圆的计算与证明

合集下载

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

圆的相关证明与计算(复习讲义)(原卷版)-中考数学重难点题型专题汇总

题型五--圆的相关证明与计算(复习讲义)【考点总结|典例分析】考点01圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.考点02垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.考点03圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.考点04圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.考点05与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r ⇔点在⊙O 外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r考点06切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.考点07三角形与圆1.三角形外接圆外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.1.如图,点,,,,A B C D E 在O 上,,42AB CD AOB =∠=︒,则CED ∠=()A.48︒B.24︒C.22︒D.21︒2.如图,A,B,C 是半径为1的⊙O 上的三个点,若,∠CAB=30°,则∠ABC 的度数为()A.95°B.100°C.105°D.110°3.如图,AB 是⊙O 的直径,AC,BC 是⊙O 的弦,若20A ∠=︒,则B Ð的度数为()A.70°B.90°C.40°D.60°4.如图,Rt ABC 中,90ACB ∠=︒,AC =3BC =.点P 为ABC ∆内一点,且满足22PA PC +2AC =.当PB 的长度最小时,ACP ∆的面积是()A.3B.C.4D.25.如图,已知在⊙O 中, AB BCCD ==,OC 与AD 相交于点E.求证:(1)AD∥BC(2)四边形BCDE 为菱形.6.如图,A,B 是O 上两点,且AB OA =,连接OB 并延长到点C,使BC OB =,连接AC.(1)求证:AC 是O 的切线.(2)点D,E 分别是AC,OA 的中点,DE 所在直线交O 于点F,G,4OA =,求GF 的长.7.如图,Rt ABC 中,90ABC ∠=︒,以点C 为圆心,CB 为半径作C ,D 为C 上一点,连接AD 、CD ,AB AD =,AC 平分BAD ∠.(1)求证:AD 是C 的切线;(2)延长AD 、BC 相交于点E,若2EDC ABC S S = ,求tan BAC ∠的值.8.如图,在O 中,AB 是直径,弦CD AB ⊥,垂足为H ,E 为 BC上一点,F 为弦DC 延长线上一点,连接FE 并延长交直径AB 的延长线于点G ,连接AE 交CD 于点P ,若FE FP =.(1)求证:FE 是O 的切线;(2)若O 的半径为8,3sin 5F =,求BG 的长.9.如图,ABC 是O 的内接三角形,AC 是O 的直径,点D 是 BC的中点,//DE BC 交AC 的延长线于点E .(1)求证:直线DE 与O 相切;(2)若O 的直径是10,45A ∠=︒,求CE 的长.10.如图,已知点C 是以AB 为直径的圆上一点,D 是AB 延长线上一点,过点D 作BD 的垂线交AC 的延长线于点E ,连结CD ,且CD ED =.(1)求证:CD 是O 的切线;(2)若tan 2DCE ∠=,1BD =,求O 的半径.11.如图,AB 是⊙O 的直径,C 为⊙O 上一点,连接AC,CE⊥AB 于点E,D 是直径AB 延长线上一点,且∠BCE=∠BCD.(1)求证:CD 是⊙O 的切线;(2)若AD=8,BE CE=12,求CD的长.12.如图,△ABC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,连结OC,弦AD分别交OC,BC于点E,F,其中点E是AD的中点.(1)求证:∠CAD=∠CBA.(2)求OE的长.13.如图,⊙O的半径OA=6,过点A作⊙O的切线AP,且AP=8,连接PO并延长,与⊙O 交于点B、D,过点B作BC∥OA,并与⊙O交于点C,连接AC、CD.(1)求证:DC∥AP;(2)求AC的长.=CD =DB ,连接AD,过点D作14.如图,AB为⊙O的直径,C、D为⊙O上的两个点,ACDE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)若直径AB=6,求AD的长.15.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.16.如图,AB为⊙O的直径,C为⊙O上一点,AD与过C点的直线互相垂直,垂足为D,AC 平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=3,求⊙O的半径.17.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,过点D作⊙O的切线交AC于点E.(1)求证:DE⊥AC;(2)若⊙O的半径为5,BC=16,求DE的长.。

圆定理证明

圆定理证明

圆幂定理定义圆幂=PO^2-R^2 (该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点P 引两条割线与圆分别交于A、B;C、D, 则有PA ·PB=PC ·PD。

