式.(1)设购买一辆B型单车的成本为x元,则购买一辆A型单车的成本为(x−200)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买B型单车m辆,则购买A型单车(60−m)辆,根据购买A、B两种单车的总费用不超过34000元,即可得出关于m的一元一次不等式,解之即可得出结论;24.答案:(1)6;(2)y=−12x;(3)12.解析:[分析](1)点A在直线y=−x+4,故点A(−2,a)满足y=−x+4即可(2)用待定系数法,把(1)中点A的坐标代入y=kx即可(3)△AOB的面积=底×高÷2,过A点作AD⊥x轴于D,求出AD,OB即可.[详解]解:(1)将A(−2,a)代入y=−x+4中,得:a=−(−2)+4所以a=6.(2)由(1)得:A(−2,6),将A(−2,6)代入y=kx 中,得到6=k−2即k=−12,所以反比例函数的表达式为:y=−12x,(3)如图:过A点作AD⊥x轴于D;因为A(−2,6)所以 AD =6,在直线y =−x +4中,令y =0,得x =4,所以B(4,0)即OB =4 ,所以△AOB 的面积S =12OB ×AD =12×4×6=12.[点睛]熟练掌握解析式的求法,在进行与线段有关的计算时,注意点的坐标与线段长度的关系.25.答案:解:(1)由题意得,−1+5+n =0,解得,n =−4,∴抛物线的解析式为y =−x 2+5x −4;(2)y =−x 2+5x −4=−(x −52)2+94, 抛物线对称轴为:x =52,顶点坐标为 (52,94);(3)∵点A 的坐标为(1,0),点B 的坐标为(0,−4),∴OA =1,OB =4,在Rt △OAB 中,AB =√OA 2+OB 2=√17,①当PB =PA 时,PB =√17,∴OP =PB −OB =√17−4,此时点P 的坐标为(0,√17−4),②当PA =AB 时,OP =OB =4,此时点P 的坐标为(0,4).解析:本题考查的是待定系数法求函数解析式、定义三角形的性质,掌握待定系数法求出函数解析式的一般步骤、灵活运用分情况讨论思想是解题的关键.(1)把点A 的坐标代入解析式,计算即可;(2)利用配方法把一般式化为顶点式,根据二次函数的性质解答;(3)分PB =PA 、PA =AB 两种情况,根据等腰三角形的性质解答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东中考数学复习各地区2018-2020年模拟试题分类(佛山专版)(2)——方程与不等式一.选择题(共21小题)1.(2020•南海区一模)如果4是方程x 2﹣6x +k =0的一个根,则方程的另一个根是( )A .2B .3C .4D .52.(2020•三水区校级三模)某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2018年起到2020年累计投入5250万元,已知2018年投入1500万元,设投入经费的年平均增长率为x ,根据题意,下列所列方程正确的是( )A .1500 (1+x ) 2=5250B .1500 (1+2x )=5250C .1500+1500x +1500x 2=5250D .1500+1500 (1+x )+1500 (1+x ) 2=52503.(2020•三水区校级二模)不等式组{x −1<12x −4≤4x +4的解集在数轴上表示正确的是( ) A . B .C .D .4.(2020•三水区校级二模)若关于x 的一元二次方程x 2﹣2√3x +m =0有两个实数根,则m 的取值范围是( )A .m ≥32B .m ≤32C .m ≥3D .m ≤3 5.(2020•南海区校级模拟)关于x 的一元二次方程ax 2+5x +3=0有两个不相等的实数根,则实数a 的取值范围是( )A .a <2512且a ≠0B .a >2512C .a ≤2512且a ≠0D .a ≥2512 6.(2020•顺德区三模)为了防治“新型冠状病毒”,某小区购买了某品牌消毒液用作楼梯消毒.使用这种消毒液时必须先稀释,使稀释浓度不小于0.3%且不大于0.5%.