轨道电路(钢轨)打眼说明

轨道电路(钢轨)打眼说明
轨道电路(钢轨)打眼说明

b轨道电路(钢轨)打眼说明

A、区间空扼流及站场扼流钢轨打眼用Φ13的钻头打眼。

B、区间电容及站场电容钢轨打眼用Φ9.8钻头打眼。

C、双体防护盒钢轨打眼用Φ13.2钻头打眼,打完眼后如果没有打入德式塞钉需要用黄油涂抹到打好的眼孔中防锈;如果带有德式塞钉,请用专业套管工具打入德式塞钉。附图1

D、双体盒、扼流等轨旁设备引接线用Φ10的化学锚栓和“M”卡固定在轨枕上;在打过轨固定化学锚栓时要考虑过轨引接线和列车运行方向的关系,要求把长线安装在迎着列车运行方向枕木的背面。

附图2

(化学锚栓打眼示意图)图片2

打完化学锚栓用“M”卡固定引接线的效果图

德式塞钉专业工具,请在领取塞钉时一并在材料员手中领取。

(德式塞钉安装专业工具)图片1

注意事项:

1、在打入塞钉前,都必须用冲子扩眼。不然不能保证塞钉打入合适的深度。(如电容塞钉要使塞钉头露出钢轨1mm~4mm,塞钉不得打弯。)

2、打德式塞钉时必须使用专用工具,打完的钢轨眼要及时打入塞钉,

如果没有打入塞钉的要用黄油涂抹防锈。附图3

(涂抹黄油)图3

3、在遇有轨枕板接头、应答器、钢轨焊缝时,补偿电容安装位置距离轨枕板接头或应答器中心≧0.65m,所有钢轨打眼(眼中心)都距离钢轨焊缝≧0.45m。

4、同一设备的连接线在两根钢轨上的打眼位置应保持在同一坐标处。采用双线连接时两相邻眼间距为80mm。

5、有个别双体盒或电容、扼流打完眼后,安装塞钉时有晃动或虚接现象时要及时拆除并联系分管技术人员根据孔径特制塞钉,特制塞钉到货后方可安装施工。

无绝缘轨道电路

Z PW-2000R型无绝缘移频自动闭塞 系统说明 第一章移频自动闭塞基本知识 第一节自动闭塞概述 一、自动闭塞的基本概念 铁路信号的概念:铁路信号是在列车运行时及调车工作中对列车乘务人员及其它有关行车人员发出的命令,有关行车人中必须按信号指示办事,以保证行车安全并准确的组织列车运行及调车工作。为发出这些命令,铁路信号又分为固定信号、移动信号、手信号、信号表示器、信号标志及听觉信号等。它在铁路运输中对保证行车、提高运输效率和改善行车工作人员劳动条件等,均发挥着十分重要的作用。 目前,我们铁路采用的行车闭塞方法主要有半自动闭塞和自动闭塞两种。 闭塞的概念:为使列车安全运行,在一个区间,同一时间内,只允许一个列车运行,保证列车按这种空间间隔运行的技术方法称为闭塞。 区间的划分:为了保证列车运行的安全的提高运输效率,铁路线路以车间、线路所及自动闭塞的通过色灯信号机为分界点划分为若干区间。 区间分为三种: 1、站间区间――车站与车站间构成的区间。 2、所间区间――两线中所间或线中所与车站间构成的区间。 3、闭塞分区――自动闭塞区间的两个同方向相邻的通过色灯信号机间或进站(站界标)信号机 与通过信号机间。 自动闭塞的概念:是实现列车运行自动化的基础设备,它对保证列车行车安全、提高区间通过能力起着重要的作用。所谓自动闭塞,就是办理闭塞的过程全部实现自动化而不需要人工操纵。这种闭塞制式,是通过色灯信号机把区间分成若干个小区段,称为闭塞分区。在每个闭塞分区内装设轨道电路,用于检查闭塞分区是否有车占用,这样色灯信号机可随着列车运行而改变显示,以指示追踪列车的运行。根据列车运行及有关闭塞分区状态,自动变换通过信号机显示的闭塞方法称为自动闭塞。 自动闭塞的优点:

25HZ轨道电路故障处理及日常维护

题 目:25HZ 轨道电路故障处理及日常维护 专 业: 自动化

目录 摘要................................................................ I 第1章前言 (1) 1.1 轨道电路概述 (1) 1.1.1 轨道电路作用及构成 (1) 1.1.2 轨道电路的原理 (1) 1.1.3 轨道电路分类 (1) 1.1.4 轨道电路的工作状态 (2) 第2章 25Hz轨道电路 (1) 2.1 25Hz轨道电路概述 (1) 2.1.2 25Hz相敏轨道电路的发展 (1) 2.1.2 25HZ轨道电路的特点 (2) 2.2 97型25 Hz相敏轨道电路的运用特性 (2) 2.2.1 97型25 Hz相敏轨道电路范围 (2) 2.2.2 97型25 Hz相敏轨道电路主要特点 (2) 2.2.3 97型25 Hz相敏轨道电路主要技术指标 (3) 2.2.4 97型25 Hz相敏轨道电路工作原理 (4) 第3章 25Hz轨道电路的组成 (5) 3.1 25Hz轨道电路设备的基本组成 (5) 3.2 97型25 Hz相敏轨道电路的元器件 (5) 第4章 25HZ轨道电路的故障处理及日常维护 (7) 4.1 轨道电路的处理程序 (7) 4.2 97型25HZ相敏轨道电路故障查找方法 (7) 第5章常见故障的分析与判断 (9) 5.1 常见故障的判断方法 (9) 5.2 常见故障案例 (13) 第6章轨道电路的日常维护与常见仪表的使用 (15) 6.1 轨道电路的日常维护工作 (15) 6.2 仪表的使用 (16) 结束语 (17) 致谢 (18) 参考文献 (19)