统一归纳:过任意不在圆上的一点P 引两条直线L1、L2,L1 与圆交于A、B(可重合,即切线),L2 与圆交于C、D(可重合),则有PA ·PB=PC ·PD。

相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)相交弦说明几何语言:若弦AB 、CD 交于点P则PA ·PB=PC ·PD (相交弦定理)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的例中项几何语言:若AB 是直径,CD 垂直AB 于点P, 则PC^2=PA ·PB (相交弦定理推论)相交弦定理CADPo°B⊙O中,AB、CD 为弦,交于PPA ·PB=PC·PD连结AC、BD,证:△APC△DPB切割线定理定义从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

是圆幂定理的一种。

几何语言:∵PT 切⊙O于点T,PBA 是⊙O的割线∴PT 的平方=PA ·PB (切割线定理)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,P BA,PDC 是⊙O的割线∴PD·PC=PA ·PB (切割线定理推论)(割线定理)由上可知:PTA2 (平方)=PA ·PB=PC ·PD证明切割线定理证明:设ABP 是⊙O的一条割线,PT 是⊙O的一条切线,切点为T, 则PT^2=PA ·PB证明:连接AT,BT∵∠PTB=∠PAT (弦切角定理)∠P=∠P(公共角)∴△PBTO△PTA (两角对应相等,两三角形相似)则PB:PT=PT:AP即:PT^2=PB ·PA割线定理定义从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

圆的证明与计算范文

圆的证明与计算范文

圆的证明与计算范文圆是几何中的基本图形之一,它是平面上所有点与固定点之间距离保持不变的集合。

下面将从不同的角度对圆的性质进行证明,并介绍一些常见的圆的计算方法。

一、圆的性质及证明1.圆的定义证明对于平面上的一个点O以及一个长度r,定义集合E为与O的距离为r的点的集合。

我们要证明E是一个圆。

证明:(1)任意取平面上的一点A,若A∈E,证明OA=r。

假设A∈E,则OA的长度等于A与O的距离,即OA=r。

因此,E是以O为圆心,长度为r的圆。

(2)任意取平面上的一点B,若OB=r,证明B∈E。

假设OB=r,则OB的长度等于B与O的距离,即OB=BO=r。

因此,B∈E。

由(1)和(2)可得,对于平面上的一个点O以及一个长度r,定义集合E为与O的距离为r的点的集合是一个圆。

2.圆心角的证明圆心角是指圆上两条射线所夹的角,它的度数等于弧所对的圆周角的度数。

我们要证明圆心角的度数等于所对弧的度数。

证明:任意取圆上两点A和B,以圆心O为顶点,连接OA和OB两条射线。

延长AO和OB分别与圆交于点C和D,则∠AOB是圆心角,∠ACB是所对弧所对的圆周角。

(1)∠AOB的度数等于所对弧AD的度数。

由于AD是圆上的弧,所以∠ACO是所对弧AD的圆周角。

根据圆周角的性质,∠ACO的度数等于所对弧AD的度数。

(2)∠ACB的度数等于所对弧AD的度数。

同样根据圆周角的性质,∠ACB的度数等于所对弧AD的度数。

由(1)和(2)可得,圆心角∠AOB的度数等于所对弧AD的度数。

通过证明,我们可以得出圆心角的度数等于所对弧的度数这一结论。

二、圆的计算在实际应用中,我们有时需要计算圆的周长、面积以及部分圆的面积。

以下是圆的计算公式:1.周长的计算2.面积的计算3.部分圆的面积的计算对于已知圆的半径r和所对的圆心角θ,部分圆的面积计算公式为:A=(πr²×θ)/360,其中A表示部分圆的面积,r表示半径,θ表示圆心角。

