高考数学导数压轴题7大题型总结

合集下载

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。

方法:f'(x)为在x=x处的切线的斜率。

题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。

方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。

例题:已知函数f(x)=x-3x。

1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。

提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。

将问题转化为关于x,m的方程有三个不同实数根问题。

答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。

1)求过点(1,-3)与曲线y=x-3x相切的直线方程。

(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。

题型3:求两个曲线y=f(x)、y=g(x)的公切线。

方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例题:求曲线y=x与曲线y=2elnx的公切线方程。

(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。

(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。

高考导数压轴题型归类总结

高考导数压轴题型归类总结

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母范围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .)(x g '(2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--.令0=y ,得12122x ax x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值.解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

高考数学导数压轴题7大题型的总结

高考数学导数压轴题7大题型的总结

高考数学导数压轴题7大题型总结
北京八中
高考数学导数压轴题7大题型总结
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。

导数解答题是高考数学必考题目,今天就总结导数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题
01导数单调性、极值、最值的直接应用
02交点与根的分布
03不等式证明(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
04不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
05函数与导数性质的综合运用
06导数应用题
07导数结合三角函数
实用标准
文案大全。

高考导数压轴题型归类总结

高考导数压轴题型归类总结

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母范围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .)(x g '(2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--.令0=y ,得12122x ax x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值.解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