无砟轨道施工小结

京福铁路客运专线闽赣段 无砟轨道施工小结 中铁十七局集团公司京福铁路客运专线闽赣Ⅶ标项目经理部 二〇一四年十二月三十一日

无砟轨道施工小结 1、工程概况 无砟轨道施工起点里程为K1714+512.703,终点里K1737+392.383;全长22879.68m。该段含有隧道3座,长度19855.98m;桥梁7座,长度为1896.35m;路基6段,长度1127.35m。 三分部管辖范围内共有曲线三段,其中K1716+217.904~K1717+398.448段曲线半径为11000m,超高值为75mm,曲线长度1180.544m;K1724+378.5~K1727+094.455段曲线半径为8000m,超高值为100mm,曲线长度2715.954m;K1729+043.979~K1735+664.672段曲线半径为7000m,超高值为100mm,曲线长度6620.954m。无砟轨道线间距5m,道床板设计宽度2800mm。 直线地段桥梁无砟轨道结构厚787mm,其中道床板厚515mm,支承层厚210mm;路基无砟轨道结构厚815mm,其中道床板厚515mm,支承层厚300mm;隧道无砟轨道结构厚515mm。曲线地段的桥梁、隧道超高设置在道床板上实现,曲线地段的路基超高在道床板和基床上实现。 2、开竣工日期 开工日期:2013年9月10日 竣工日期:2014年12月20日 3、物流组织

3.1物流组织的分类 物流组织是双块式无砟轨道施工的重难点之一,施工过程中物流任务繁重且相互干扰。物流组织分为内循环和外循环两部分,内循环为物流组织的重点。 内循环指排架工装设备、轨枕、钢筋等材料的前后倒运和混凝土罐车及其他车辆的通行,主要有双线双铺和单线单铺两种物流组织方式。双线双铺具有需敷设龙门吊所需电缆且物流集中、工序间相互干扰。单线单铺II线施工时利用已完成的I线作为施工通道需大量回填线间平台且容易造成I线扣件的损坏。 3.2单线单铺物流组织 本项目采用单线单铺物流组织形式。 3.2.1运输设备配置 单线单铺时采用10t随车吊作为主要的运输设备,同时与自制炮车作为辅助运输设备。每个作业面配置1台10t轮胎式随车吊,其主要负责排架和模板的倒运。自制炮车主要负责排架支撑杆件和其他小构件的倒运。I线施工时随车吊和炮车主要通行于未施工的II线,II线施工时随车吊通行于的I线的水沟侧,炮车主要通行于中心水沟盖板上或线间平台处,炮车制作时其轮间距一般不宜大于80cm。 3.2.2轨枕和钢筋的运输及存放 轨枕存放位置和高度需考虑轨道精调时需前后各搭接3对CPⅢ点的要求,即精调区域的前后各150m范围内的CPⅢ点能通视。 隧道内轨枕平行于线路方向通长摆放在水沟电缆槽上,轨枕垛共

轨道电路故障处理

轨道电路故障处理标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

轨道电路故障处理 轨道电路用来检查进路是否空闲,反映区段或进路的锁闭和解锁状态,监督列车和调车车列的运行情况。 当轨道电路故障时会出现两种情况: 1、有车占用无红光带。 2、无车占用亮红光带。 原因分析: 1、有车占用无红光带:当有车占用时控制台无红光带显示故障是非常危险的,当发生这类故障后应首先通知车站值班员停用设备,然后进行处理。这类故障发生的原因一般在室外设备,可先检查控制台光带表示灯是否有故障,以及轨道继电器是否落下或接点卡阻或粘连等。这类故障发生在室外设备的主要原因: 1、在道岔区段轨道电路,设有轨端绝缘但没有设在受电端的双动道岔渡线或测线上,因轨端接续线或岔后跳线断开、脱落,而造成死区段。 2、轨面电压调整过高或送电端可调电阻调整的阻值过小,造成轨道电路不能正常分路。 3、一送多受轨道区段,因各受电端距离较远,轨面电压调整不平衡,有个别受电端轨面电压过高而造成分路不良。 4、因钢轨轨面生锈,车辆自重较轻或轮对电阻过大等,使车辆轮对分路不良。 5、室外发生混线,有其他电源混入,或牵引电流干扰等使轨道继电器误动。 2、无车占用亮红光带:发生这种故障时,应先在控制台观察故障现象,做出初步判断。如果几个轨道电路区段同时出现红光带,应重点在分线盒检查轨道电源熔断器熔

丝和送电电缆芯线;若相邻两个轨道区段同时出现红光带,一般是相邻两轨道电路轨道绝缘双破损;只有一个轨道区段亮红光带,应首先在分线盘处测试送电电缆端子有无电压,若有电压。确认为室外故障时,再去室外处理。判断轨道电路是开路故障还是短路故障是分析故障的关键。轨道电路开路故障:轨道电路开路后继电器落下,控制台点亮红光带。开路故障应查钢轨接续线、道岔跳线、箱盒与轨面的引导线(是否断线)。轨道电路短路故障:短路故障应查绝缘,绝缘破损;其他异物短路,如铁丝等金属褡裢或跳线、引导线混线造成。 一、轨道电路常见故障的判断与处理方法 1、轨道电路故障类型 ①开路故障:从轨道室内送电开始到受电回到室内轨道继电器,任何一点断开都不能使轨道电路正常工作,我们称其为轨道电路的开路故障。也是轨道电路故障中比较简单的故障,比较容易判断。 ②短路故障:轨道电路回路中两线间有任意一点混线短路,或是达到一定程度的分路电流就可影响轨道电路的正常工作,我们称其为轨道电路的短路故障。短路故障的判断处理比较复杂,各种因素比较多,须采取一些特殊的处理方法。 2、轨道电路故障的判断首先要判断清楚故障性质,即是开路故障还是短路故障。基本思路是:开路故障:从故障点到受电端电压下降,电流减小。故障点到送电端电压升高,电流减小。短路故障:从故障点到受电端电压下降,电流减小。故障点到送电端电压下降,电流增大。 25周相敏轨道电路故障判断开路和短路的基本方法:必须先从送电端着手,测量送电端限流电阻上的压降,即可判断轨道电路故障的性质,其基本原理就是