若一瓶消毒液净含量为1L ,那么一瓶消毒液稀释到最小浓度需用水多少L ?设一瓶消毒液稀释到最小浓度需用水xL ,下列方程正确的是( )A .11+x ×100%=0.3% B .11+x ×100%=0.5% C .x 1+x ×100%=0.3% D .x 1+x ×100%=0.5% 7.(2020•顺德区三模)下列关于x 的一元二次方程,一定有两个不相等的实数根的是( )A .x 2+kx ﹣1=0B .x 2+kx +1=0C .x 2+x ﹣k =0D .x 2+x +k =08.(2020•顺德区校级模拟)已知方程mx +2y =﹣2,当x =3时y =5,那么m 为( )A .83B .−83C .﹣4D .85 9.(2020•顺德区模拟)下列等式中不是一元一次方程的是( )A .2x ﹣5=21B .40+5x =100C .(1+147.30%)x =8930D .x (x +25)=585010.(2020•顺德区模拟)下列等式变形不正确的是( )A .若3x =3y ,则x =yB .若x ﹣3=y ﹣3,则ax =ayC .若x =y ,则xx +1=x x +1D .若ax =ay ,则x =y11.(2020•顺德区模拟)下列说法正确的是( )A .如果ab =ac ,那么b =cB .如果2x =2a ﹣b ,那么x =a ﹣bC .如果a =b ,那么a +2=b +3D .如果x x =x x ,那么b =c12.(2020•顺德区模拟)解方程2x +x −13=2−3x −12,去分母,得( )A .12x +2(x ﹣1)=12+3(3x ﹣1)B .12x +2(x ﹣1)=12﹣3(3x ﹣1)C .6x +(x ﹣1)=4﹣(3x ﹣1)D .12x ﹣2(x ﹣1)=12﹣3(3x ﹣1)13.(2020•顺德区模拟)一套仪器由一个A 部件和三个B 部件构成,用1m 3钢材可做40个A 部件或240个B 部件,现要用6m 3钢材制作这种仪器,设应用xm 3钢材做B 部件,其他钢材做A 部件,恰好配套,则可列方程为( )A .3×40x =240(6﹣x )B .3×240x =40(6﹣x )C .40x =3×240(6﹣x )D .240x =3×40(6﹣x )14.(2020•南海区一模)甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( )A .30x =45x +6 B .30x =45x −6 C .30x −6=45x D .30x +6=45x 15.(2020•顺德区模拟)不等式2(x ﹣2)≤x ﹣1的非负整数解的个数为( )A .1个B .2个C .3个D .4个16.(2019•禅城区模拟)不等式组{x −2<22x +1>−x −5的解集是( ) A .x >4 B .﹣2<x <0 C .﹣2<x <4 D .无解17.(2019•南海区模拟)在平面直角坐标系中,若点P (m ﹣1,m +2)在第二象限,则m 的取值范围是( )A .m <﹣2B .m >1C .m >﹣2D .﹣2<m <118.(2019•南海区三模)“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x +1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 19.(2018•禅城区二模)一元二次方程x 2+3x ﹣m =0有两个不相等的实数根,则实数m 的取值范围是( )A .m >−94B .m ≥−94C .m <−94D .m >−94且m ≠0 20.(2018•南海区校级二模)关于x 的一元二次方程x 2+2x ﹣m =0有实数根,则m 的取值范围是( )A .m ≥﹣1B .m >﹣1C .m ≤﹣1D .m <﹣121.(2018•南海区校级二模)不等式组{2−x >15x >3(x −2)的解集是( ) A .x >1 B .﹣3<x <1 C .x >﹣3 D .无解二.填空题(共10小题)22.(2020•南海区校级模拟)不等式组{x −4<02x +2≥0的解集是 . 