导数压轴题12类常考题型

导数压轴题12类常考题型

导数压轴题12类常考题型导数是微积分中的重要概念,常常在各种数学问题中应用。

下面我将列举12类常考的导数题型,并从多角度进行解析。

1. 基本函数的导数:常数函数的导数,常数的导数为0。

幂函数的导数,幂函数的导数可以使用幂函数的导数公式进行求解。

指数函数的导数,指数函数的导数等于函数本身乘以底数的自然对数。

对数函数的导数,对数函数的导数可以使用对数函数的导数公式进行求解。

三角函数的导数,三角函数的导数可以使用三角函数的导数公式进行求解。

2. 反函数的导数:如果函数f(x)和g(x)互为反函数,则f'(x)和g'(x)互为相反数。

3. 复合函数的导数(链式法则):如果y=f(u)和u=g(x)是可导函数,则复合函数y=f(g(x))的导数可以使用链式法则进行求解。

4. 隐函数的导数:如果有一个方程F(x, y) = 0定义了y作为x的函数,则可以使用隐函数定理和求导法则求解隐函数的导数。

5. 参数方程的导数:如果有一个参数方程x=f(t)和y=g(t),则可以使用导数的定义求解参数方程的导数。

6. 反常导数:如果函数在某些点上不可导,但在其他点上可导,则称这个函数具有反常导数。

7. 高阶导数:如果一个函数的导数仍然可导,则可以计算其高阶导数。

8. 导数在几何中的应用:导数可以用来求函数的切线和法线方程,以及判定函数的极值和拐点。

9. 导数在物理中的应用:导数可以用来描述物体的速度、加速度等物理量。

10. 导数在经济学中的应用:导数可以用来分析经济学模型中的边际效应和弹性。

11. 导数在生物学中的应用:导数可以用来描述生物学模型中的生长速率和变化率。

12. 导数在工程中的应用:导数可以用来优化工程问题,如最小化成本、最大化效益等。

以上是导数常考题型的一些分类和解析,希望能帮助到你。

如果你有具体的导数问题,欢迎继续提问。

高中数学导数大题八类题型总结

高中数学导数大题八类题型总结

导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。

(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。

高三导数压轴题题型归纳

高三导数压轴题题型归纳

导数压轴题题型1. 高考命题回顾例1已知函数fx =e x-lnx +m .2013全国新课标Ⅱ卷1设x =0是fx 的极值点,求m,并讨论fx 的单调性; 2当m≤2时,证明fx>0.1解 fx =e x -ln x +mf ′x =e x -错误!f ′0=e 0-错误!=0m =1,定义域为{x |x >-1},f ′x =e x -错误!=错误!,显然fx 在-1,0上单调递减,在0,+∞上单调递增. 2证明 gx =e x -ln x +2,则g ′x =e x -错误!x >-2. hx =g ′x =e x -错误!x >-2h ′x =e x +错误!>0, 所以hx 是增函数,hx =0至多只有一个实数根,又g ′-错误!=错误!-错误!<0,g ′0=1-错误!>0, 所以hx =g ′x =0的唯一实根在区间错误!内,设g ′x =0的根为t ,则有g ′t =e t -错误!=0错误!, 所以,e t =错误!t +2=e -t ,当x ∈-2,t 时,g ′x <g ′t =0,gx 单调递减; 当x ∈t ,+∞时,g ′x >g ′t =0,gx 单调递增; 所以gx min =gt =e t -ln t +2=错误!+t =错误!>0, 当m ≤2时,有ln x +m ≤ln x +2,所以fx =e x -ln x +m ≥e x -ln x +2=gx ≥gx min >0.例2已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=-2012全国新课标1求)(x f 的解析式及单调区间;2若b ax x x f ++≥221)(,求b a )1(+的最大值; 11211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+令1x =得:(0)1f =得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+()10()x g x e y g x '=+>⇒=在x R ∈上单调递增得:()f x 的解析式为21()2x f x e x x =-+且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞221()()(1)02x f x x ax b h x e a x b ≥++⇔=-+-≥得()(1)x h x e a '=-+①当10a +≤时,()0()h x y h x '>⇒=在x R ∈上单调递增 x →-∞时,()h x →-∞与()0h x ≥矛盾②当10a +>时,()0ln(1),()0ln(1)h x x a h x x a ''>⇔>+<⇔<+得:当ln(1)x a =+时,min ()(1)(1)ln(1)0h x a a a b =+-++-≥ 令22()ln (0)F x x x x x =->;则()(12ln )F x x x '=-当x =,max ()2e F x =当1,a b ==,(1)a b +的最大值为2e 例3已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=;2011全国新课标Ⅰ求a 、b 的值;Ⅱ如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围; 解Ⅰ221(ln )'()(1)x x b x f x x x α+-=-+ 由于直线230x y +-=的斜率为12-, 且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩ 解得1a =,1b =;Ⅱ由Ⅰ知ln 1f ()1x x x x =++,所以 22ln 1(1)(1)()()(2ln )11x k k x f x x x x x x---+=+--; 考虑函数()2ln h x x =+2(1)(1)k x x--(0)x >,则22(1)(1)2'()k x x h x x -++=;i 设0k ≤,由222(1)(1)'()k x x h x x+--=知,当1x ≠时,'()0h x <,hx 递减;而(1)0h = 故当(0,1)x ∈时, ()0h x >,可得21()01h x x >-; 当x ∈1,+∞时,hx<0,可得211x - hx>0从而当x>0,且x ≠1时,fx-1ln -x x +x k >0,即fx>1ln -x x +xkii 设0<k<1.由于2(1)(1)2k x x -++=2(1)21k x x k -++-的图像开口向下,且244(1)0k ∆=-->,对称轴x=111k >-.当x ∈1,k -11时,k-1x 2 +1+2x>0,故'hx>0,而h1=0,故当x ∈1,k -11时,hx>0,可得211x -hx<0,与题设矛盾; iii 设k ≥1.此时212x x +≥,2(1)(1)20k x x -++>⇒'h x>0,而h1=0,故当x ∈1,+∞时,hx>0,可得211x - hx<0,与题设矛盾;综合得,k 的取值范围为-∞,0例4已知函数fx =x 3+3x 2+ax+be -x. 2009宁夏、海南1若a =b =-3,求fx 的单调区间;2若fx 在-∞,α,2,β单调增加,在α,2,β,+∞单调减少,证明β-α>6. 解: 1当a =b =-3时,fx =x 3+3x 2-3x -3e -x ,故f′x=-x 3+3x 2-3x -3e -x +3x 2+6x -3e-x=-e -x x 3-9x =-xx -3x+3e -x.当x <-3或0<x <3时,f′x>0;当-3<x <0或x >3时,f′x<0. 从而fx 在-∞,-3,0,3单调增加,在-3,0,3,+∞单调减少. 2f′x=-x 3+3x 2+ax+be -x +3x 2+6x+ae -x =-e -x x 3+a -6x+b -a. 由条件得f′2=0,即23+2a -6+b -a =0,故b =4-a.从而f′x=-e -x x 3+a -6x+4-2a.因为f′α=f′β=0,所以x 3+a -6x+4-2a =x -2x -αx-β=x -2x 2-α+βx+αβ. 将右边展开,与左边比较系数,得α+β=-2,αβ=a -2. 故a 4124)(2-=-+=-αβαβαβ.又β-2α-2<0,即αβ-2α+β+4<0.由此可得a <-6. 于是β-α>6. 2. 在解题中常用的有关结论※①构造函数,最值定位分类讨论,区间划分极值比较零点存在性定理应用二阶导转换 例1切线设函数a x x f -=2)(.1当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;2当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:ax x >>21.例2最值问题,两边分求已知函数1()ln 1af x x ax x-=-+-()a ∈R . ⑴当12a ≤时,讨论()f x 的单调性; ⑵设2()2 4.g x x bx =-+当14a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,求实数b 取值范围.②例3切线交点已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=.⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.例4综合应用已知函数.23)32ln()(2x x x f -+=⑴求fx 在0,1上的极值;⑵若对任意0]3)(ln[|ln |],31,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;⑶若关于x 的方程b x x f +-=2)(在0,1上恰有两个不同的实根,求实数b 的取值范围. ③例5 变形构造法已知函数1)(+=x ax ϕ,a 为正常数.