最新25HZ轨道电路常见开路故障资料

25HZ轨道电路常见开路故障 一、1 现象:轨道电红光带 2 测试:分线盘没有220V电压,再测零层XJZ、XJF有没有220V电压,若有电压,在测保险,保险上端有,下端没有,为保险熔断。 3测试:分线盘有220V电压,再测F-4电缆盒D1,D2没有电压。说明从分线盘至F-4电缆盒D1,D2电缆断线。处理时可用对地法判断哪根断(这四个端子分别对地,哪个变化大就是哪个不好。效线时最好不要用14型的表,只限25HZ轨到电路。) 4测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4无电,判断送端XB箱D1,D3与D2,D4之间保险断。注意:处理时不要用同电位法处理,要用交叉法判断保险的好坏。换保险时要注意220V的电压。 5测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧无电。说明D2,D4与变压器I次侧之间断线,判断哪根断时一定要效线。D2到I1,D4到I4。哪根有电就是哪根断。 6测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4电,变压器I次侧有电,变压器II次侧无电。然后测封线,封线有电就是封线断。 7测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧有电,变压器II次侧有电。限流电阻无电,再测D5,D7无电。然后效线III1到D8有电,说明III1到D8断线。 8测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧有电,变压器II次侧有电。限流电阻无电,再测D5,D7无电。然后效线III1到D8无电,说明III1到D8是好的。再测II2到限流电阻的进口无电好,再测限流电阻的出口到D5有电,说明限流电阻的出口到D5之间断线。 9测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧有电,变压器II次侧有电。限流电阻有电(电压约等于II次侧电压)再测D5,D7无电。说明限流电阻开路。 10测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧有电,变压器II次侧有电。限流电阻有电,再测D5,D7有电。再测扼流变压器D4,D5无电,然后效线XB箱的D5到扼流变压器的D5无电好,再效XB 箱的D7到扼流变压器的D4有电,说明XB箱的D7到扼流变压器的D4之间开路。 11测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧有电,变压器II次侧有电。限流电阻有电,再测D5,D7有电。再测扼流变压器D4,D5有电,扼流变压器I次侧有一半电压(比正常值少一半),测中间封线有电压,说明扼流变压器I次侧封线开路。 12测试:分线盘有220V电压,再测F-4电缆盒D1,D2有电压。送端XB箱D1,D3有电,D2,D4有电,变压器I次侧有电,变压器II次侧有电。限流电阻有电,再测D5,D7有电。再测扼流变压器D4,D5有电,扼流变压器I次侧有电压(电压升高,就是开路电压)然后测轨面无电压,说明扼流变压器I次侧与轨面之间开路(有钢丝绳断或钢丝绳与轨面接触不良)。

ZPW2000A型无绝缘轨道电路原理说明

原理说明 1.系统原理 ZPW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨 道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。 电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐 单元构成。调谐区对于本区段频率呈现极阻抗,利于本区段信 号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地 短路相邻区段信号,防止了越区传输,这样便实现了相邻区段 信号的电气绝缘。同时为了解决全程断轨检查,在调谐区内增 加了小轨道电路。 ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道 电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列 车运行前方主轨道电路的所属“延续段”。 主轨道电路的发送器由编码条件控制产生表示不同含义的低 频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既 向主轨道传送,也向小轨道传送。主轨道信号经钢轨送到轨道 电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信 号传至本区段接收器。 调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将 处理结果形成小轨道电路轨道继电器执行条件通过(XG、 XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的

必要检查条件之一。本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。主轨道和调谐区小轨道检查原理示意图见图2-1。 该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。 2.电路工作原理及冗余设计 2.1 发送器 2.1.1 用途 ZPW-2000A型无绝缘移频轨道电路发送器在区间适用于非电码化和电码化区段18信息无绝缘移频自动闭塞,供自动闭塞、机车信号和超速防护使用。在车站可适用于非电码化和电码化区段站内移频电码化发送,并可作站内移频轨道电路使用。2.1.2 原理框图及电路原理简要说明 同一载频编码条件,低频编码条件源,以反码形式分别送入两套微处理器CPU中,其中CPU1产生包括低频控制信号Fc的移频信号。移频键控信号FSK分别送至CPU1、CPU2进行频率检测。检测结果符合规定后,即产生控制输出信号,经“控制与门”使“FSK”信号送至滤波环节,实现方波——正弦波变换。功放输出的FSK信号送至两CPU进行功出电压检测。两CPU

25Hz轨道电路故障处理程序

室外设备故障处理 a、测试送电端钢轨中的电流。电流升高时是受电端方向短路故障按i项查找;电流降低时测量轨面电压,电压升高时是受电端方向开路故障按f项查找;电压降低时是送电端方向短路或开路故障按c项查找。 b、测量送电端D1D3端子间电压。无电查室内及送电电缆盒;有电进行c项。 c、测量D2D4端子间电压。无电是1A液压断路器问题,交叉测试确认;有电进行d项。 d、测量变压器Ⅰ次侧电压。无电是液压断路器至变压器Ⅰ次侧配线开路,交叉测试确认;有电进行e项。 e、测量变压器Ⅱ次侧电压。有电进行f项;无电时分线圈测量变压器Ⅱ次侧,个别线圈无电,是相关线圈断线,分线圈有电是勾线断线;分线圈无电是变压器Ⅰ次侧问题,测量就近两个端子间电压是220时,说明这两个端子间断线。(正常时Ⅰ1Ⅰ3间及Ⅰ2Ⅰ4间电压应为110V)。 f、测量D5、D7间电压升高是变压器箱外部开路。顺序测量送电端信号圈、轨面、接头、受电端轨面、信号圈、变压器Ⅱ次侧、Ⅰ次侧及回楼D1、D2间电压,电压变化时是开路点。端子A、B有电,送到端子C、D没电,当不确定A具体接到C或D时,第一步测量A对C、D全有电是A断线,全没电是B断线;第二步再断开C或D,测试A、B端断线的端子对C、D线头测量,有电的是与没断的端子连接的好线,另一根断线。(特殊情况:当变压器Ⅱ次升高,电阻电压等于变压器Ⅱ次电压时是电阻开路) g、测量D5、D7间电压降低,电阻上的电压也降低是送电箱内开路故障。首先断开10A保险,测量变压器Ⅱ次Z 端子分别对应D6和D7端子电压,如果两个都没有电,说明变压器Ⅱ次Z端子对端子座间配线好;再测变压器Ⅱ次K端子对端子座一个有电一个没电,说明变压器Ⅱ次K端子对没电的端子间配线断线。如果断线的配线包括电阻,应借变压器Ⅱ次Z端子,测量K端子、电阻及端子座,电压变化时是故障点。(也可用电流的方法:测试变压器二次、限流电阻以及扼流信号圈中电流正常位0.43A,短路时是0.76A左右) h、测量D5、D7间电压降低,限流电阻上的电压升高是短路故障。首先断开10A保险后,测量D6、D7间电压不变是送电箱内部短路,电压升高是外短路。外部短路时断开扼流变压器信号圈全部电缆,D5、D7间电压不变,是信号圈电缆短路;电压升高后将信号圈甩开,电缆连接端子,电压下降是端子短路;电压不变是扼流变压器及以后短路。 i、判断为短路故障时,因电气化牵引区段钢轨及扼流变压器牵引圈中有牵引电流通过,严禁断开的特点,必须采用电流测试的方法。当电流增大时,短路点在受电端方向,电流减小时,短路点在送电端方向;而其它不经过牵引电流的处所可采用断开后续电路测量电压的方法。断开10A液压断路器,测量D6、D7间电压,降低说明短路点在送电端方向,升高说明短路点在受电端方向。在测量电压电流的过程中必须与测试记录比较。当受电端短路故障时,可将电流表放在钢轨上实时测量电流值,在扼流变压器信号圈、10A保险、变压器等处断开后续电路,电流下降时短路点在甩开处以后,电流不变时短路点在甩开处以前。 j、当查找到受电端D1、D2电压正常时,应询问室内控制台显示红光带是否恢复,未恢复时请室内确认二元二位继电器轨道及局部电压,不正常时,沿受电端电缆向室内方向查找;正常时,室外在动过线的地方反转极性即可。(1)特别注意复式交分道岔的1、2尖轨根部间和3、4尖轨根部的两根900mm短跳线必须连接,否则轨道电路只依靠2块滑床板与尖轨接触送电。 (2)扼流变压器可测量两个线圈电压相等和对地平衡以及信号圈与牵引圈变比判断。