23.(2020•禅城区二模)不等式组:{2x −1>13(x −2)<x的解集为 . 24.(2020•顺德区四模)对于实数m 、n ,定义一种运算“※”为:m ※n =mn +n .如果关于x 的方程(a ※x )※x =12有两个相等的实数根,则实数a 的值 . 25.(2020•禅城区模拟)五一期间,青年旅行社组织一个团;老师和学生共50人组成的旅行团到凤凰古城旅游,景区门票售票标准是:成人门票50元/张,学生门票20元/张,该旅行团购买门票共花费1800元,若设该团购买成人门票x 张,则可列方程为: .26.(2020•顺德区校级模拟)某学校需要购买一批电脑,有两种方案如下:方案1:到商家直接购买,每台需要7000元;方案2:学校买零部件组装,每台需要6000元,另外需要支付安装费等其它费用合计3000元.学校添置 台电脑时,两种方案的费用相同.27.(2020•顺德区模拟)若方程2x +y =3,2x ﹣my =﹣1,3x ﹣y =2有公共解,则m 的值为 .28.(2020•顺德区模拟)x 等于 数时,代数式3x −23的值比4x −14的值的2倍小1.29.(2020•三水区一模)不等式组{x −3<0x +1≥0的解集是 . 30.(2019•禅城区一模)已知关于x 的一元二次方程x 2+bx +1=0有两个相等的实数根,则b 的值为 .31.(2018•南海区二模)2x >3x ﹣1的解集为 .三.解答题(共8小题)32.(2020•南海区一模)某物流公司承接A 、B 两种抗疫物资的运输业务,已知2月份A 货物运费单价为70元/吨,B 货物运费单价为40元/吨,共收取运费130000元;3月份由于油价下调,运费单价下降为:A 货物50元/吨,B 货物30元/吨;该物流公司3月承接的A 种货物和B 种数量与2月份相同,3月份共收取运费95000元.(1)该物流公司2月份运输两种货物各多少吨?(2)该物流公司预计4月份运输这两种货物3300吨,且A 货物的数量不大于B 货物的2倍,在运费单价与3月份相同的情况下,该物流公司4月份最多将收到多少运费?33.(2020•三水区一模)在2月份“抗疫”期间,某药店销售A 、B 两种型号的口罩,已知销售800只A 型和450只B 型的利润为210元,销售400只A 型和600只B 型的利润为180元.求每只A 型口罩和B 型口罩的销售利润.34.(2020•禅城区一模)某县政府计划拨款34000元为福利院购买彩电和冰箱,已知商场彩电标价为2000元/台,冰箱标价为1800元/台,如按标价购买两种家电,恰好将拨款全部用完.(1)问原计划购买的彩电和冰箱各多少台?(2)购买的时候恰逢商场正在进行促销活动,全场家电均降价15%进行销售,若在不增加县政府实际负担的情况下,能否比原计划多购买3台冰箱?请通过计算回答.35.(2020•三水区一模)如图,在矩形ABCD 中,AB =8cm ,BC =16cm ,点P 从点A 沿边AB 向点B 以1cm /s 的速度移动,同时点Q 从点B 沿边BC 向点C 以2cm /s 的速度移动,有一点到终点运动即停止,设运动时间为t 秒.(1)t 为何值时,△PBQ 的面积为12cm 2;(2)若PQ ⊥DQ ,求t 的值.36.(2019•南海区二模)某旅游团于早上8:00从某旅行社出发,乘大巴车前往“珠海长隆”旅游,“珠海长隆”离该旅行社有100千米,导游张某因有事情,于8:30从该旅行社自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比该旅游团提前20分钟到达“珠海长隆”.(1)大巴与小车的平均速度各是多少?(2)导游张某追上大巴的地点到“珠海长隆”的路程有多远?37.(2019•顺德区三模)某单位需要购买一些钢笔和笔记本.若购买2支钢笔和1本笔记本需42元,购买3支钢笔和2本笔记本需68元.(1)求买一支钢笔要多少钱?(2)若购买了钢笔和笔记本共50件,付款可能是810元吗?说明理由.38.(2018•禅城区二模)为了响应“足球进校园”的号召,某校计划为学校足球队购买一批足球,若购买1个A 品牌的足球和1个B 品牌的足球共需140元;若购买4个A 品牌的足球和2个B 品牌的足球共需360元.