⑴若)(ln )(x x x f ϕ+=,且a29=,求函数)(x f 的单调增区间;⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a的取值范围.例6 高次处理证明不等式、取对数技巧已知函数)0)(ln()(2>=a ax x x f .1若2)('x x f ≤对任意的0>x 恒成立,求实数a 的取值范围;2当1=a 时,设函数x x f x g )()(=,若1),1,1(,2121<+∈x x e x x ,求证42121)(x x x x +<例7绝对值处理已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值.I 求实数a 的取值范围;II 若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;III 对于II 中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .例8等价变形已知函数x ax x f ln 1)(--=()a ∈R .Ⅰ讨论函数)(x f 在定义域内的极值点的个数;Ⅱ若函数)(x f 在1=x 处取得极值,对x ∀∈),0(+∞,2)(-≥bx x f 恒成立,求实数b 的取值范围;Ⅲ当20e y x <<<且e x ≠时,试比较xyxy ln 1ln 1--与的大小. 例9前后问联系法证明不等式已知217()ln ,()(0)22f x x g x x mx m ==++<,直线l 与函数(),()f x g x 的图像都相切,且与函数()f x 的图像的切点的横坐标为1;I 求直线l 的方程及m 的值;II 若()(1)'()()h x f x g x =+-其中g'(x)是g(x)的导函数,求函数()h x 的最大值; III 当0b a <<时,求证:()(2).2b af a b f a a -+-<例10 整体把握,贯穿全题已知函数ln ()1x f x x=-. 1试判断函数()f x 的单调性;2设0m >,求()f x 在[,2]m m 上的最大值;3试证明:对任意*n ∈N ,不等式11ln()e n n nn++<都成立其中e 是自然对数的底数.Ⅲ证明:2121111n n a a a n ++⋅⋅⋅+>+.例11数学归纳法已知函数()ln(1)f x x mx =++,当0x =时,函数()f x 取得极大值.1求实数m 的值;2已知结论:若函数()ln(1)f x x mx =++在区间(,)a b 内导数都存在,且1a >-,则存在0(,)x a b ∈,使得0()()()f b f a f x b a-'=-.试用这个结论证明:若121x x -<<,函数121112()()()()()f x f x g x x x f x x x -=-+-,则对任意12(,)x x x ∈,都有()()f x g x >;3已知正数12,,,n λλλ,满足121n λλλ+++=,求证:当2n ≥,n N ∈时,对任意大于1-,且互不相等的实数12,,,n x x x ,都有1122()n n f x x x λλλ+++>1122()()()n n f x f x f x λλλ+++. ④例12分离变量已知函数x a x x f ln )(2+=a 为实常数. 1若2-=a ,求证:函数)(x f 在1,+∞上是增函数;2求函数)(x f 在1,e 上的最小值及相应的x 值;3若存在],1[e x ∈,使得x a x f )2()(+≤成立,求实数a 的取值范围. 例13先猜后证技巧已知函数xx n x f )1(11)(++=Ⅰ求函数f x 的定义域Ⅱ确定函数f x 在定义域上的单调性,并证明你的结论. Ⅲ若x >0时1)(+>x kx f 恒成立,求正整数k 的最大值. 例14创新题型设函数fx=e x +sinx,gx=ax,Fx=fx -gx.Ⅰ若x=0是Fx 的极值点,求a 的值; Ⅱ当 a=1时,设Px 1,fx 1, Qx 2, gx2x 1>0,x 2>0, 且PQ )1,0(12)(2<≠++-=b a b ax ax x g []3,2()()g x f x x =b a ,02)2(≥⋅-xx k f ]1,1[-∈x k0)3|12|2(|)12(|=--+-x x k f k 2()()()xf x x a x b e =-+a b R ∈、x a =()f x 0a =b a123x x x ,,()f x b 4x R ∈1234x x x x ,,,1234,,,i i i i x x x x {}1234i i i i ,,,{}1234,,,b 4x ()ln f x x=21()2g x ax bx =+(0)a ≠1若2a =-, 函数()()()h x f x g x =- 在其定义域是增函数,求b 的取值范围;2在1的结论下,设函数ϕϕ2x x (x)=e +be ,x ∈[0,ln2],求函数(x)的最小值;3设函数)(x f 的图象C 1与函数)(x g 的图象C 2交于点P 、Q,过线段PQ 的中点R 作x 轴的垂线分别交C 1、C 2于点M 、N ,问是否存在点R,使C 1在M 处的切线与C 2在N 处的切线平行若存在,求出R 的横坐标;若不存在,请说明理由. 例18全综合应用已知函数()1ln(02)2xf x x x=+<<-. 1是否存在点(,)M a b ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上若存在,求出点M 的坐标;若不存在,请说明理由;2定义2111221()()()()n n i i n S f f f f nn n n -=-==++⋅⋅⋅+∑,其中*n ∈N ,求2013S ;3在2的条件下,令12n n S a +=,若不等式2()1n a m n a ⋅>对*n ∀∈N 且2n ≥恒成立,求实数m 的取值范围.⑦导数与三角函数综合例19换元替代,消除三角设函数2()()f x x x a =--x ∈R ,其中a ∈R . Ⅰ当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程;Ⅱ当0a ≠时,求函数()f x 的极大值和极小值;Ⅲ当3a >, []10k ∈-,时,若不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立,求k 的值;⑧创新问题积累 例20已知函数2()ln44x xf x x -=+-. I 、求()f x 的极值.II 、求证()f x 的图象是中心对称图形.III 、设()f x 的定义域为D ,是否存在[],a b D ⊆.当[],x a b ∈时,()f x 的取值范围是,44a b ⎡⎤⎢⎥⎣⎦若存在,求实数a 、b 的值;若不存在,说明理由导数压轴题题型归纳 参考答案例1解:11=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .)(x g '2证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P处的切线方程为)(2)2(1121x x x a x y -=--.令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <.又∵1122x ax ≠,∴ax a x x a x x a x x =⋅>+=+=11111212222222所以a x x >>21.例2⑴1()ln 1(0)a f x x ax x x -=-+->,222l 11()(0)a ax x a f x a x x x x --++-'=-+=> 令2()1(0)h x ax x a x =-+->①当0a =时,()1(0)h x x x =-+>,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.②当0a ≠时,由()0f x '=,即210ax x a -+-=,解得1211,1x x a==-.当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 单调递减;当102a <<时,1110a ->>,(0,1)x ∈时()0,()0h x f x '><,函数()f x 单调递减;1(1,1)x a ∈-时,()0,()0h x f x '<>,函数()f x 单调递增;1(1,)x a∈-+∞时,()0,()0h x f x '><,函数()f x 单调递减.当0a <时110a-<,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.综上所述:当0a ≤时,函数()f x 在(0,1)单调递减,(1,)+∞单调递增;当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 在(0,)+∞单调递减; 当102a <<时,函数()f x 在(0,1)递减,1(1,1)a -递增,1(1,)a -+∞递减.⑵当14a =时,()f x 在0,1上是减函数,在1,2上是增函数,所以对任意1(0,2)x ∈,有11()(1)2f x f =-≥, 又已知存在[]21,2x ∈,使12()()f xg x ≥,所以21()2g x -≥,[]21,2x ∈,※又22()()4,[1,2]g x x b b x =-+-∈当1b <时,min ()(1)520g x g b ==->与※矛盾;当[]1,2b ∈时,2min ()(1)40g x g b ==-≥也与※矛盾;当2b >时,min 117()(2)84,28g x g b b ==-≤-≥.综上,实数b 的取值范围是17[,)8+∞. 例3解:⑴()2323f x ax bx '=+-.根据题意,得()()12,10,f f =-⎧⎪⎨'=⎪⎩即32,3230,a b a b +-=-⎧⎨+-=⎩解得10a b =⎧⎨=⎩ 所以()33f x x x =-.⑵令()0f x '=,即2330x -=.