2021届高三数学(新高考)一轮复习检测 (57)第8章第八讲曲线与方程
高考一轮复习第8章解析几何第8讲曲线与方程

第八讲曲线与方程知识梳理·双基自测知识梳理知识点一曲线与方程的定义一般地,在直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立如下的对应关系:那么,这个方程叫做__曲线__的方程;这条曲线叫做__方程__的曲线.知识点二求动点的轨迹方程的基本步骤重要结论1.“曲线C是方程f(x,y)=0的曲线”是“曲线C上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.求轨迹问题常用的数学思想(1)函数与方程思想:求平面曲线的轨迹方程就是将几何条件(性质)表示为动点坐标x,y的方程及函数关系.(2)数形结合思想:由曲线的几何性质求曲线方程是“数”与“形”的有机结合.(3)等价转化思想:通过坐标系使“数”与“形”相互结合,在解决问题时又需要相互转化.双基自测题组一走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)方程x 2+xy =x 的曲线是一个点和一条直线.( × )(2)到两条互相垂直的直线距离相等的点的轨迹方程是x 2=y 2.( × ) (3)y =kx 与x =1ky 表示同一直线.( × )(4)动点的轨迹方程和动点的轨迹是一样的.( × ) 题组二 走进教材2.(必修2P 37T3)已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点,若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( D )A .双曲线B .椭圆C .圆D .抛物线[解析] 由已知|MF|=|MB|,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.3.(选修2-1P 37T1改编)已知A(-2,0),B(1,0)两点,动点P 不在x 轴上,且满足∠APO =∠BPO ,其中O 为原点,则点P 的轨迹方程是__x 2+y 2-4x =0(y≠0)__.[解析] 设P(x ,y),∵∠APO =∠BPO , ∴|PA||PB|=|OA||OB|=2, 即|PA|=2|PB|,∴(x +2)2+y 2=4[(x -1)2+y 2],(y≠0)化简整理得P 的轨迹方程为x 2+y 2-4x =0(y≠0). 题组三 走向高考4.(多选题)(2020·山东)已知曲线C :mx 2+ny 2=1.( ACD ) A .若m >n >0,则C 是椭圆,其焦点在y 轴上 B .若m =n >0,则C 是圆,其半径为nC .若mn <0,则C 是双曲线,其渐近线方程为y =±-m nx D .若m =0,n >0,则C 是两条直线[解析] A .若m >n >0,则1m <1n ,则根据椭圆定义,知x 21m +y21n =1表示焦点在y 轴上的椭圆,故A 正确;B .若m =n >0,则方程为x 2+y 2=1n ,表示半径为1n的圆,故B 错误;C .若m <0,n >0,则方程为x21m+y21n =1,表示焦点在y 轴的双曲线,故此时渐近线方程为y =±-m n x ,若m >0,n <0,则方程为x 21m +y 21n=1,表示焦点在x 轴的双曲线,故此时渐近线方程为y =±-mnx ,故C 正确;D .当m =0,n >0时,则方程为y =±1n表示两条直线,故D 正确;故选ACD . 5.(2019·北京卷)数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+|x|y 就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ②曲线C 上任意一点到原点的距离都不超过2; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是( C ) A .① B .② C .①②D .