圆中的相关证明与计算

圆中的相关证明与计算

圆中的相关证明与计算圆是平面上到一个给定点的距离恒定的所有点的集合。

通过研究圆的性质和相关的定理,我们可以了解圆的性质和概念,并可以进行相关的证明和计算。

以下是一些关于圆的相关证明和计算的例子:1.圆的半径与直径的关系证明:首先,我们知道直径是通过圆心并且两端点在圆上的线段。

现在我们要证明直径是半径的两倍。

证明:假设圆的半径为r,直径为d。

根据直径的定义,我们知道直径是通过圆心的,并且它的两个端点在圆上。

所以直径d可以看作是两个半径r的长度相加,即d=r+r=2r。

所以我们可以得出结论:直径等于半径的两倍。

即d=2r。

2.圆周率的计算:周长的计算公式为:C=2πr,其中r为圆的半径。

面积的计算公式为:A=πr^2,其中r为圆的半径。

例如,如果一个圆的半径为5厘米,则它的周长为:C=2π*5=10π≈31.42厘米;面积为:A=π*5^2=25π≈78.54平方厘米。

3.弦和半径的垂直关系证明:在圆中,连接圆周上的两点的线段称为弦。

现在我们要证明如果一个弦与半径相交,那么这个弦就是半径的垂直平分线。

证明:假设在圆中有一个弦AB,如果它与半径OC相交于点M,我们要证明AM=MB。

根据圆的性质,半径OC与弦AB相交于点M,则角OMC是直角,因为OC是半径,所以OM=MC。

又由于弦AB与半径OC相交于点M,所以AM=MC,MB=MC。

综上所述,AM=MB,即弦AB是半径OC的垂直平分线。

通过以上证明和计算,我们可以更深入地了解圆的性质和相关的定理。

圆是几何学中重要的概念之一,它在各种数学和科学领域中都有广泛的应用。

希望以上内容对您有所帮助。

圆中的计算和证明

圆中的计算和证明

1、如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连AD。

(1)求证:AD=AN;(2)若AB=24,ON=1,求⊙O的半径。

2、在⊙O中,AB为直径,点C为圆上一点,将劣弧AC沿弦AC翻折交AB于点D,连结CD。

(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,求出∠DCA的度数。

知识点(圆相关概念和性质)知识点一:垂径定理1.垂径定理:于弦的直径这条弦且这条弦所对的。

2.推论(1):①平分()的垂直于弦且弦所对的;②弦的经过且弦所对的两条弧;③弦所对的一条的直径弦且平分弦所对的另一条弧。

推论(2):圆的两条弦所夹的弧。

知识点二:圆心角、弧、弦、弦心距间的关系1.定理:在或中,相等的圆心角所对的相等,所对的相等,相等。

2.推论:同圆或等圆中,如果①两个相等,②两条相等,③两条相等,④两条弦的中有一组量相等,那么它们所对应的其余各组量都分别相等。

知识点三:圆周角定理及其推论1.定理:在同圆或等圆中,或所对的相等,都等于这条弧所对的的。

2.推论①:同弧或等弧所对的相等;同圆或等圆中,相等的圆周角所对的弧是。

推论②:或所对的是直角;是直角(90°的)所对的弧是,所对的弦是。

推论③:若三角形一边上的中线等于这边的一半,那么这个三角形是。

知识点四:圆内接四边形性质定理1.概念:所有顶点都在同一个圆上的四边形叫做圆内接四边形。

2.定理:圆内接四边形的对角,并且任何一个外角都等于它的。

知识点五:直线与圆的位置关系直线和圆的位置关系相交相切相离公共点个数圆心到直线的距离d与半径r的关系公共点名称直线名称知识点六:圆的切线1.切线的性质(1)切线性质定理:圆的切线垂直于过切点的直径。

拓展:①经过圆心且垂直于切线的直线必经过切点;②经过切点且垂直于切线的直线必经过圆心;③切线与圆只有一个公共点;④圆心到切线的距离等于半径。

第40讲 与圆有关的计算与证明题 课件(共74张ppt) 2024年中考数学总复习专题突破.ppt

第40讲 与圆有关的计算与证明题 课件(共74张ppt) 2024年中考数学总复习专题突破.ppt

复习讲义
(2)若 = 5 , cos ∠ =
4
,求 的长.
5

解: ∵ ∠ = 90∘ , ∴ ∠ + ∠ = 90 .
由(1)知, = 2 = 10 , ∠ = 90∘ ,
∴ ∠ + ∠ = 90∘ .
图3
∴ ∠ = ∠.
4
.
5
∴ cos = cos ∠ =
复习讲义
(2)若 = 10 , = 12 , = 2 ,求 ⊙ 的半径.
思路点拨 由(1)知 ⊥ ,因此可在 Rt △
中利用勾股定理列方程求解.
解: ∵ = , ⊥ , ∴ = =
1