得1x =±.12f -=12f =-2,2x ∈-max 2f x =min 2f x =-则对于区间[]2,2-上任意两个自变量的值12,x x ,都有()()()()12max min 4f x f x f x f x -≤-=,所以4c ≥.所以c 的最小值为4.⑶因为点()()2,2M m m ≠不在曲线()y f x =上,所以可设切点为()00,x y .则30003y x x =-.因为()20033f x x '=-,所以切线的斜率为2033x -. 则2033x -=300032x x m x ---,即3202660x x m -++=. 因为过点()()2,2M m m ≠可作曲线()y f x =的三条切线,所以方程32002660x x m -++=有三个不同的实数解. 所以函数()32266g x x x m =-++有三个不同的零点.则()2612g x x x '=-.令0g x '=,则0x =或2x =. ()()0022g g >⎧⎪⎨<⎪⎩6020m m +>⎧⎨-+<⎩62m -<<例4解:⑴23)13)(1(33323)(+-+-=-+='x x x x x x f , 令1310)(-==='x x x f 或得舍去)(,0)(,310x f x f x >'<≤∴时当单调递增;当)(,0)(,131x f x f x <'≤<时递减.]1,0[)(613ln )31(在为函数x f f -=∴上的极大值.⑵由0]3)(ln[|ln |>+'+-x x f x a 得x x a x x a 323ln ln 323lnln ++<+->或设332ln 323ln ln )(2x x x x x h +=+-=,x x x x x g 323ln 323ln ln )(+=++=, 依题意知]31,61[)()(∈<>x x g a x h a 在或上恒成立,0)32(2)32(33)32(3332)(2>+=+⋅-+⋅+='x x x x x x x x g ,03262)62(31323)(22>++=+⋅+='xx xx x x x h , ]31,61[)()(都在与x h x g ∴上单增,要使不等式①成立,当且仅当.51ln 31ln ),61()31(<><>a a g a h a 或即或⑶由.0223)32ln(2)(2=-+-+⇒+-=b x x x b x x f 令xx x x x b x x x x 329723323)(,223)32ln()(22+-=+-+='-+-+=ϕϕ则,当]37,0[)(,0)(,]37,0[在于是时x x x ϕϕ>'∈上递增;]1,37[)(,0)(,]1,37[在于是时x x x ϕϕ<'∈上递减,而)1()37(),0()37(ϕϕϕϕ>>,]1,0[0)(2)(在即=+-=∴x b x x f ϕ恰有两个不同实根等价于例5解:⑴222)1(1)2()1(1)(++-+=+-='x x x a x x a x x f∵a 29=,令0)(>'x f 得2>x 或210<<x ,∴函数)(x f 的单调增区间为),2(),21,0(+∞.⑵证明:当0=a 时x x f ln )(=∴x x f 1)(=', ∴210021)(x x x x f +==',又121212121212ln ln ln )()(x x x x x x x x x x x f x f k -=--=--=不妨设12x x > , 要比较k 与)(0x f '的大小,即比较1212ln x x x x -与212x x +的大小, 又∵12x x >,∴ 即比较12ln x x 与1)1(2)(212122112+-=+-x x x xx x x x 的大小.令)1(1)1(2ln )(≥+--=x x x x x h ,则0)1()1()1(41)(222≥+-=+-='x x x x x x h , ∴)(x h 在[)+∞,1上位增函数.又112>x x ,∴0)1()(12=>h x x h , ∴1)1(2ln 121212+->x x x x x x ,即)(0x f k '>⑶∵ 1)()(1212-<--xx x g x g ,∴ []0)()(121122<-+-+x x x x g x x g 由题意得x x g x F +=)()(在区间(]2,0上是减函数.︒1 当x x a x x F x +++=≤≤1ln )(,21, ∴ 1)1(1)(2++-='x a x x F 由313)1()1(0)(222+++=+++≥⇒≤'x x x x x x a x F 在[]2,1∈x 恒成立. 设=)(x m 3132+++x x x ,[]2,1∈x ,则0312)(2>+-='xx x m∴)(x m 在[]2,1上为增函数,∴227)2(=≥m a .︒2 当x x a x x F x +++-=<<1ln )(,10,∴ 1)1(1)(2++--='x a x x F 由11)1()1(0)(222--+=+++-≥⇒≤'x x x x x x a x F 在)1,0(∈x 恒成立 设=)(x t 112--+xx x ,)1,0(∈x 为增函数,∴0)1(=≥t a综上:a 的取值范围为227≥a .例6解:1x ax x x f +=)ln(2)(',2)ln(2)('x x ax x x f ≤+=,即x ax ≤+1ln 2在0>x 上恒成立设x ax x u -+=1ln 2)(,2,012)('==-=x xx u ,2>x 时,单调减,2<x 单调增, 所以2=x 时,)(x u 有最大值.212ln 2,0)2(≤+≤a u ,所以20e a ≤<. 2当1=a 时,x x x x f x g ln )()(==, e x x x g 1,0ln 1)(==+=,所以在),1(+∞e 上)(x g 是增函数,)1,0(e上是减函数.因为11211<+<<x x x e,所以111212121ln )()ln()()(x x x g x x x x x x g =>++=+即)ln(ln 211211x x x x x x ++<,同理)ln(ln 212212x x x x x x ++<.所以)ln()2()ln()(ln ln 2112212112122121x x x xx x x x x x x x x x x x +++=++++<+ 又因为,421221≥++x x x x 当且仅当“21x x =”时,取等号. 又1),1,1(,2121<+∈x x ex x ,0)ln(21<+x x ,所以)ln(4)ln()2(21211221x x x x x x x x +≤+++,所以)ln(4ln ln 2121x x x x +<+,所以:42121)(x x x x +<.例7I ,23)(,00)0(2b ax x x f c f ++='=⇒=320)1(--=⇒='a b f由33210)(+-==⇒='a x x x f 或,因为当1=x 时取得极大值, 所以31332-<⇒>+-a a ,所以)3,(:--∞的取值范围是a ;依题意得:9)32()32(2762+-=++a a a ,解得:9-=a 所以函数)(x f 的解析式是:x x x x f 159)(23+-=III 对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα在区间-2,2有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f 函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .例8解:Ⅰxax xa x f 11)(-=-=',当0≤a 时,()0f x '<在),0(+∞上恒成立,函数)(x f 在),0(+∞ 单调递减,∴)(x f 在),0(+∞上没有极值点;当0>a 时,()0f x '<得10x a <<,()0f x '>得1x a>, ∴)(x f 在(10,)a上递减,在(1),a+∞上递增,即)(x f 在ax 1=处有极小值. ∴当0≤a 时)(x f 在),0(+∞上没有极值点,当0>a 时,)(x f 在),0(+∞上有一个极值点.Ⅱ∵函数)(x f 在1=x 处取得极值,∴1=a ,∴b xx xbx x f ≥-+⇔-≥ln 112)(,令xx xx g ln 11)(-+=,可得)(x g 在(]2,0e 上递减,在[)+∞,2e 上递增,∴22min 11)()(e e g x g -==,即211b e ≤-. Ⅲ证明:)1ln()1ln()1ln()1ln(+>+⇔++>-y e x e y x ey x yx , 令)1ln()(+=x e x g x,则只要证明)(x g 在),1(+∞-e 上单调递增,又∵)1(ln 11)1ln()(2+⎥⎦⎤⎢⎣⎡+-+='x x x e x g x ,显然函数11)1ln()(+-+=x x x h 在),1(+∞-e 上单调递增. ∴011)(>->ex h ,即0)(>'x g ,∴)(x g 在),1(+∞-e 上单调递增,即)1ln()1ln(+>+y e x e yx ,∴当1->>e y x 时,有)1ln()1ln(++>-y x e y x .例9 解:I 1'(),'(1)1;Qf x f x=∴=l ∴直线的斜率为1,且与函数()f x 的图像的切点坐标为1,0,l ∴直线的方程为 1.y x =-又l 直线与函数()y g x =的图象相切,211722y x y x mx =-⎧⎪∴⎨=++⎪⎩方程组有一解;由上述方程消去y,并整理得22(1)90x m x +-+=①依题意,方程②有两个相等的实数根,2[2(1)]490m ∴∆=--⨯=解之, 得m=4或m=-2,0, 2.Qm m <∴=- II 由I 可知217()2,22g x x x =-+ '()2,()ln(1)2(1)g x x h x x x x ∴=-∴=+-+>-,1'()1.11xh x x x -∴=-=++ ∴∈当x (-1,0)时,h'(x)>0,h(x)单调,当(0,)x ∈+∞时,'()0,()h x h x <单减; ∴当x=0时,()h x 取最大值,其最大值为2;III()(2)ln()ln 2ln ln(1).22a b b af a b f a a b a a a +-+-=+-==+ 证明,当(1,0)x ∈-时,ln(1),ln(1).22b a b ax x a a--+<∴+< 例10解:1函数()f x 的定义域是(0,)+∞.