无砟轨道施工指南

CRTS I型双块式无砟轨道施工作业指南

目录 1 前言 (1) 2 适用范围 (1) 3主要技术标准和参数 (1) 4施工工艺流程 (3) 5生产施工方法和过程控制标准 (4) 5.1 施工准备 (4) 5.2 下部支承结构层施工 (5) 5.3 双块式轨枕、道床板钢筋进场 (9) 5.4 道床工作面清理、施工放线 (11) 5.5 底层钢筋布设 (11) 5.6 轨枕布设 (12) 5.7工具轨、模板、螺杆调节器运输 (13) 5.8铺工具轨、组装轨排、安装螺杆调节器托盘 (14) 5.9轨道粗调、安装调节器螺杆 (17) 5.10 钢筋绑扎、接地焊接 (19) 5.11 安装横向、纵向模板 (20) 5.12 轨道精调 (22) 5.13 混凝土浇筑 (25) 5.14 轨排稳定保护 (27) 5.15 混凝土养护 (28) 5.16 拆除纵向、横向模板 (29)

5.17 拆除螺杆调节器 (30) 5.18 轨道状态复测 (30) 5.19 拆工具轨 (30) 5.20 封堵螺杆孔、修整混凝土 (31) 5.21 轨道状态调整 (31) 6主要材料与机具设备配置 (35) 6.1 材料计划 (35) 6.2 机具设备配置 (36) 7 施工组织要点 (37) 7.1 道床板施工物流组织 (37) 7.2 劳动力安排 (38) 7.3 作业区段的划分和工效. (39) 8 质量控制要点 (39) 8.1 施工准备阶段 (39) 8.2 下部支承结构层施工阶段 (40) 8.3 道床板施工阶段 (40) 8.4 轨道精调阶段 (40) 9 安全控制要点 (41) 10 环境保护控制要点 (41)

zpw-2000a轨道电路故障判断和处理程序解析

ZPW-2000A 轨道电路故障判断和处理程序 一、判断故障区段 1.对分割区段,轨 2亮红时,影响轨 1也亮红,所以首先查轨 2,若轨 2恢复,轨 1仍然亮红,再查轨 1。 2. 对红灯转移区段,当通过信号机红灯灭灯且该信号机防护的区段亮红时,该信号机的前方区段也亮红,应先查信号机防护的区段。 3. 对站联区段,当发车线与邻站分界区段亮红时,应先判断邻站的站联条件是否送过来, 可先观察该区段组合的 GJ (邻、 DJ (邻是否吸起,若吸起,说明邻站已将站联条件送过来;若未吸起,再到区间综合柜零层相应端子测试电压是否送过来。若条件未送过来, 故障在邻站, 需邻站查找。二、判断室内外故障 判断清楚故障区段后,再判断故障在室内还是室外。在区间综合柜的电缆模拟网络盘上进行测试判断,先测试发送电缆模拟网络的“电缆”塞孔电压,再测试接收电缆模拟网络的“电缆”塞孔电压。与正常测试数据进行对比, 若发送电压不正常,故障在室内发送电路。若发送“电缆” 电压正常,接收电压不正常,故障在室外。若发送电压和接收电压均正常,故障在室内接收电路。 三、室内故障判断处理 1. 室内发送电路故障判断处理 a. 衰耗盘测试发送功出电压、载频、低频均正常,电缆模拟网络“设备”电压正常,而“电缆”电压不正常,则电缆模拟网络故障,更换电缆模拟网络即可。 b. 衰耗盘测试发送功出电压、载频、低频均正常,电缆模拟网络“设备”电压不正常,故障点在发送器的发送输出 s1、 s2端子至发送模拟网络端子 1、 2间的电线及继电器接点条件上。 c. 衰耗盘测试发送功出电压、载频、低频不正常, “+ 1” 衰耗盘测试发送功出电压、载频、低频正常,此时,若仅移频报警,轨道电路不亮红,则更换发送器即可。