2
= 6.
图1
∴ = 2 − 2 = 102 − 62 = 8.
∴ = 6 .
目录导航
9
第40讲 与圆有关的计算与证明题
复习讲义
2.(2022·鄂尔多斯)如图3,以 为直径的
⊙ 与 △ 的边 相切于点 ,且与 边
交于点 ,点 为 的中点,连接 , ,
.
(1)求证: 是 ⊙ 的切线.
1.(2022·衡阳)如图2, 为 ⊙ 的直径,过圆上一
点 作 ⊙ 的切线 交 的延长线于点 ,过点
作 // 交 于点 ,连接 .
(1)直线 与 ⊙ 相切吗?请说明理由.
图2
目录导航
7
第40讲 与圆有关的计算与证明题
复习讲义
解:直线 与 ⊙ 相切.
, 的点,连接 , ,点 在 的延长线
上,且 ∠ = ∠ ,点 在 的延长线上,

陕西中考圆的证明与计算(2023版)

陕西中考圆的证明与计算(2023版)

陕西中考圆的证明与计算(2023版)知识总结1.切线的性质:垂直于过切点的半径.(连半径,得垂直)2.切线的判定:(1)定义法:和圆只有一个交点的直线是圆的切线;(2)距离法:到圆心距离等于半径的直线是圆的切线;证明d =r 即可,常用于已知数据的计算,比如动圆相切问题.(3)判定定理:经过半径外端且垂直于这条半径的直线是圆的切线.换个说法:⎧⎨⎩有交点:连半径,证垂直无交点:作垂直,证半径,多用于几何证明.多数情况为有交点,重点考虑如何证垂直:①证明和已知垂线平行;②证明夹角为直角.3.常见相切图(1)角分+等腰得平行:点C 在以AB 为直径的圆O 上,AH ⊥CH ,且AC 平分∠HAB .【证明】连接OC,则OC=OA,∴∠OCA=∠OAC,又∠OAC=∠HAC,∴∠OCA=∠HAC,∴OC∥AH,∴OC⊥CH,∴CH是圆O的切线.(2)证明和已知直角相等.证明△PCO≌△PAO,可得∠PCO=∠PAO=90°.(3)证明夹角为直角.(弦切角定理)如图,若∠BAC=∠D,则AB是圆O切线.如图,连接AO并延长交圆O于点P,则∠P=∠D=∠BAC,∵∠P+∠PAC=90°,∴∠BAC+∠PAC=90°,即AB⊥AP,∴AB是圆O的切线.1.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC 于点E.(1)求证:DE=AE;(2)若AD=8,DE=5,求BC的长度.2.如图,在Rt△ABC中,∠ABC=90°,以BC为直径的⊙O交AC于点E,⊙O的切线DE交AB于点D.(1)求证:DA=DB;(2)连接BE,OD,交点为F,若cos A=,BC=6,求OF的长.3.如图,AB是⊙O的直径,经过⊙O上一点D,作⊙O的切线EF,交AB的延长线于点F,AE⊥EF,交BD的延长线于点C.(1)求证:AB=AC.(2)若⊙O的半径为3,,求BF的长.4.如图,AB为⊙O的直径,C、E为⊙O上的两点,过点E的切线交CB的延长线于点D,且CD⊥DE,连接CE,AE.(1)求证:∠ABC=2∠A;(2)若⊙O半径为,AB:BD=5:1,求AE的长.5.已知:如图,AB为⊙O的直径,CD与⊙O相切于点C,交AB延长线于点D,∠D=30°,连接AC、BC,CE平分∠ACB交⊙O于点E,过点B作BF⊥CE,垂足为F.(1)求证:CA=CD;(2)若AB=12,求线段BF的长.6.已知:如图,⊙O过正方形ABCD的顶点A,B,且与CD边相切于点E.点F是BC与⊙O的交点,连接OB,OF,AF,点G是AB延长线上一点,连接FG,且∠G+∠BOF=90°.(1)求证:FG是⊙O的切线;(2)如果正方形边长为8,求⊙O的半径.7.如图,在△AOB中,以点O为圆心的⊙O与AB相切于点D,延长AO交⊙O于点C,连接CD,过点A作AF⊥BO,交BO的延长线于点H,交⊙O于点F,∠B=∠C.求证:(1)AF∥CD;(2)AH2=OH⋅BH.8.如图,AB是⊙O的直径,已知点D是弧BC的中点,连接DO并延长,在延长线上有一点E,连接AE,且∠E=∠B.(1)求证:AE是⊙O的切线;(2)连接AC,若AC=6,CF=4,求OE的长.9.