由已知21ln ()xf x x -'=.令()0f x '=,得x e =.因为当0x e <<时,()0f x '>;当x e >时,()0f x '<.所以函数()f x 在(0,]e 上单调递增,在[,)e +∞上单调递减. 2由1可知当2m e≤,即2e m ≤时,()f x 在[,2]m m 上单调递增,所以max ln 2()(2)12mf x f m m==-. 当m e ≥时,()f x 在[,2]m m 上单调递减,所以max ln ()1mf x m=-.当2m e m <<,即2e m e <<时,max 1()()1f x f e e==-.综上所述,max ln 21,0221()1,2ln 1,me m m ef x m eemm e m⎧-<≤⎪⎪⎪=-<<⎨⎪⎪-≥⎪⎩3由1知当(0,)x ∈+∞时max 1()()1f x f e e ==-.所以在(0,)x ∈+∞时恒有ln 1()11x f x x e=-≤-,即ln 1x x e ≤,当且仅当x e =时等号成立.因此对任意(0,)x ∈+∞恒有1ln x e ≤.因为10n n +>,1n e n+≠,所以111lnn nn e n ++<⋅,即11ln()e n n n n ++<.因此对任意*n ∈N ,不等式11ln()e n n n n++<.例11解:1当(1,0)x ∈-时,()0f x '>,函数()f x 在区间(1,0)-上单调递增;当(0,)x ∈+∞时,()0f x '<,函数()f x 在区间(0,)+∞上单调递减.∴函数()f x 在0x =处取得极大值,故1m =-. 2令121112()()()()()()()()f x f x h x f x g x f x x x f x x x -=-=----,则1212()()()()f x f x h x f x x x -''=--.函数()f x 在12(,)x x x ∈上可导,∴存在012(,)x x x ∈,使得12012()()()f x f x f x x x -'=-.1()11f x x '=-+,000011()()()11(1)(1)x x h x f x f x x x x x -'''∴=-=-=++++ 当10(,)x x x ∈时,()0h x '>,()h x 单调递增,1()()0h x h x ∴>=;当02(,)x x x ∈时,()0h x '<,()h x 单调递减,2()()0h x h x ∴>=; 故对任意12(,)x x x ∈,都有()()f x g x >. 3用数学归纳法证明.①当2n =时,121λλ+=,且10λ>,20λ>, 112212(,)x x x x λλ∴+∈,∴由Ⅱ得()()f x g x >,即121122112211112212()()()()()()()f x f x f x x x x x f x f x f x x x λλλλλλ-+>+-+=+-,∴当2n =时,结论成立.②假设当(2)n k k =≥时结论成立,即当121k λλλ+++=时,11221122()()()()k k k k f x x x f x f x f x λλλλλλ+++>+++. 当1n k =+时,设正数121,,,k λλλ+满足1211k λλλ++++=,令12km λλλ=+++,1212,,,k k m m mλλλμμμ===, 则11k n m λ++=,且121k μμμ+++=.∴当1n k =+时,结论也成立.综上由①②,对任意2n ≥,n N ∈,结论恒成立.例12 解:⑴当2-=a 时,x x x f ln 2)(2-=,当),1(+∞∈x ,0)1(2)(2>-='xx x f , 故函数)(x f 在),1(+∞上是增函数.⑵)0(2)(2>+='x xax x f ,当],1[e x ∈,]2,2[222e a a a x ++∈+. 若2-≥a ,)(x f '在],1[e 上非负仅当2-=a ,x=1时,0)(='x f ,故函数)(x f 在],1[e 上是增函数,此时=min )]([x f 1)1(=f . 若222-<<-a e ,当2a x -=时,0)(='x f ;当21ax -<≤时,0)(<'x f ,此时)(x f 是减函数;当e x a≤<-2时,0)(>'x f ,此时)(x f 是增函数. 故=min )]([x f )2(af -2)2ln(2a a a --=. 若22e a -≤,)(x f '在],1[e 上非正仅当2e 2-=a ,x=e 时,0)(='x f ,故函数)(x f 在],1[e 上是减函数,此时==)()]([min e f x f 2e a +.⑶不等式x a x f )2()(+≤,可化为x x x x a 2)ln (2-≥-.∵],1[e x ∈, ∴x x ≤≤1ln 且等号不能同时取,所以x x <ln ,即0ln >-x x ,因而xx x x a ln 22--≥],1[e x ∈令xx x x x g ln 2)(2--=],1[e x ∈,又2)ln ()ln 22)(1()(x x x x x x g --+-=',当],1[e x ∈时,1ln ,01≤≥-x x ,0ln 22>-+x x ,从而0)(≥'x g 仅当x=1时取等号,所以)(x g 在],1[e 上为增函数,故)(x g 的最小值为1)1(-=g ,所以a 的取值范围是),1[+∞-. 例13 解:1定义域),0()0,1(+∞⋃-2,0)]1ln(11[1)(2时当>+++-='x x x x x f 0)(<'x f 单调递减; 当)0,1(-∈x ,令)1(11)1(1)()1ln(11)(22<+=+++-='+++=x xx x x g x x x g ,0)1(11)1(1)()1ln(11)(22<+=+++-='+++=x x x x x g x x x g 故)(x g 在-1,0上是减函数,即01)0()(>=>g x g ,故此时)]1ln(11[1)(2+++-='x x x x f 在-1,0和0,+∞上都是减函数 3当x >0时,1)(+>x kx f 恒成立,令]2ln 1[21+<=k x 有又k 为正整数,∴k 的最大值不大于3下面证明当k=3时,)0( 1)(>+>x x kx f 恒成立 当x >0时 021)1ln()1(>-+++x x x 恒成立令x x x x g 21)1ln()1()(-+++=,则时当1 ,1)1ln()(->-+='e x x x g时当1 ,1)1ln()(->-+='e x x x g ,0)(>'x g ,当0)( ,10<'-<<x g e x 时 ∴当)( ,1x g e x 时-=取得最小值03)1(>-=-e e g当x >0时, 021)1ln()1(>-+++x x x 恒成立,因此正整数k 的最大值为3 例14解:ⅠFx = e x +sinx -ax,'()cos x F x e x a =+-. 因为x =0是Fx 的极值点,所以'(0)110,2F a a =+-==.又当a =2时,若x <0, '()cos 0x F x e x a =+-<;若 x >0, '()cos 0x F x e x a =+->. ∴x =0是Fx 的极小值点, ∴a=2符合题意.Ⅱ ∵a =1, 且PQ 121sin x x e x =+12111sin x x x e x x -=+-令()sin ,'()cos 10x x h x e x x h x e x =+-=+->当x >0时恒成立. ∴x ∈0,+∞)时,hx 的最小值为h 0=1.∴|PQ|mi n =1. Ⅲ令()()()2sin 2.x x x F x F x e e x ax ϕ-=--=-+-则'()2cos 2.x x x e e x a ϕ-=++-()''()2sin x x S x x e e x ϕ-==--. 因为'()2cos 0x x S x e e x -=+-≥当x ≥0时恒成立, 所以函数Sx 在[0,)+∞上单调递增, ∴Sx ≥S 0=0当x ∈0,+∞)时恒成立;因此函数'()x ϕ在[0,)+∞上单调递增, '()'(0)42x a ϕϕ≥=-当x ∈0,+∞)时恒成立. 当a ≤2时,'()0x ϕ≥,()x ϕ在0,+∞)单调递增,即()(0)0x ϕϕ≥=. 故a ≤2时Fx ≥F-x 恒成立.例15 解:Ⅰ12()(1)1g x a x b a =-++- 当0>a 时,[]()2,3g x 在上为增函数故(3)296251(2)544220g a a b a g a a b b =-++==⎧⎧⎧⇒⇒⎨⎨⎨=-++==⎩⎩⎩当[]0()2,3a g x <时,在上为减函数故(3)296221(2)244253g a a b a g a a b b =-++==-⎧⎧⎧⇒⇒⎨⎨⎨=-++==⎩⎩⎩011==∴<b a b 即2()21g x x x =-+. ()12f x x x=+-.Ⅱ方程(2)20x x f k -⋅≥化为12222xxxk +-≥⋅ 2111()222x x k +-≥,令t x =21,221k t t ≤-+ ∵]1,1[-∈x ∴]2,21[∈t 记12)(2+-=t t t ϕ∴min ()0t ϕ= ∴0k ≤Ⅲ方程0)3|12|2(|)12(|=--+-xxk f 化为0)32(|12|21|12|=+--++-k k x x 0)21(|12|)32(|12|2=++-+--k k x x ,0|12|x ≠-令t x =-|12|, 则方程化为0)21()32(2=+++-k t k t 0t ≠∵方程0)32(|12|21|12|=+--++-k k xx有三个不同的实数解, ∴由|12|-=x t 的图像知,0)21()32(2=+++-k t k t 有两个根1t 、2t , 且21t 1t 0<<< 或 101<<t ,1t 2= 记)21()32()(2k t k t t +++-=ϕ则⎩⎨⎧<-=>+=0k )1(0k 21)0(ϕϕ 或 ⎪⎪⎩⎪⎪⎨⎧<+<=-=>+=12k3200k )1(0k 21)0(ϕϕ∴0k >例16 解: Ⅰ0a =时,()()2xf x x x b e =+,()()()()()22232x x x f x x x b e x x b e e x x b x b '''⎡⎤⎡⎤∴=+++=+++⎣⎦⎣⎦, 令()()232g x x b x b =+++,()()2238180b b b ∆=+-=-+>,∴设12x x <是()0g x =的两个根,1当10x =或20x =时,则0x =不是极值点,不合题意;2当10x ≠且20x ≠时,由于0x =是()f x 的极大值点,故120x x .