①②③[解析] 将x 换成-x 方程不变,所以图形关于y 轴对称, 当x =0时,代入得y 2=1,∴y =±1,即曲线经过(0,1),(0,-1); 当x >0时,方程变为y 2-xy +x 2-1=0,所以Δ=x 2-4(x 2-1)≥0,解得x ∈⎝⎛⎦⎥⎤0,233,所以x 只能取整数1,当x =1时,y 2-y =0, 解得y =0或y =1,即曲线经过(1,0),(1,1), 根据对称性可得曲线还经过(-1,0),(-1,1), 故曲线一共经过6个整点,故①正确. 当x >0时,由x 2+y 2=1+xy 得x 2+y 2-1=xy≤x 2+y22,(当x =y 时取等),∴x 2+y 2≤2,∴x 2+y 2≤2,即曲线C 上y 轴右边的点到原点的距离不超过2,根据对称性可得:曲线C 上任意一点到原点的距离都不超过2;故②正确.在x 轴上图形面积大于矩形面积=1×2=2,x 轴下方的面积大于等腰直角三角形的面积=12×2×1=1,因此曲线C 所围成的“心形”区域的面积大于2+1=3,故③错误.故选C .考点突破·互动探究考点一 曲线与方程——自主练透例1 (多选题)关于x ,y 的方程x 2m 2+2+y 23m 2-2=1,⎝⎛⎭⎪⎫其中m 2≠23对应的曲线可能是( ABCD ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线 D .圆[解析] 由题,若m 2+2>3m 2-2,解得-2<m <2,3m 2-2>0,解得m <-63或m >63,则当x ∈⎝ ⎛⎭⎪⎫-2,-63∪⎝ ⎛⎭⎪⎫63,2时,曲线是焦点在x 轴上的椭圆,A 正确;若3m 2-2>m 2+2,解得m <-2或m >2,此时曲线是焦点在y 轴上的椭圆,B 正确;若3m 2-2<0,解得-63<m <63,此时曲线是焦点在x 轴上的双曲线,C 正确;当m 2=2时,方程为x 2+y 2=4,所以D 正确.故选ABCD .〔变式训练1〕(多选题)(2021·山东青岛一中期末)已知点F(1,0)为曲线C 的焦点,则曲线C 的方程可能为( AD )A .y 2=4x B .x 2=4yC .x 2cos 2θ+y 2sin 2θ=1⎝ ⎛⎭⎪⎫0<θ<π2 D .x 2cos 2θ-y 2sin 2θ=1⎝⎛⎭⎪⎫0<θ<π2 [解析] y 2=4x 的焦点坐标为(1,0);x 2=4y 的焦点坐标为(0,1);当θ=π4时,sin 2θ=cos 2θ=12,x 2cos 2θ+y 2sin 2θ=1表示圆;双曲线x 2cos 2θ-y 2sin 2θ=1⎝⎛⎭⎪⎫0<θ<π2的焦点在x 轴上,且c =cos 2θ+sin 2θ=1,其焦点坐标为(1,0),(-1,0),故选AD .考点二 定义法求轨迹方程——自主练透例2 (1)(2021·长春模拟)如图所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于点E ,则点E 的轨迹是( B )A .圆B .椭圆C .双曲线D .抛物线(2)(2021·福州模拟)已知圆M :(x +5)2+y 2=36,定点N(5,0),点P 为圆M 上的动点,点Q 在NP 上,点G 在线段MP 上,且满足NP →=2NQ →,GQ →·NP →=0,则点G 的轨迹方程是( A )A .x 29+y24=1B .x 236+y231=1 C .x 29-y24=1D .x 236-y231=1 (3)(2021·江苏南京二十九中调研)已知两圆C 1:(x +3)2+y 2=1,C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1和圆C 2外切,则动圆圆心M 的轨迹方程为( D )A .x 2-y28=1B .x 28-y 2=1C .x 2-y28=1(x≥1)D .x 2-y28=1(x≤-1)[解析] (1)由题意知,|EA|+|EO|=|EB|+|EO|=r(r 为圆的半径)且r >|OA|,故E 的轨迹为以O ,A 为焦点的椭圆,故选B .(2)由NP →=2NQ →,GQ →·NP →=0知GQ 所在直线是线段NP 的垂直平分线,连接GN ,∴|GN|=|GP|,∴|GM|+|GN|=|MP|=6>25,∴点G 的轨迹是以M ,N 为焦点的椭圆,其中2a =6,2c =25,∴b 2=4,∴点G 的轨迹方程为x 29+y24=1,故选A .