(1)购买一个A ,B 品牌的足球各需多少元?(2)已知该校需购买10个足球,且总费用不超过800元,则最多能购买多少个B 品牌的足球?39.(2018•南海区一模)某文教店老板到批发市场选购A 、B 两种品牌的绘图工具套装,每套A 品牌套装进价比B品牌每套套装进价多2.5元,已知用200元购进A种套装的数量是用75元购进B种套装数量的2倍.(1)求A、B两种品牌套装每套进价分别为多少元?(2)若A品牌套装每套售价为13元,B品牌套装每套售价为9.5元,店老板决定,购进B品牌的数量比购进A品牌的数量的2倍还多4套,两种工具套装全部售出后,要使总的获利超过120元,则最少购进A品牌工具套装多少套?广东中考数学复习各地区2018-2020年模拟试题分类(佛山专版)(2)——方程与不等式参考答案与试题解析一.选择题(共21小题)1.【答案】A【解答】解:把x =4代入方程得:16﹣24+k =0,解得:k =8,即方程为x 2﹣6x +8=0,解得:x 1=2,x 2=4,故选:A .2.【答案】D【解答】解:设投入经费的年平均增长率为x ,根据题意得:1500+1500 (1+x )+1500 (1+x ) 2=5250.故选:D .3.【答案】A【解答】解:{x −1<1①2x −4≤4x +4x , 解不等式①得,x <2,解不等式①得,x ≥﹣4在数轴上表示为:故选:A .4.【答案】D【解答】解:∵关于x 的一元二次方程x 2﹣2√3x +m =0有两个实数根,∴△=12﹣4m ≥0,∴m ≤3.故选:D .5.【答案】A【解答】解:∵关于x 的一元二次方程ax 2+5x +3=0有两个不相等的实数根,∴△=b 2﹣4ac =52﹣4×a ×3=25﹣12a >0,解得:a <2512, ∵方程ax 2+5x +3=0是一元二次方程,∴a ≠0,∴a 的范围是:a <2512且a ≠0. 故选:A .6.【答案】A【解答】解:依题意,得:11+x ×100%=0.3%.故选:A .7.【答案】A【解答】解:A 、△=k 2﹣4×1×(﹣1)=k 2+4>0,一定有两个不相等的实数根,符合题意;B 、△=k 2﹣4×1×1=k 2﹣4,可能小于等于0,不一定有两个不相等的实数根,不符合题意;C 、△=12﹣4×1×(﹣k )=1+4k ,可能小于等于0,不一定有两个不相等的实数根,不符合题意;D 、△=12﹣4×1×k =1﹣4k ,可能小于等于0,不一定有两个不相等的实数根,不符合题意. 故选:A .8.【答案】C【解答】解:把x =3,y =5代入方程得:3m +10=﹣2,移项合并得:3m =﹣12,解得:m =﹣4,故选:C .9.【答案】D【解答】解:x (x +25)=5850是一元二次方程,故选:D .10.【答案】D【解答】解:∵若3x =3y ,则x =y ,∴选项A 不符合题意;∵若x ﹣3=y ﹣3,则x =y ,∴ax =ay ,∴选项B 不符合题意;∵若x =y ,则xx 2+1=x x 2+1, ∴选项C 不符合题意;∵ax =ay ,a =0时,x 可以不等于y ,∴选项D 符合题意.故选:D .11.【答案】D【解答】解:∵如果ab =ac ,那么b =c 或b ≠c (a =0),∴选项A 不符合题意;∵如果2x =2a ﹣b ,那么x =a ﹣0.5b ,∴选项B 不符合题意;∵如果a =b ,那么a +2=b +2,∴选项C 不符合题意;∵如果x x =x x ,那么b =c ,∴选项D 符合题意.故选:D .12.【答案】B【解答】解:方程2x +x −13=2−3x −12,去分母,得 12x +2(x ﹣1)=12﹣3(3x ﹣1)故选:B .13.【答案】D【解答】解:设应用xm 3钢材做B 部件,则应用(6﹣x )m 3钢材做A 部件,由题意得,240x =3×40(6﹣x )故选:D .14.【答案】A【解答】解:设甲每小时做x 个,乙每小时做(x +6)个,根据甲做30个所用时间与乙做45个所用时间相等,得30x =45x +6,故选:A .15.