<< ()00g ∴<,即20b <,0b .∴<Ⅱ解:()()xf x e x a '=-2(3)2x a b x b ab a ⎡⎤+-++--⎣⎦,令2()(3)2g x x a b x b ab a =+-++--,22=(3)4(2)(1)80a b b ab a a b ∆-+---=+-+>则,于是,假设12x x ,是()0g x =的两个实根,且12x x .<由Ⅰ可知,必有12x a x <<,且12x a x 、、是()f x 的三个极值点, 则1x =2x =假设存在b 及4x 满足题意,1当12x a x ,,等差时,即21x a a x -=-时,则422x x a =-或412x x a =-, 于是1223a x x a b =+=--,即3b a .=--此时4223x x a a b=-=--+a a -=+ 或4123x x a ab =-=--a a =-2当21x a a x -≠-时,则212()x a a x -=-或12()2()a x x a -=- ①若()122x a a x -=-,则224x a x +=, 于是()()2813323221+-+---=+=b a b a x x a ,即()().33812++-=+-+b a b a 两边平方得()()2191170a b a b +-++-+=,30a b ++<,于是1a b +-=,此时2b a =--此时224x a x +==()().231343332++=--=++---+a b b a b a a②若12()2()a x x a -=-,则214x a x +=,于是2132a x x =+=,()33a b .=++两边平方得()()2191170a b a b +-++-+=,30a b ++>,于是1a b +-=,此时b a =--此时142(3)3(3)324a x a a b a b x b a ++---++===--=+综上所述,存在b 满足题意, 当b=-a-3时,4x a =±b a =-,4x a=+, b a =--时,4x a =+. 例17解:1依题意:.ln )(2bx x x x h -+=()h x 在0,+∞上是增函数,1()20h x x b x'∴=+-≥对x∈0,+∞恒成立,2设].2,1[,,2∈+==t bt t y e t x 则函数化为 当t=1时,y m i n =b+1; 当t=2时,y mi n =4+2b当)(,4x b ϕ时-≤的最小值为.24b +3设点P 、Q 的坐标是.0),,(),,(212211x x y x y x <<且则点M 、N 的横坐标为.221x x x +=C 1在点M 处的切线斜率为.2|1212121x x x k x x x +==+= C 2在点N 处的切线斜率为.2)(|212221b x x a b ax k x x x ++=+=+= 假设C 1在点M 处的切线与C 2在点N 处的切线平行,则.21k k =2221121121x 2(1)x 2(x x )x ln .x x x x 1x --∴==++ 设,1,1)1(2ln ,112>+-=>=u u u u x x u 则 ① 这与①矛盾,假设不成立.故C 1在点M 处的切线与C 2在点N 处的切线不平行 例18 1假设存在点(,)M a b ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上,则函数()y f x =图像的对称中心为(,)M a b .由()(2)2f x f a x b +-=,得21ln1ln 2222x a x b x a x-+++=--+, 即22222ln 0244x axb x ax a -+-+=-++-对(0,2)x ∀∈恒成立,所以220,440,b a -=⎧⎨-=⎩解得1,1.a b =⎧⎨=⎩ 所以存在点(1,1)M ,使得函数()y f x =的图像上任意一点P 关于点M 对称的点Q 也在函数()y f x =的图像上. 2由1得()(2)2(02)f x f x x +-=<<.令i x n=,则()(2)2i i f f nn+-=(1,2,,21)i n =⋅⋅⋅-.因为1221()()(2)(2)n S f f f f n n nn=++⋅⋅⋅+-+-①,所以1221(2)(2)()()n S f f f f n n n n=-+-+⋅⋅⋅++②,由①+②得22(21)n S n =-,所以*21()n S n n =-∈N .所以20132201314025S =⨯-=.3由2得*21()n S n n =-∈N ,所以*1()2n n S a n n +==∈N . 因为当*n ∈N 且2n ≥时,2()121ln ln 2n a m n m n n ma n n ⋅>⇔⋅>⇔>-. 所以当*n ∈N 且2n ≥时,不等式ln ln 2n m n >-恒成立minln ln 2n m n ⎛⎫⇔>- ⎪⎝⎭. 设()(0)ln xg x x x=>,则2ln 1()(ln )x g x x -'=. 当0x e <<时,()0g x '<,()g x 在(0,)e 上单调递减; 当x e >时,()0g x '>,()g x 在(,)e +∞上单调递增.因为23ln 9ln8(2)(3)0ln 2ln 3ln 2ln 3g g --=-=>⋅,所以(2)(3)g g >,所以当*n ∈N 且2n ≥时,[]min 3()(3)ln 3g n g ==. 由[]min ()ln 2m g n >-,得3ln 3ln 2m >-,解得3ln 2ln 3m >-. 所以实数m 的取值范围是3ln 2(,)ln 3-+∞.例19 解:当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.所以,曲线2(1)y x x =--在点(22)-,处的 切线方程是25(2)y x +=--,整理得580x y +-=.Ⅱ解:2322()()2f x x x a x ax a x =--=-+-22()34(3)()f x x ax a x a x a '=-+-=---.令()0f x '=,解得3ax =或x a =. 由于0a ≠,以下分两种情况讨论.1若0a >,当x ()f x '因此,函数()f x 在3ax =处取得极小值3a f ⎛⎫⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭;函数()f x 在x a =处取得极大值()f a ,且()0f a =. 2若0a <,当x 变化时,()f x '的正负如下表:因此,函数()f x 在函数()f x 在3ax =处取得极大值3a f ⎛⎫⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭.Ⅲ证明:由3a >,得13a>,当[]10k ∈-,时,cos 1k x -≤,22cos 1k x -≤. 由Ⅱ知,()f x 在(]1-∞,上是减函数,要使22(cos )(cos )f k x f k x --≥,x ∈R 只要22cos cos ()k x k x x --∈R ≤,即22cos cos ()x x k k x --∈R ≤①设2211()cos cos cos 24g x x x x ⎛⎫=-=-- ⎪⎝⎭,则函数()g x 在R 上的最大值为2.要使①式恒成立,必须22k k -≥,即2k ≥或1k -≤.所以,在区间[]10-,上存在1k =-,使得22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立. 例20 I /(6)()4(2)(4)x x f x x x -=-- ./(2)注意到204x x ->-,得(,2)(4,)x ∈-∞⋃+∞,解(6)0x x -=得6x =或0x =.当x 变化时,/(),()f x f x 的变化情况如下表:所以(0)ln 2f =是()f x 的一个极大值,(6)ln 22f =+ 是()f x 的一个极大值../(4) II 点()0,(0),(6,(6))f f 的中点是3(3,)4,所以()f x 的图象的对称中心只可能是3(3,)4./(6) 设(,())P x f x 为()f x 的图象上一点,P 关于3(3,)4的对称点是3(6,())2Q x f x --.463(6)ln ()242x x f x f x x ---=+=--.Q ∴也在()f x 的图象上, 因而()f x 的图象是中心对称图形. /(8)III 假设存在实数a 、b .[],a b D ⊆,2b ∴<或4a >.若02b ≤<, 当[],x a b ∈时, 1()(0)ln 02f x f ≤=<,而04b ≥()4b f x ∴≠.故此时()f x 的取值范围是不可能是,44a b ⎡⎤⎢⎥⎣⎦. /(10) 若46a <≤,当[],x a b ∈时, 33()(6)ln 222f x f ≥=+>,而342a ≤()4a f x ∴≠.故此时()f x 的取值范围是不可能是,44a b ⎡⎤⎢⎥⎣⎦./(12) 若06a b a b <<<<或,由()g x 的单调递增区间是()(),0,6,-∞+∞,知,a b 是()4x f x =的两个解.而2()ln 044x x f x x --==-无解. 故此时()f x 的取值范围是不可能是,44a b ⎡⎤⎢⎥⎣⎦. /(14) 综上所述,假设错误,满足条件的实数a 、b 不存在.。