如图,AB是⊙O的直径,C在AB的延长线上,⊙O与CD相切于点D,过点A作AE ⊥CD,垂足为E.(1)求证:AD平分∠EAC.(2)若BC=3,,求⊙O的半径以及线段ED的长.10.如图,AB是⊙O的直径,点D是直径AB上不与A,B重合的一点,过点D作CD⊥AB,且CD=AB,连接BC交⊙O于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)当D是OA的中点时,AB=4,求BF的长.11.如图,△ABC内接于⊙O,AB=AC,过点A作BC平行线AM,连接BO并延长,交AM于点D,连接AO、CO.(1)求证:AM是⊙O的切线;(2)若BC=10,AD=8,求⊙O的半径.12.如图,已知△ABC的边AB所在的直线是⊙O的切线,切点为B,AC经过圆心O并与圆交于点D、C,E为AB延长线上一点,连接CE交⊙O于点F,且∠BCE=∠ACB.(1)求证:CE⊥AB;(2)若⊙O的半径是6,AB=8,求EF的长.13.如图,在△ABC中,∠C=90°,以FB为直径作⊙O,⊙O与直角边AC相切,切点为E.(1)求证:∠DBE=∠EBA;(2)若AB=10,DB=4,求EB的长.14.如图,已知AB是⊙O的直径,C是⊙O上一点,OD⊥BC,垂足为D,连接AD,过点A作⊙O的切线与DO的延长线相交于点E.(1)求证:∠B=∠E;(2)若⊙O的半径为4,OE=6,求AD的长.15.如图,AB是⊙O的直径,点D、E均在⊙O上,连接AD、BD、BE、DE,过点D作⊙O的切线,交AB的延长线于点C.(1)求证:∠DEB=∠CDB;(2)若BD=DE=6,BE=9.6,求⊙O的半径.16.如图,△ABC是⊙O的内接三角形,BC为⊙O的直径,点E是⊙O上一点,连接OE 并延长交过点C的切线CD于点D,∠B=∠D.(1)求证:OD∥AC;(2)延长EO交AB于点F,AF=2,⊙O的直径为2,求OD的长.17.如图,已知△ABC的外接圆直径是AB,点O是圆心,点D在⊙O上,且=,过点D作⊙O的切线,与CA、CB的延长线分别交于点E、F.(1)求证:AB∥EF;(2)若⊙O的半径为5,BC=8,求DF的长度.18.如图,AB为⊙O的直径,C为⊙O上一点,AD⊥CE,垂足为D,AC平分∠DAB.(1)判定直线CE与⊙O的位置关系,并说明你的理由;(2)若AD=3,AC=4,求圆的半径.19.如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,与AC边的交点为F,过点D作DE⊥AC于点E.(1)求证:直线DE是⊙O的切线;(2)若AB=5,tan∠ACB=2,求弦AF的长度.20.如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作DE⊥AC,垂足为E,延长CA交⊙O于点F.(1)求证:DE是⊙O的切线;(2)若tan B=,⊙O的半径为5,求线段CF的长.21.如图,AB为⊙O的直径,OD为⊙O的半径,⊙O的弦CD与AB相交于点F,⊙O的切线CE交AB的延长线于点E,EF=EC.(1)求证:OD垂直平分AB;(2)若⊙O的半径长为3,且BF=BE,求OF的长.22.如图,AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,BD⊥CD,DB的延长线与⊙O交于点E.(1)求证:∠ABE=2∠A;(2)若,BD=4,求BE的长.23.如图,在△ABC中,AC=AB,以AB为直径的⊙O交BC于点D,过点D作ED⊥AC 点E,交AB延长线于点F.(1)求证:EF是⊙O的切线;(2)若DF=4,tan∠BDF=,求AC的长.24.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,F是AD延长线上一点,连接CD,CF,且∠DCF=∠CAD.(1)求证:CF是⊙O的切线;(2)若直径AD=10,cos B=,求FD的长.25.