25HZ轨道电路混线故障

25HZ轨道电路混线故障 一. 1.现象:轨道电路红光带 测试:分线盘送端有220V电压,接受无电压无电流。送电端变压器Ⅰ次侧有220V电压,Ⅱ次侧有3.96V,可调电阻有约等于Ⅱ次侧电压,用钳形表卡一下电流,有电流再卡一下D5无电流,然后卡变压器Ⅲ1有电流,D8无电流。 故障点:可调电阻至D5和变压器Ⅲ1至D8混线。 注意事项:可调电阻前不能短路否则会烧坏变压器。 2. 现象:轨道电路红光带 测试:分线盘送端有220V电压,接受无电压无电流。送电端变压器Ⅰ次侧有220V电压,Ⅱ次侧有3.96V,可调电阻有约等于Ⅱ次侧电压,用钳形表卡电流,送端变压器箱D8有电流,D7电缆无电流。D5皮线有电流,电缆无电流。说明D8或D7与D5有短路,然后去掉过载保险区分是D8与D5或D7与D5短路。 故障点:有两种一D8与D5。二D7与D5短路。 注意事项:对地测量区分是接地故障还是短路故障 3. 现象:轨道电路红光带 测试:分线盘送端有220V电压,接受无电压无电流。送电端变压器Ⅰ次侧有220V电压,Ⅱ次侧有3.96V,可调电阻有约等于Ⅱ次侧电压,用钳形表卡电流,测D7,D5电缆有电流,然后测试扼流变压器D4,D5无电流,(轨道箱至扼流变压器是双根电缆)在测试D7,D5和扼流变压器D4,D5单根电缆电流,相互比较如果D7,D5分别有一根电缆电流明显高几十毫安,则说明这两根电缆短路。 故障点:轨道箱至扼流变压器电缆混线 4. 现象:轨道电路红光带 测试:分线盘送端有220V电压,接受无电压无电流。送电端变压器Ⅰ次侧有220V电压,Ⅱ次侧有3.96V,可调电阻有约等于Ⅱ次侧电压,用钳形表卡电流,测D7,D5电缆有电流,然后测试扼流变压器D4,D5电缆有电流,扼流变压器线圈无电流。 故障点:扼流变压器D4,D5短路或接地 注意事项:对地测量区分是接地故障还是短路故障 5. 现象:轨道电路红光带 测试:分线盘送端有220V电压,接受无电压无电流。送电端变压器Ⅰ次侧有220V电压,Ⅱ次侧有3.96V,可调电阻有约等于Ⅱ次侧电压,用钳形表卡电流,测D7,D5电缆有电流,然后测试扼流变压器D4,D5有电流,送端扼流变压器钢丝绳有电流,与钢轨连接处电缆塞钉头无电流。 故障点:送端扼流变压器至钢轨钢丝绳短路。 6. 现象:轨道电路红光带 测试:分线盘送端有220V电压,接受无电压或着有电压很低但无电流。送电端变压器Ⅰ次侧有220V电压,Ⅱ次侧有3.96V,可调电阻有约等于Ⅱ次侧电压,用钳形表卡电流,测D7,D5电缆有电流,送端扼流变压器钢丝绳有电流,受端钢丝绳无电流或电流明显比正常值低,则说明送端至受端钢轨通道有短路,然后用轨道电路故障测试仪沿通道测试,有电流和无电流之间或电流有明显变化之间为故障点。 故障点:通道短路 注意事项:重点检查测试道岔安装装置绝缘及轨距杆地锚拉杆处所。 7. 现象:轨道电路红光带

25HZ轨道电路案例分析

25HZ轨道电路案例分析 某站发生轨道电路红光带故障,影响多趟旅客列车。为压缩故障延时,提高故障处理技能,现将故障概况、处理过程及原因分析如下. 1、故障概况 某站5DG轨道区段突然红光带,轨道电压从原来的调整状态的21.9V降到11.7V,轨道电相位角由85.2°下降到53.4°。导致了二元二位继电器不能有效动作。在故障处理的过程中,。红光带自动消失消失。轨道电压及相位角均恢复正常。在对设备进行全面检查后恢复正常使用。 2、故障处理过程 13:05分段调度接到某站5DG红光带通知后,段调度立即启动轨道电路应急抢修预案。现场处理人员在信号机械室分线盘测量5DG发送电压为75V,受端电压为11V,凭经验认为故障点在室外,马上赶赴室外检查测试处理故障。13:45分技术科工程师赶到机械室检查测试,在分线盘甩开受端负载,测得受电端电缆电压为40V,在分线盘接负载电压降为11V,初步判断故障在室内,在进一步判断查找过程中,5DG红光带自动恢复,恢复后5DG电压21.7V。工长室外对5DG区段进行了仔细检查,没有发现设备异常。晚上利用天窗点继续查找,对有可能引起故障的器材进行试验,当对室内防护盒进行试验时发现,防护盒开路情况下,其故障现象再现,所有数据曲线与白天故障完全吻合,基本判定,该起故障系防护盒开路所致。 3、原因分析 通过对25HZ轨道电路特性分析资料的查阅,了解到HF4-25型防护盒的

功能为对50HZ 电流起到串联谐振的作用,能减少轨道线圈上的干扰电压。对25HZ 电流起到电容作用。减少了轨道电路传输衰耗和相移。当防护盒在从正常到开路状态时,电压最大衰耗可降到原电压的45.5%,同时相位角失调角最大为41.33°,变化幅度要根据轨道电路长度等情况有部分偏差。和本故障现象相符(表格一),在晚上对防护盒试验时的数据曲线数据也相符,因此我们得出结论故障原因为HF4-25 型防护盒开路故障。同时举一反三以轨道电压正常值20V 为例,当防护盒电容被击穿状态下轨道电压会原来得20V 降至3V-4V 左右,相位角失调角61°。防护盒电感短路状态下轨道电压从20V 降到17V 左右,相位角失调角15°;当防护盒后面短联线开路时。电压为9V 左右,相位角到0°。 故障时电压变化和相位角变化