高考导数压轴题型归类总结

高考导数压轴题型归类总结

导数压轴题型归类总结目 录一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31)(一)作差证明不等式(二)变形构造函数证明不等式 (三)替换构造不等式证明不等式四、不等式恒成立求字母范围 (51)(一)恒成立之最值的直接应用 (二)恒成立之分离常数(三)恒成立之讨论字母范围五、函数与导数性质的综合运用 (70) 六、导数应用题 (84)七、导数结合三角函数 (85)书中常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1xx<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.一、导数单调性、极值、最值的直接应用1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得33±=x .所以当33=x 时,)(x g 有最小值932)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='=曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12122x a x x +=,∴12111211222x x a x x a x x x -=-+=-∵a x >1,∴02121<-x x a ,即12x x <. 又∵1122x a x ≠,∴a x ax x a x x a x x =⋅>+=+=11111212222222 所以a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学导数压轴题7大题型总结目前虽然全国高考使用试卷有所差异,但高考压轴题目题型基本都是一致的,几乎没有差异,如果有差异只能是难度上的差异,高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。

导数解答题是高考数学必考题目,然而学生由于缺乏方法,同时认识上的错误,绝大多数同学会选择完全放弃,我们不可否认导数解答题的难度,但也不能过分的夸大。

掌握导数的解体方法和套路,对于基础差的同学不说得满分,但也不至于一分不得。

为了帮助大家复习,今天就总结倒数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题。

1导数单调性、极值、最值的直接应用2交点与根的分布3不等式证明(一)做差证明不等式(二)变形构造函数证明不等式(三)替换构造不等式证明不等式4不等式恒成立求字母范围(一)恒成立之最值的直接应用(二)恒成立之分离参数(三)恒成立之讨论字母范围5函数与导数性质的综合运用6导数应用题7导数结合三角函数(07威武不屈舍死忘生肝胆相照克己奉公一丝不苟两袖清风见礼忘义永垂不朽顶天立地豁达大度兢兢业业卖国求荣恬不知耻贪生怕死厚颜无耻描写人物神态的成语神采奕奕眉飞色舞昂首挺胸惊慌失措漫不经心垂头丧气没精打采愁眉苦脸大惊失色炯炯有神含有夸张成分的成语怒发冲冠一目十行一日千里一字千金百发百中——一日三秋一步登天千钧一发不毛之地不计其数胆大包天寸步难行含——比喻成分的成语观者如云挥金如土铁证如山爱财如命稳如泰山门庭若市骨瘦如柴冷若冰霜如雷贯耳守口如瓶浩如烟海高手如林春天阳春三月春光明媚春回大地春暖花开春意盎然春意正浓风和日丽春花烂漫春天的景色鸟语花香百鸟鸣春百花齐放莺, 歌燕舞夏天的热赤日炎炎烈日炎炎骄阳似火挥汗如雨大汗淋漓夏天的景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天——天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪, 地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万, 物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳绚丽多彩五彩缤纷草绿草如茵一碧千里杂草丛生生机勃勃绿油油树苍翠挺拔郁郁葱葱枯木逢春秀丽多姿青翠欲滴林海雪原耸入云天瓜果蔬菜清香鲜嫩青翠欲滴果园飘香果实累累果实饱满鲜嫩水灵鸽子、燕子象征和平乳燕初飞婉转悦耳莺歌燕舞翩然归来麻雀、喜鹊枝头嬉戏灰不溜秋叽叽喳喳鹦鹉鹦鹉学舌婉转悦耳笨嘴学舌啄木鸟利嘴如铁钢爪如钉鸡鸭鹅神气活现昂首挺胸肥大丰满自由自在引吭高歌马腾空而起狂奔飞驰膘肥体壮昂首嘶鸣牛瘦骨嶙峋行动迟缓俯首帖耳膘肥体壮车川流不息呼啸而过穿梭往来缓缓驶离船一叶扁舟扬帆远航乘风破浪雾海夜航追波逐浪飞机划破云层直冲云霄穿云而过银鹰展翅学习用品美观实用小巧玲珑造型优美设计独特玩具栩栩如生活泼可爱惹人喜爱爱不释手彩虹雨后彩虹彩桥横空若隐若现光芒万丈雪大雪纷飞大雪封山鹅毛大雪漫天飞雪瑞雪纷飞林海雪原风雪交加霜雪上加霜寒霜袭人霜林尽染露垂露欲滴朝露晶莹日出露干雷电电光石火雷电大作惊天动地春雷滚滚电劈石击雷电交加小雨阴雨连绵牛毛细雨秋雨连绵随风飘洒大雨倾盆大雨狂风暴雨大雨滂沱瓢泼大雨大雨淋漓暴雨如注风秋风送爽金风送爽北风呼啸微风习习寒风刺骨风和日丽雾大雾迷途云雾茫茫雾似轻纱风吹雾散云消雾散云彩云满天天高云淡乌云翻滚彤云密, 布霞彩霞缤纷晚霞如火朝霞灿烂丹霞似锦星最远的地方:天涯海角最远的分离:天壤之别最重的话:一言九鼎最可靠的话:一言为定其它成语一、描写人的品质:平易近人宽宏大度冰清玉洁持之以恒锲而不舍废寝忘食大义凛然临危不俱光明磊落不屈不挠鞠躬尽瘁死而后已二、描写人的智慧:料事如神足智多谋融会贯通学贯中西博古通今才华横溢出类拔萃博大精深集思广益举一反三三、描写人物仪态、风貌:憨态可掬文质彬彬风度翩翩相貌堂堂落落大方斗志昂扬意气风发, 威风凛凛容光焕发神采奕奕四、描写人物神情、情绪:悠然自得眉飞色舞喜笑颜开神采奕奕欣喜若狂呆若木鸡喜出望外垂头丧气无动于衷勃然大怒五、描写人的口才:能说会道巧舌如簧能言善辩滔滔不绝伶牙俐齿, 出口成章语惊四座娓娓而谈妙语连珠口若悬河六、来自历史故事的成语:三顾茅庐铁杵成针望梅止渴完璧归赵四面楚歌负荆请罪精忠报国手不释卷悬梁刺股凿壁偷光七、描写人物动作:走马——花欢呼雀跃扶老携幼手舞足蹈促膝谈心前俯后仰奔走相告跋山涉水前赴后继张牙舞爪八、描写人间情谊:恩重如山深情厚谊手足情深形影不离血浓于水志同道合风雨同舟赤诚相待肝胆相照生死相依九、说明知事晓理方面:循序渐进日积月累温故——新勤能补拙笨鸟先飞学无止境学海无涯滴水穿石发奋图强开卷有益十、来自寓言故事的成语:夏天的, 景色鸟语蝉鸣万木葱茏枝繁叶茂莲叶满池秋天秋高气爽天高云淡秋风送爽秋菊怒放秋菊傲骨秋色迷人秋色宜人金桂飘香秋天的景色果实累累北雁南飞满山红叶五谷丰登芦花飘扬冬天天寒地冻北风呼啸滴水成冰寒冬腊月瑞雪纷飞冰天雪地冬天的景色冰封雪盖漫天飞雪白雪皑皑冰封大地冰天雪地早晨东方欲晓旭日东升万物初醒空气清醒雄鸡报晓晨雾弥漫晨光绚丽中午烈日当头丽日临空艳阳高照万里无云碧空如洗傍晚日落西山夕阳西斜残阳如血炊烟四起百鸟归林华灯初上夜幕低垂日薄西山夜晚夜深人静月明星稀夜色柔美夜色迷人深更半夜漫漫长夜城镇风光秀丽人山人海车水马龙宁静和谐村庄草木苍翠竹篱瓦舍山幽路辟小桥流水大楼、饭店直指青云古色古香青砖素瓦耸入碧云工厂机器轰鸣铁流直泻热气腾腾钢花飞溅商店粉饰一新门可罗雀冷冷清清错落有致馆场富丽堂皇设施齐全气势雄伟金碧辉煌学校风景如画闻名遐迩桃李满天下车站、码头井然有序杂乱无章布局巧妙错落有致街道宽阔平坦崎岖不平拥挤不堪畅通无阻花花红柳绿花色迷人花香醉人花枝招展百花齐放百花盛开百花争艳, 绚丽多彩五彩缤纷草绿草如, 标准答案一、填空题。