【答案】D【解答】解:2x ﹣4≤x ﹣1x ≤3∵x 是非负整数,∴x =0,1,2,3故选:D .16.【答案】C【解答】解:{x −2<2①2x +1>−x −5x, 解①得x <4,解①得x >﹣2,所以不等式组的解集为﹣2<x <4,故选:C .17.【答案】D【解答】解:根据题意,得:{x −1<0x +2>0, 解得﹣2<m <1,故选:D .18.【答案】B【解答】解:由题意得,x (x ﹣1)=210,故选:B .19.【答案】A【解答】解:根据题意得△=32﹣4(﹣m )>0,解得m >−94. 故选:A .20.【答案】A【解答】解:∵关于x 的一元二次方程x 2+2x ﹣m =0有实数根,∴△=22﹣4×1×(﹣m )=4+4m ≥0,解得:m ≥﹣1.故选:A .21.【答案】B【解答】解:{2−x >1①5x >3(x −2)x∵解不等式①得:x <1,解不等式①得:x >﹣3,∴不等式组的解集为﹣3<x <1,故选:B .二.填空题(共10小题)22.【答案】﹣1≤x <4.【解答】解:解不等式x ﹣4<0,得:x <4,解不等式2x +2≥0,得:x ≥﹣1,则不等式组的解集为﹣1≤x <4,故答案为:﹣1≤x <4.23.【答案】见试题解答内容【解答】解:解不等式2x ﹣1>1,得:x >1,解不等式3(x ﹣2)<x ,得:x <3,则不等式组的解集为1<x <3,故答案为:1<x <3.24.【答案】见试题解答内容【解答】解:∵a ※x =ax +x ,(ax +x )※x =(ax +x )x +x ,∵(a ※x )※x =12,∴(ax +x )x +x =12, 整理得(a +1)x 2+x −12=0,根据题意得a +1≠0且△=12﹣4(a +1)×(−12)=0,∴a =−32. 故答案为−32.25.【答案】见试题解答内容【解答】解:设该团购买成人门票x 张,由题意得:50x +20(50﹣x )=1800,故答案为:50x +20(50﹣x )=1800.26.【答案】见试题解答内容【解答】解:设学校添置x 台电脑,由题意,得7000x =6000x +3000,解得x =3,答:当学校添置3台电脑时,两种方案的费用相同;故答案是:3.27.【答案】见试题解答内容【解答】解:∵方程2x +y =3,2x ﹣my =﹣1,3x ﹣y =2有公共解,∴{2x +x =3①3x −x =2x , ①+①得:x =1,故y =1,故方程组的解为:{x =1x =1, 故2﹣m =﹣1,解得:m =3.故答案为:3.28.【答案】见试题解答内容【解答】解:根据题意得:3x −23=2×4x −14−1,即3x −23=4x −12−1, 去分母得:2(3x ﹣2)=3(4x ﹣1)﹣6,去括号得:6x ﹣4=12x ﹣3﹣6,移项合并得:﹣6x =﹣5,解得:x =56,故答案为:56 29.【答案】见试题解答内容【解答】解:{x −3<0x +1≥0, 解不等式x ﹣3<0,得:x <3,解不等式x +1≥0,得:x ≥﹣1,故不等式组的解集为:1≤x <3,故答案为:﹣1≤x <3.30.【答案】见试题解答内容【解答】解:根据题意知,△=b 2﹣4=0,解得:b =±2,故答案为:±2.31.【答案】见试题解答内容【解答】解:移项,得:2x ﹣3x >﹣1,合并同类项,得:﹣x >﹣1,系数化为1,得:x <1,故答案为:x <1.三.解答题(共8小题)32.【答案】(1)该物流公司2月份运输A 货物1000吨,运输B 货物1500吨;(2)该物流公司4月份最多将收到143000元运费.【解答】解:(1)设该物流公司2月份运输A 货物x 吨,运输B 货物y 吨,依题意,得:{70x +40x =13000050x +30x =95000, 解得:{x =1000x =1500. 答:该物流公司2月份运输A 货物1000吨,运输B 货物1500吨.(2)设该物流公司预计4月份运输B 货物m 吨,则运输A 货物(3300﹣m )吨,依题意,得:3300﹣m ≤2m ,解得:m ≥1100.