25Hz轨道电路故障判断

25Hz轨道电路学习资料 XB GJZ220GJF220JJZ110JJF110 1、防护盒作用及故障后的影响: 25HZ相敏轨道电路继电器并接有防护盒,防护盒对50HZ牵引电流相当于15Ω的阻抗,起到减小轨道线圈电压的作用,对25HZ信号呈容抗,起着减小轨道电路衰耗和相移的作用,当防护盒不良时,继电器25HZ电压会下降,50HZ电压会上升,继电器翼板有震动噪声。 2、绝缘破损的情况: 在电气化区段由于安装了通过牵引电流的扼流变压器,使得有扼流变压器的绝缘都成为极性绝缘,一组绝缘破损短路,绝缘两侧电压都会下降一半,会出现2个区段红光带(也可能是一个区段红光带,一个区段电压降一半)。 3、室内外故障判断方法: 在分线盘轨道送端测试220V电源电压和受端所接收的轨道电压与电流。 调整状态时分线盘参考数据:送端220V/15mA 受端18V/20mA a 送端有220V 受端无电压无电流---室外故障 b 送端有220V 受端有较低电压但电流也很低---室外故障 c 送端无220V----室内故障 d 送端有220V 受端有较高电压时----室内故障 e 送端有220V 受端无电压或电压较低,但电流大于20mA时----室内故障

25Hz轨道电路室内故障外判断方法 第一闭环:电源屏至送端变压器1次侧; 第二闭环:送端轨道变压器2次侧至送端扼流变压器1次侧; 第三闭环:送端扼流变压器2次侧至受端扼流变压器2次侧; 第四闭环:受端扼流变压器1次侧至受端轨道变压器2次侧; 第五闭环:受端轨道变压器1次侧至室内RDGJ3、4线圈; 第六闭环:RDGJ3、4线圈至防护盒1、3端子; 第七闭环:防护盒至硒片(此闭环开路时不成呈现故障); 5、闭环内出现故障的判断 在某个闭环内若出现开路故障时,此闭环内及短线点以后的电路中不会有电流和电压。短线点之前电压会有不同程度的升高(除第六闭环外)。我们可以用电压表对电路逐段测试—电压变化的地段及为故障所在。 在第六闭环由于防护盒中电感电容的作用,其开路时将引起接收电压下降至9V左右,电流升高近一倍。 在某个闭环内若出现短路故障时,将引起自短路点之前电路中的电流升高,限流电阻上的压降升高,而限流电阻之后的电路电压明显下降或无电压:短路点之后得不到电流和电压(或电流电压明显下降)。我们可以用甩线法判断故障位置。快捷的方法是电流法,闭环内电流变化的地段即为故障位置。在第七闭环内若有电流即可判断硒片击穿或配线短路。 站内轨道均实行了极性交叉防护,当相邻轨道区段绝缘破损时,将造成两区段轨道电压同时下降而呈现故障。道岔安装装置绝缘破损时,用轨道测试仪检测最为快捷方便。送端电缆若短路,将引起电源屏输出电源所属保险熔断,出现多处红光带故障。我们可以对本束电源所控制的各个轨道区段送端电缆进行电阻测试,电阻为0欧或非常小的为故障区段。可对电缆阻值进行计算判断短路点的大概位置(电缆芯线阻值为0.0235欧/米)。 处理故障时要头脑清醒,充分考虑轨道电路的区别(有无电码化叠加、一送一受还是一送多受)。有电码化叠加区段在测试时必须用频率表测试或将电码化关掉查找(叠加区段为股道) 故障处理一般程序: 1、电压波动(故障)隐患: a、轨道曲线出现毛刺: 当轨道曲线出现毛刺时,首先要考虑到扼流变性能(内部线圈破损、连接板接触不良)。线圈破损,通过测试扼流变压器变比和扼流变压器线圈对中心连接板电压来判断,正常时变比为1:3,两线圈对中心连接板电压相等(通过晃动扼流变压器线圈可以发现轨道电压有

ZPW—2000无绝缘轨道电路模拟实验方法

ZPW—2000A无绝缘轨道电路模拟实验方法的分析 洛阳电务段————丁福顺 ZPW—2000A型无绝缘自动闭塞在郑州—洛阳段投入使用以来、因其设备稳定可靠、方便调整等优点深受现场维修单位的欢迎。该制式还要在全路大力推广,因此掌握ZPW—2000A无绝缘轨道电路模拟实验方法对该设备的维修及今后的施工均具有一定的指导意义。 一、ZPW—2000A无绝缘轨道电路的设置原理 ZPW—2000A无绝缘轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两部分。小轨道电路是主轨道电路的延续段,延续段的信号由运行前方相临轨道电路的接收器处理并将处理结果以24V电压的形式送至本轨道接收器。如:6811G接收器接收主轨道1700-2信号,还检查运行前方6825G接收器输出的24V电源条件,此时反映6811G空闲的QGJ才会吸起。而6825G接收器24V小轨输出的条件是接收到电压幅度符合要求的1700-2的小轨信号(即6811G频率信号)。如下图: 二、ZPW—2000A无绝缘轨道电路主轨道电路模拟实验方法(以6811G为例) 1、6811G区段的发送器电平暂时调为9级,功出电压38V(S1 、S2) 2、6811G区段送、受端电缆模拟网络的输出端封连贯通即D1-1——D1-2;D1-3——D1-4 3、由于室外设备没有连接6825G的接收器无小轨24V输出,因此6811G的接收器的小轨输入端(XGJ,XGJH)需要人为提供24V条件。 4、6811G的发送电码电路检查6825信号机灯丝条件(DJF)或6825G区段的轨道条件(GJF),因此需暂时封连DJF或GJF的第一组前接点,满足以上4种条件,且主轨道接收的信号电压大于240mv,室内通道正常,则6811G区段的QGJ吸起。衰耗盘上轨道占用表示灯由红灯变为绿灯,说明主轨道电路逻辑关系正确。 5、编码电路实验 模拟不同的编码条件,在衰耗盘轨入测试孔分别测量有不同的低频信号输出。测试数据如下