如图,AB是⊙O的直径,AE是⊙O的切线,点C为直线AE上一点,连接OC交⊙O 于点D,连接BD并延长交线段AC于点E.(1)求证:∠CAD=∠CDE;(2)若CD=6,tan∠BAD=,求⊙O的半径.26.如图,四边形ABCD是⊙O的内接四边形,且对角线BD为⊙O的直径,过点A作AE ⊥CD,与CD的延长线交于点E,且DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若⊙O的半径为5,CD=6,求AD的长.27.如图,⊙O是△ABC的外接圆,AE是⊙O的直径,点B是的中点,过点B的切线与AC的延长线交于点D.①求证:BD⊥AD;②若AC=9,tan∠ABC=,求⊙O的半径.28.如图,△ABC中,∠C=90°,点O在AB上,⊙O经过点A,且与BC相切于点D.(1)求证:AD平分∠BAC;(2)若AC=6,cos∠BAC=,求⊙O的半径.29.如图,AB是⊙O的直径,点C为⊙O上一点,CD平分∠ACB,交AB于点E,交⊙O 于点D,延长BA到点P,使得PE=PC.(1)求证:PC与⊙O相切;(2)若⊙O的半径3,PC=4,求CD的长.30.如图,AB是⊙O的直径,点C、D是⊙O上两点,CE与⊙O相切,交DB延长线于点E,且DE⊥CE,连接AC,DC.(1)求证:∠ABD=2∠A;(2)若DE=2CE,AC=8,求⊙O的半径.31.如图,AB是⊙O的直径,AC是弦,且OD⊥AC于点E,OD交⊙O于点F,连接CF、BF,若∠BFC=∠ODA.(1)求证:AD是⊙O的切线:(2)若AB=10,AC=8,求AD的长.32.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,连接OD,过点D作⊙O的切线DE,交AC于点E,延长CA交⊙O于点F,连接BF.(1)求证:DE⊥AC;(2)若⊙O的直径为5,cos C=,求CF的长.33.如图,在⊙O中,PA是直径,PC是弦,PH平分∠APB且与⊙O交于点H,过H作HB⊥PC交PC的延长线于点B.(1)求证:HB是⊙O的切线;(2)若HB=4,BC=2,求⊙O的半径.34.如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使得EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.35.如图,四边形ABCD是⊙O的内接四边形,且对角线BD为直径,过点A作⊙O的切线AE,与CD的延长线交于点E,已知DA平分∠BDE.(1)求证:AE⊥DE;(2)若⊙O的半径为5,CD=6,求AD的长.36.如图,在Rt△ACD中,∠ACD=90°,点O在CD上,作⊙O,使⊙O与AD相切于点B,⊙O与CD交于点E,过点D作DF∥AC,交AO的延长线于点F,且∠OAB=∠F.(1)求证:AC是⊙O的切线;(2)若OC=3,DE=2,求DF的长.37.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,以CD为直径作⊙O,与BC交于点E,过点E作⊙O的切线EF,交AB于点F.(1)求证:EF⊥AB;(2)若⊙O的半径是,cos∠ACD=,求DF的长.38.如图,⊙O是△ABC的外接圆,=,过点A作AD∥BC交⊙O于点D,连接CD,延长DA到点E,连接CE,∠D=∠E.(1)求证:CE是⊙O的切线;(2)若CE=8,AE=5,求⊙O半径的长.39.如图,BD为⊙O的直径,∠ABE=∠BCA,过点A的直线与⊙O分别交于点E,C,与BD交于点F,连接BE,BC.(1)求证:AB为⊙O的切线.(2)若∠A=∠ABE,BE=5,BC=8,求⊙O的半径.40.如图,AB是⊙O的直径,AE是⊙O的切线,点C为直线AE上一点,连接OC交⊙O 于点D,连接BD并延长交线段AC于点E.(1)求证:∠CDE=∠CAD;(2)若CD=4,tan B=,求⊙O的半径.。