设该物流公司4月份共收到w 元运费,则w =50(3300﹣m )+30m =﹣20m +165000, ∵﹣20<0,∴w 随m 的增大而减小,∴当m =1100时,w 取得最大值,最大值=﹣20×1100+165000=143000.答:该物流公司4月份最多将收到143000元运费.33.【答案】每只A 型口罩销售利润为0.15元,每只B 型口罩销售利润为0.2元.【解答】解:设每只A 型口罩销售利润为a 元,每只B 型口罩销售利润为b 元,根据题意得: {800x +450x =210400x +600x =180, 解得{x =0.15x =0.2, 答:每只A 型口罩销售利润为0.15元,每只B 型口罩销售利润为0.2元.34.【答案】见试题解答内容【解答】解:(1)设原计划购买彩电x 台,冰箱y 台,根据题意得:2000x +1800y =34000,化简得:10x +9y =170.∵x ,y 均为正整数,∴x =8,y =10,答:原计划购买彩电8台,冰箱10台;(2)设比原计划多购买z 台冰箱,依题意有1800×(1﹣15%)z =34000×15%,解得z =103,∵103>3,∴能比原计划多购买3台冰箱.答:能比原计划多购买3台冰箱.35.【答案】见试题解答内容【解答】解:(1)设x 秒后△PBQ 的面积等于8cm 2.则AP =x ,QB =2x .∴PB =8﹣x .∴12×(8﹣x )2x =12,解得x 1=2,x 2=6,答:2秒或6秒后△PBQ 的面积等于8cm 2;(2)设x 秒后PQ ⊥DQ 时,则∠DQP 为直角,∴△BPQ ∽△CQD ,∴xx xx =xx xx ,设AP =x ,QB =2x .∴8−x16−2x =2x 8,解得:x =2或8,经检验x =2是原分式方程的根,x =8是增根.答:2秒后PQ ⊥DQ .36.【答案】见试题解答内容【解答】解:(1)设大巴的平均速度为x 千米/时,则小车的平均速度为1.5x 千米/时, 根据题意得:100x =1001.5x +12+13, 解得:x =40,经检验x =40是分式方程的解,且1.5×40=60,则大巴与小车的平均速度各是40千米/时,60千米/时;(2)设导游张某追上大巴的地点到“珠海长隆”的路程为y 千米,由题意得:100−x 40=100−x 60+12, 解得:y =40,经检验y =40是分式方程的解,且符合题意,则导游张某追上大巴的地点到“珠海长隆”的路程有40千米.37.【答案】见试题解答内容【解答】解:(1)设一支钢笔x 元,一本笔记本y 元,根据题意得:{2x +x =423x +2x =68, 解得:{x =16x =10. 答:一支钢笔16元,一本笔记本10元.(2)设学校购买m 支钢笔,则购买(50﹣m )本笔记本,根据题意得:16m +10(50﹣m )=810,解得:m =5123>50,不符合题意.答:若购买了钢笔和笔记本共50件,付款不可能是810元.38.【答案】见试题解答内容【解答】解:(1)设购买一个A 品牌的足球需要x 元、购买一个B 品牌的足球需要y 元,根据题意,得:{x +x =1404x +2x =360, 解得:{x =40x =100, 答:购买一个A 品牌的足球需要40元、购买一个B 品牌的足球需要100元;(2)设购买B 品牌足球a 个,则购买A 品牌足球(10﹣a )个,根据题意,得:40(10﹣a )+100a ≤800,11 / 11 解得:a ≤623,∵a 为整数,∴a =6,即最多能购买6个B 品牌的足球.39.【答案】见试题解答内容【解答】解:(1)设B 种品牌套装每套进价为x 元,则A 种品牌套装每套进价为(x +2.5)元.根据题意得:200x +2.5=2×75x , 解得:x =7.5,经检验,x =7.5为分式方程的解,∴x +2.5=10.答:A 种品牌套装每套进价为10元,B 种品牌套装每套进价为7.5元.(2)解:设购进A 品牌工具套装a 套,则购进B 品牌工具套装(2a +4)套,根据题意得:(13﹣10)a +(9.5﹣7.5)(2a +4)>120,解得:a >16,∵a 为正整数,∴a 取最小值17.答:最少购进A 品牌工具套装17套.。