对于25Hz轨道电路故障处理与日常维护的现代研究

对于25Hz轨道电路故障处理与日常维护的现代研究 摘要在铁路的电力牵引区段中,25Hz轨道电路为常见轨道电路制式,一旦发生故障通常难以确定故障原因。基于这种认识,本文对25Hz轨道电路故障处理问题展开了分析,并提出了该电路的日常维护方法,从而为关注这一话题的人们提供参考。 关键词25Hz轨道;电路故障;日常维护 前言 25Hz轨道电路由接收设备、钢轨线路、电源、绝缘等构成,在非电化区段得到了广泛应用。电路频率限为25Hz,采用低频传输方式,终端设备可以实现相位鉴别,所以传输损耗小,设备灵敏度高,具有较强抗干扰能力。但是,该种轨道电路故障点较多,容易受外界因素影响,所以故障处理难度较大。因此,还应加强对25Hz轨道电路故障处理与日常维护研究,以便为列车安全运行提供保障。 1 25Hz轨道电路故障处理 1.1 接收器故障处理 25Hz轨道电路如果接收器存在故障,就会导致红光带的产生。结合红光带出现位置,可以对故障进行判断和处理。如果红光带在轨道区段出现,并且区段红、绿指示灯常亮,可以确定轨道接收器局部电源和接收电压正常,故障应位于室内直流输出或电源总,需要进行轨道测试盘检测。如果咽喉位置多个区段出现红光带,需对区段采用的相同路径电缆进行检测,确认是否存在断线问题。如果相邻区段出现一红一闪光情况,需检查分界绝缘情况,确认是否存在破损问题。在此基础上,需要对中性连接板和扼流变压器钢丝绳是否封接牢固进行确认。此外,如果单独区段有红光带产生,针对一送多受处的轨道,应确认继电器是否吸收完全,排除该问题后需对区段中DGJ和DGJF工作情况进行确认[1]。确定故障原因后,可以采取相应措施排除故障。 1.2 混线、断线故障处理 在轨道区段出现红光带,同时接收器绿灯灭,红灯亮,意味着接收器局部电源和直流电源电压正常,轨道结构电压和直流输出部分存在故障。在接收器轨道中,如果有低接收电压,还要再次测试分段盘轨道接收的电压。在接收电压为0后较小的情况下,还要甩开室外电缆,进行侧空电压测试。发现30V以上电压,室内可能存在故障,如接收器间存在混线、接收器插座插片不良、防护盒接收器间断线、输入变压器一次侧断线、防护盒断线。通过逐一排查,可以确定故障位置,然后进行故障处理。

轨道绝缘在线测试的应用

轨道绝缘在线测试应用 轨道电路是列车运行安全控制的重要基础设备。它是以钢轨为导体,以钢轨绝缘分界,并用电缆连接发送和接收设备构成轨道电路,用以检查有无列车占用及向列车传递地面状态信息的电路。它的工作可靠与否将直接影响列车运行状态与效率,直接影响运输生产的安全。 电务系统发生的行车故障中大部份是由道岔和轨道电路故障引起,而轨道电路故障又大部份由绝缘破损引起。由于轨道绝缘破损的原因较复杂,这些绝缘包括钢轨轨端绝缘、道岔安装装置绝缘、轨距杆绝缘等各种轨道绝缘查找较困难,因此轨道电路绝缘故障检测是铁路电务维修部门迫切需要解决的问题。 目前主要通过拆除轨道绝缘两端的轨道电路设备和轨道绝缘本身(可能拆掉后绝缘并没破损,拆除后就不能再用,造成损失浪费),用万用表或绝缘摇表进行测量并估计绝缘破损情况,工作量大并且测试结果不准确,因此在线测量判断绝缘性能是否良好是一个非常重要的问题。 一、轨道绝缘在线测试仪原理 通过在被测轨道绝缘两端加入高频脉动信号,并采集该信号信号,通过测试仪内部的DSP电路处理变换分析,滤除牵引电流回流及轨道各种频率信号(如25Hz~3KHz等),分离出能够表征绝缘电阻变化的信号分量来,测试其信号在轨道绝缘上产生的阻抗,并自动计算出绝缘电阻值。 二、测试用高频信号对轨道电路影响的研究和试验

测试仪相对被测轨道电路设备为高阻。发出信号为数百千赫以上高频脉动信号,不会对轨道电路设备、移频设备及移频信号产生影响。 实际测试中监测轨道电路(轨面电压、相位角)无变化,移频信号(载频、低频)无变化 三、轨道电路绝缘状态分析 轨道电路绝缘除了本身的特性外,外部环境(钢轨结构、道床电阻、列车占用情况)影响。呈现其整体阻抗特性。经过计算分析及现场对电化和非电化区段测试得到以下结论 (1)正常状态下,各绝缘节呈原阻抗,且短路一个绝缘节不影响另一个绝缘节阻抗测试。 (2)一个区段分路,绝缘节阻抗低于原阻抗,短路一个绝缘节,影响另一个绝缘节阻抗。 (3)两个区段分路,绝缘节阻抗低于1/2原阻抗,且不得短路另一个绝缘节。 四、测试方法及标准 用测试仪表笔直接测量轨道绝缘两端显示数值为该绝缘在线阻抗测量值。 根据铁道部2007-484号文件关于印发“工电”联合整治道岔项目及“标准”的通知中规定。 1、轨道绝缘大于20欧姆为良好。 2、当同一处绝缘中两组绝缘值虽然都大于20欧姆而两数值相差较大时,应引起注意。 3、绝缘值低于或等于10欧姆将会影响轨道电路正常工作。 4、绝缘值低于或等于5欧姆应立即更换或处理绝缘。

ZPW-2000A型无绝缘轨道电路原理说明复习过程

原理说明系统原理 ZPW-2000A型无绝缘移频轨道电路系统,与UM71无绝缘轨道电路一样采用电气绝缘节来实现相邻轨道电路区段的隔离。电气绝缘节长度改进为29m,由空心线圈、29m长钢轨和调谐单元构成。调谐区对于本区段频率呈现极阻抗,利于本区段信号的传输及接收;对于相邻区段频率信号呈现零阻抗,可靠地短路相邻区段信号,防止了越区传输,这样便实现了相邻区段信号的电气绝缘。同时为了解决全程断轨检查,在调谐区内增加了小轨道电路。 ZPW-2000A型无绝缘移频轨道电路将轨道电路分为主轨道电路和调谐区小轨道电路两个部分,并将短小轨道电路视为列车运行前方主轨道电路的所属“延续段”。 主轨道电路的发送器由编码条件控制产生表示不同含义的低频调制的移频信号,该信号经电缆通道(实际电缆和模拟电缆)传给匹配变压器及调谐单元,因为钢轨是无绝缘的,该信号既向主轨道传送,也向小轨道传送。主轨道信号经钢轨送到轨道电路受电端,然后经调谐单元、匹配变压器、电缆通道,将信号传至本区段接收器。 调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件通过(XG、