(每空1分, 共22分)1、4120500000 41.205 2092 2、3、12 4、14 32 7:7、1080cm28、, 6 9、2a2 10、3 113:2 12、558 810 13、20 14、18二、判断题。

(对的打“√”, 错的打“×”), (共5分)15、×16、√17、√18、×19、√三、选择(将正确答案的字母填入括号里)。

(5份)20、A 21、B 22、B 23、C 24、B 四、计算。

(30分)28、3、3 6、2 6、6 第(1)题画图正确计2分, 数对表示正确计2分29、表面积:8×8×6+4×4×4+2×2×4体积:8×8×8+4×4×4+2×2×2 30、d=16.56÷(1+3.14)=4dm r=2dm 容积:3.14×22×4= 六、解决问题。

(21分)一、指导思想, 《义务教育课程标准实验教科书语文四年级上册》是《中共中央国务院关于深化教育改革, 全面推进素质教育的决定》的精神为指导准(实验稿)为依据编写的。

本册教科书进一步加大改革力度, 从选文到练习设计, 从编排结构到呈现方式, 有不少新的突破。

, , 二、教材分析本册共有课文27篇, 其中精读课文20篇, 略读课文7篇。

每组教材包括导语、的成语包罗万象琳琅满目美不胜收目不暇接无奇不有无穷无尽无所不包丰富多彩五花, 八门眼花缭乱洋洋大观一应俱全应有尽有应接不暇比比皆是星罗棋布不可计数层出不穷绰绰有余多多益善多如牛毛俯拾皆市举不胜举漫山遍野含有“云”字的成语九霄云外腾云驾雾壮志凌云风云变幻风起云涌行云流水过眼云烟烟消云散风卷残云浮云蔽日孤云野鹤烘云托月含有“雨”字的成语大雨倾盆血雨腥风风雨交加风调雨顺枪林弹雨风雨同舟风雨无阻未雨绸缪和风细雨狂风暴雨满城风雨滂沱大雨春风化雨风雨飘摇斜风细雨含有“水”字的成语水, 流湍急水平如镜高山流水千山万水水滴石穿水乳交融滴水不漏杯水车薪洪水猛兽流水无情描写说的成语直言不讳无所顾忌拐弯抹角真心诚意故弄玄虚侃侃而谈滔滔不绝闲言碎语虚情假意推心置腹旁敲侧击喋喋不休慢条斯理含糊其词唠唠叨叨自圆其说振振有辞肆无忌惮大言不惭娓娓动听绘声绘色对答如流描写人的容貌或体态的成语闭月羞花沉鱼落雁出——, 芙蓉明眸皓齿美如冠玉倾国倾城国色天香弱不禁风鹤发童颜眉清目秀和蔼可亲心慈面善张牙舞爪, 愁眉苦脸冰清玉洁头垢面雍容华贵文质彬彬威风凛凛老态龙钟虎背熊腰如花似玉容光焕发其貌不扬落落大方骨瘦如柴大腹便便面黄肌瘦描写人的语言的成语口若悬河对答如流滔滔不绝谈笑风生高谈阔论豪言壮语夸夸其谈花言巧语描写人心理活动的成语忐忑不安心惊肉跳心神不定心, 猿意, 马心慌意乱七上八, 下心急如焚描写骄傲的成语班门弄斧孤芳自赏居功自傲, 目中无人妄自尊大, 忘乎所以惟我独尊自高自大自鸣得意自我陶醉, , 自, , 命不凡目空一切描, 写谦虚的, 成语不骄不, 躁——功成不居戒骄戒躁洗——恭听虚怀若谷慎言谨行描写学习的成语学无止境学而不厌真, 才实学学而不倦, , 发奋图强废寝忘食争分夺秒孜孜不, 倦笨鸟先飞闻鸡起舞自强, 不息只争朝夕不甘示弱全力以赴力争上游披荆斩棘描写人物品质的成语奋不顾身舍己为人坚强不屈赤胆忠心不屈不挠忠贞不渝誓死不二威武不屈舍死忘生肝胆相照克己奉公一丝不苟两袖清风见礼忘义永垂不朽顶天立地豁达大度兢兢业业卖国求荣恬不知耻贪生怕死厚颜无耻描写人物神态的成语神采奕奕眉飞色舞昂首挺胸惊慌失措, , 漫不经心垂头丧气没精打采愁眉苦脸大惊失色炯炯有神, 含有夸张成分, 的成语怒发冲冠一目十行一日千里一字千金百发百中一日三秋一步登, , 天千钧一发不毛之地不计其数胆大包天寸步难行含有比喻成分的成语观者如云挥金如土铁证如山, 爱——如命稳如泰山门庭若市骨瘦如柴冷若冰霜如雷贯耳守口如瓶浩如烟海高手如林春天, 阳春三月春光明媚春回大地春暖花开春意盎然春意正浓, 风和日丽春花烂漫春天的景色鸟语花香百鸟鸣春百花齐放莺歌燕舞夏天的热赤日炎炎烈日炎炎骄阳似火挥汗如雨大汗淋漓3、书名号里还要用书名号时, 外面用双书名号里面用单书名号。

相关文档
最新文档