初中三:圆的证明与计算

初中三:圆的证明与计算

圆的证明与计算【高频核心考点】1,圆周角定理以及垂径定理,如下图所示∵ AB 为直径且AB ⊥CD∴ CE=DE ,弧BC=弧BD ,弧AC=弧AD 注:运算中主要运用勾股定理。

2,圆的切线长定理,如下图所示∵ PA,PB 为⊙O 的两条切线∴ PA=PB ,且PO 垂直平分AB 同理可证:EC=EA ,FC=FB3,相交弦定理 切割线定理 割线定理结论: PA ·PB=PC ·PD PA 2=PB ·PC PB ·PA=PD ·PC4,切割线延伸: 切割线互垂(角平分线):结论:tan A DB BC CDAD CD AC∠===结论:∠ABD=∠CBD ,DB 2=BC ·BE ,AD 2=AE ·ABOFE DC BA【精题精讲精练】◆例1:《角平分线模型》1,如图,在Rt ABC∆中,90C∠=︒,AD平分BAC∠交BC于点D,O为AB上一点,经过点A,D的O⊙分别交AB,AC于点E,F,连接OF交于点G.(1)求证:BC是O⊙的切线;(2)设AB x=,AF y=,试用含,x y的代数式表示线段AD的长;(3)若8BE=,5sin13B=,求DG的长.2,如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC·BE=25,求BC的长.AD【变式练习】已知:如图,△ABC 内接于⊙O ,AB 为直径,∠CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE ⊥AB 于点E ,且交AC 于点P ,连结AD. (1)求证:2AC DE =;(2)若tan∠CBD =12,AP·AC=5,求AC 的长; (3)若65AD =,⊙O 的半径为152,延长DE 交⊙O 于点M ,且DP :DM=1:3,求CM 的长.◆例2:《母子型相似》1,如图,AB 为⊙O 的直径,C,D 为圆上的两点,OC∥BD,弦AD ,BC 相交于点E.(1)求证:弧AC=弧CD ;(2)若CE=1,EB=3,求⊙O 的半径;(3)在(2)的条件下,过点C 作⊙O 的切线,交BA 的延长线于点P,过点P 作PQ∥CB 交⊙O 于F,Q 两点(点F 在线段PQ 上),求PQ 的长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(3)∵tanC= ,可设2+CD2= BC2 ∴(x)2+(2x)2=16, 解得:x=± (负值舍去)∴BD= x= 4 4 5 ∵∠ABD=∠C , 3 3 5 ∴tan∠ABD=tanC AD= BD=. 5 答:AD 的长是. 2
解:(1)如图,作 OF⊥BD 于点 F,联结 OD. ∵∠BAD=60°,∴∠BOD=2∠BAD=120°. 又∵OB=OD,∴∠OBD=30°. ∵AC 为⊙O 的直径,AC=4,∴OB=OD=2. 在 Rt△BOF 中,∵∠OFB=90°,OB=2,∠OBF=30°, ∴OF=OB· sin∠OBF=2sin30°=1, 即点 O 到 BD 的距离等于 1.
专题圆计算
例 2[2012· 北京] 已知:如图 Z4-4,AB 是⊙O 的直 径,C 是⊙O 上一点,OD⊥BC 于点 D,过点 C 作⊙O 的切线,交 OD 的延长线于点 E, 联结 BE. (1)求证:BE 与⊙O 相切; (2)连结 AD 并延长交 BE 于点 F,若 OB=9,sin∠ABC 2 = ,求 BF 的长. 3
解:(1)证明:联结 OC. ∵OC=OA, ∴∠OAC=∠OCA. ∵AC 平分∠PAE, ∴∠DAC=∠OAC, ∴∠DAC=∠OCA, ∴AD∥OC. ∵CD⊥PA,∴∠ADC=∠OCD=90°, 即 CD⊥OC.∵点 C 在⊙O 上, ∴CD 是⊙O 的切线.
(2)过 O 作 OF⊥AB 于 F, ∴∠OFA=90°. ∵AB=8,∴AF=4. 在 Rt△AFO 中,∠AFO=90°,∴AO2=42+OF2. ∵∠FDC=∠OFA=∠DCO=90°, ∴四边形 DFOC 是矩形, ∴OC=DF,OF=CD. ∵AD∶DC=1∶3, ∴设 AD=x,则 DC=OF=3x, OA=OC=DF=DA+AF=x+4, ∴(x+4)2=42+(3x)2, 解得 x1=0(不合题意,舍去),x2=1.则 OA=5. ∴⊙O 的半径是 5.