XGH)送至本轨道电路接收器,做为轨道继电器(GJ)励磁的必要检查条件之一。本区段接收器同时接收到主轨道移频信号及小轨道电路继电器执行条件,判决无误后驱动轨道电路继电器吸起,并由此来判断区段的空闲与占用情况。主轨道和调谐区小轨道检查原理示意图见图2-1。 该系统“电气—电气”和“电气—机械”两种绝缘节结构电气性能相同。 2.电路工作原理及冗余设计 2.1 发送器 2.1.1 用途 ZPW-2000A型无绝缘移频轨道电路发送器在区间适用于非电码化和电码化区段18信息无绝缘移频自动闭塞,供自动闭塞、机车信号和超速防护使用。在车站可适用于非电码化和电码化区段站内移频电码化发送,并可作站内移频轨道电路使用。2.1.2 原理框图及电路原理简要说明 同一载频编码条件,低频编码条件源,以反码形式分别送入两套微处理器CPU中,其中CPU1产生包括低频控制信号Fc的移频信号。移频键控信号FSK分别送至CPU1、CPU2进行频率检测。检测结果符合规定后,即产生控制输出信号,经“控制与门”使“FSK”信号送至滤波环节,实现方波——正弦波变换。

区间轨道电路故障判断处理程序

区间轨道电路故障判断处理程序 UM71轨道电路是发送和接收设备利用两根轨条作通道构成的电路,它起着检查各个区段线路是否空闲的作用。轨道电路的构成及工作原理并不复杂,但引发的轨道电路故障的原因表现出的现象是多样化的。为减少电务设备对运输生产造成的干扰,在发生故障时快速、准确地判明并及时进行处理,尽快恢复行车秩序,根据现场设备的实际情况制定故障判断处理程序。 电务部分: 一、区间轨道电路控制台红光带或区段表示红亮。 1、接到车站值班员的通知,进机械室确认故障现象, 1)、分清故障区段和有车占用区段。一般情况下,非接近区段和离去区段在控制台是无法盯控的,一旦区间轨道电路发生故障,必然会影响行车,必须与机车联控问清机车停车的具体位置。 2)、分清故障区段是大号还是小号故障。 ○1、如果只有D5G1红,说明是D5G1故障,可以直接从D5G1查找; ○2、如果D5G1和D5G2都红,说明是D5G2故障,则应查找D5G2区段。

2、测试功出。 ○1、有功出电压,且功出电压与平时工作电压相同或有所升高。说明发送端工作正常,故障点在发送器之后。 ○2、无功出。 说明发送器没有正常工作。此时可先更换发送器,再测试功出是否正常,如果正常则判断为发送器故障。 如果更换后仍然没有功出,则应查看发送器编码电路中各继电器状态,用数字万用表直流电压档,测量编码电路是否有压降,再用电阻档确认电阻的大小,此电路较为简单,按一般断线故障查找即可。 ○3、电压明显大幅度下降。 说明发送器性能不良或连接发送器以后的电路中存在短路现象。此时可先更换发送器,测试功出电压是否正常,如果仍然不正常,则应测试分线盘电压。 3、测试限入。 ○1、无限入。 可先更换接收器,如故障未恢复,应先测试室外分线盘。 ○2、限入正常。 可先更换轨道继电器,故障未恢复,应先测试接收器(L+、L—)是否输出24V电压。如无输出则更换接收器或者查找接收器至轨道继电器的配线是否完整并插接良好。 ○3、限入电压低于240mV 此故障一般是室外电容故障导致,轨距杆短路等,但是需要

25HZ轨道电路常见故障处理程序

25HZ轨道电路常见故障处理程序 第一步:信号人员接到车站报轨道电路故障后,首先到运转室查看控制台显示状态及列车运行情况,并在第一时间内向电务段调度简单汇报故障发 生的时间、地点、区段及概况;调度电话: 第二步:信号人员到车站运转室办理登记故障区段停用手续,查看控制台故障区段现象,询问故障发生的时机、经过; 第三步:到机械室分线盘测试送、受端电压状况,以判断是室内还是室外故障。 1)在分线盘上测试故障区段发送电压 ①参考平时此区段的发送电压,在分线盘上测试发送电压是否正常,如没 有电压,查找室内调整变压器、隔离盒、一次电源及至分线盘的引线情况; ②在分线盘上测试发送电压偏低,可能是断线或混线故障,可甩开分线盘 测试端子进行测试以判断是室内或室外故障,然后再进行查找; 2)在分线盘测试故障区段的接收电压(发送正常时) ①测试故障工区段的接收电压是否正常,如正常(参考调整表)、检查相 敏接收器的电源,局部电源及电执行继电器的状态是否正常; A、如相敏接收器红灯灭—查找其24V工作的电源情况; B、如相敏接收器绿灯闪—查找其局部电源; C、如相敏接收器32、42有20V—30V的直流输出—查找其与执行 继电器的引线及其状态; ②如故障区段的接收电压10V以下,甩开分线盘端子进行测试,以判定室 内或室外故障; A、甩开原电压正常—查找室内防雷硒片有无防雷痕迹,25HZ防护 盒是否作用良好; B、甩开原电压仍然10V以下—查找室外半混线故障; ③如故障区段的接收电压0V,甩开分线盘端子后测试仍为0V ,则为室外 断线或纯混线,应到室外由送—受逐步处理; 第四步:1、各段调度汇报在机械室测试数据和故障判断结果; 2、接收段处理故障的调度命令; 第五步:按规定前往故障区段进行处理,之前需携带电台、工具和仪表、混线故障查找仪; 第六步:到达故障区段后,由送端—扼流箱—轨面—扼流箱—受端逐步测试判断、处理; 第七步:如果是送端故障 1、测试室内电源是否送到室外轨道箱和变压器一次上; 2、测试变压器Ⅰ、Ⅱ次是否有电,扼流变压器是否正常,是否送到钢 轨上; 第八步:如是受端故障 测试轨面电压—扼流变压器—轨道箱—接收变压器Ⅰ、Ⅱ次及返回室 内测电源是否正常; 第九步:汇报故障处理概况:故障处理后,要及时将处理经过、发生时间、恢复时间、影响车次、器材名称、编号处理人报告段调度。

相关文档
最新文档