切线的证明方法有哪些?求线段长的方法有哪些?
归纳
证明:①圆的切线的证明 ②相似的证明 ③线段的证明 计算:①运用解直角三角形计算圆中有关线段的长 ②运用相似三角形的性质与判定计算圆中有 关线段的长 ③运用方程思想解决圆的计算问题
例1:如图,Rt△ABC中,∠ABC=90°,以AB为直 径的⊙O交AC于点D,E是BC的中点,连接DE、OE. (1)判断DE与⊙ O的位置关系,说明理由; 2 (2)求证:BC =2CD· OE (3)若tanC= 25,DE=2,求AD的长.
专题复习
专题
考情分析
一般来说,圆的解答题分值为 10 分,难度中等偏上,是 每一位考生力争满分的题型之一.所考查知识点相对稳定,考 查学生对圆、相似、解直角三角形等内容的综合应用能力和计 算能力. 从题目本身来看,一般都是采取很标准的两类型,第 一证明,第二通常会给定一线段长度和一角的三角函数值,求 其他线段长,综合考查圆与三角形的知识点.
专题圆计算
方法点评
在圆中利用相似三角形的性质与判定来计算有关线 段长度是常用方法之一.学生需要从结论入手展开思维, 借助在图形上标注已知量, 寻找未知与已知的联系,从而 找到解决问题的突破口. 在复杂图形中寻求或构建相似基 本图形是解题的关键.
巩固作业:如图6,在Rt△ABC,∠ABC=90°, D是AC的中点,⊙O经过A、B、D三点, CB的延长线交⊙O于点E. 求证(1)AE=CE; (2)EF与⊙O相切于点E,交AC的延长线于 点F,若CD=CF=2cm,求⊙O的直径; CF (3)若 CD n (n>0),求sin∠CAB.
知识像一艘船 让它载着我们 驶向理想的 ……
运用方程思想解决圆的计算问题
如图 Z4-5,已知直线 PA 交⊙O 于 A、B 两点,AE 是 ⊙O 的直径,C 为⊙O 上一点,且 AC 平分∠PAE,过点 C 作 CD⊥PA 于 D. (1)求证:CD 是⊙O 的切线; (2)若 AD∶DC=1∶3,AB=8, 求⊙O 的半径.
解:(1)DE与⊙O相切, 理由如下:连接OD,BD, ∵AB是直径, ∴∠ADB=∠BDC=90°, ∵E是BC的中点, ∴DE=BE=CE, ∴∠EDB=∠EBD, ∵OD=OB, ∴∠OBD=∠ODB. ∴∠EDO=∠EBO=90°,(用三角形全等也可 得到) ∴DE与⊙O相切.
专题圆计算
(2)过点 D 作 DH⊥AB, 易证得△ODH∽△OBD, OD OH DH ∴ = = . OB OD BD 2 又∵sin∠ABC= ,OB=9, 3 ∴OD=6, ∴OH=4,HB=5,DH=2 5. 又∵△ADH∽△AFB, AH DH 36 5 ∴ = ,∴FB= . AB FB 13
解:(1)证明:连接 OC, ∵OD⊥BC, ∴OC=OB,CD=BD, ∴△CDO≌△BDO, ∴∠COD=∠BOD. 在△OCE 和△OBE 中, ∵OC=OB ,∠COE=∠BOE, OE=OE, ∴△OCE≌△OBE, ∴∠OBE=∠OCE=90°, 即 OB⊥BE, ∴BE 与⊙O 相切.
方法点评
尝试用列方程的思想方法解决几何的计算问题 是一种重要的思想方法.
专题切线证明
方法点评
圆的切线的判定为中考必考考点之一,证明思路为: (1)有交点,连半径,证垂直.这是最常见的类型,这 类证明又常分为两种情况: ①证明两个以上的角之和为90°,经常利用圆的有关 性质(半径相等,圆周角定理等)进行等角代换; ②证明一角为90°,经常通过证明两个直角三角形全 等或是利用平行的性质得到. (2)无交点,作垂直,证半径.当此线与圆无交点时, 过圆心向此线作垂线段,证明此垂线段长等于半径.
5 2
5 2
专题圆计算
方法点评 解决圆中有关线段的计算的一种重要方法:通 过添加辅助线,构建有特殊角的直角三角形进行 计算,或是构建直角三角形,利用等角代换将已 知角的三角函数转化为直角三角形中某一锐角的 三角函数进行计算.
专题计算
巩固作业
如图 Z4-3,AC 为⊙O 的直径,AC=4,B、D 分 别在 AC 两侧的圆上,∠BAD=60°,BD 与 AC 的交点 为 E. (1)求点 O 到 BD 的 距离及∠OBD 的度数; (2)若 DE=2BE,求 cos∠OED 的值和 CD 的长.
相关文档
最新文档