(3)设动圆M 的半径为r ,则|C 1M|=r +1,|C 2M|=3+r ,∴|C 2M|-|C 1M|=2<6=|C 1C 2|.∴动圆圆心M 的轨迹是以C 1、C 2为焦点的双曲线左支,且c =3,a =1,∴b 2=c 2-a 2=8,∴其轨迹方程为x 2-y28=1(x≤-1).故选D .[引申1]本例(3)中,若动圆M 与圆C 1内切,与圆C 2外切,则动圆圆心M 的轨迹方程为__x 24-y25=1(x≤-2)__.[引申2]本例(3)中,若动圆M 与圆C 1外切,与圆C 2内切,则动圆圆心M 的轨迹方程为__x 24-y25=1(x≥2)__.[引申3]本例(3)中,若动圆M 与圆C 1、圆C 2都内切,则动圆圆心M 的轨迹方程为__x 2-y28=1(x≥1)__.[引申4]本例3中,若动圆M 与圆C 1、圆C 2中一个内切一个外切,则动圆圆心M 的轨迹方程为__x 24-y25=1__.名师点拨定义法求轨迹方程及其注意点(1)在利用圆锥曲线的定义法求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.〔变式训练2〕(1)动圆M 经过双曲线x 2-y23=1的左焦点且与直线x =2相切,则圆心M 的轨迹方程是( B )A .y 2=8x B .y 2=-8x C .y 2=4xD .y 2=-4x(2)(多选题)(2021·湖南娄底质检)在水平地面上的不同两点处竖有两根笔直的电线杆,假设它们都垂直于地面,则在水平地面上视它们上端仰角相等的点P 的轨迹可能是( AB )A .直线B .圆C .椭圆D .抛物线[解析] (1)双曲线x 2-y23=1的左焦点为F(-2,0),由题意可知点M 的轨迹是以F 为焦点、原点为顶点、对称轴为x 轴的抛物线,故其方程为y 2=-8x .故选B .(2)如图两根电杆AB ,CD ,①当|AB|=|CD|时,∵∠BPA =∠DPC ,∴|PA|=|PC|, ∴P 的轨迹是AC 的中垂线,②当|AB|=λ|CD|(λ≠1,λ>0)时, 由∠BPA =∠DPC 知Rt △ABP ∽Rt △CDP , ∴|AP||CP|=|AB||CD|=λ, 以AC 所在直线为x 轴,线段AC 的中垂线为y 轴建立平面直角坐标系, 记A(-1,0),C(1,0),P(x ,y), 则x +12+y 2x -12+y2=λ,即⎝ ⎛⎭⎪⎫x -λ2+1λ2-12+y 2=⎝ ⎛⎭⎪⎫2λλ2-12, 轨迹为圆,故选AB .考点三 直接法求轨迹方程——师生共研例3 (1)(2021·四川、云南、贵州、西藏四省四校联考)已知圆C 过点A(0,2)且与直线y =-2相切,则圆心C 的轨迹方程为( B )A .x 2=4y B .x 2=8y C .x 2=-4yD .x 2=-8y(2)(2021·山东菏泽模拟)已知动圆过定点A(4,0),且在y 轴上截得的弦MN 的长为8. ①求动圆圆心的轨迹C 的方程;②已知点B(-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.[解析] (1)设圆心C(x ,y), 由题意知x 2+y -22=|y +2|,化简得x 2=8y ,故选B .(2)①设动圆圆心P(x ,y),线段MN 的中点为E , 则|PA|2=|PE|2+42,即(x -4)2+y 2=x 2+16,化简得y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x . ②设直线l 的方程为y =kx +b ,联立⎩⎪⎨⎪⎧y 2=8x ,y =kx +b ,得k 2x 2+2kbx +b 2=8x ,k 2x 2-(8-2kb)x +b 2=0(其中Δ>0), 设P(x 1,kx 1+b),Q(x 2,kx 2+b), 则x 1+x 2=8-2kb k 2,x 1x 2=b 2k 2, 若x 轴是∠PBQ 的角平分线, 则k PB +k QB =kx 1+b x 1+1+kx 2+bx 2+1=kx 1+b x 2+1+kx 2+b x 1+1x 1+1x 2+1=2kx 1x 2+k +b x 1+x 2+2bx 1+1x 2+1=8k +bk2x 1+1x 2+1=0,即k =-b .故直线l 的方程为y =k(x -1),直线l 过定点(1,0).名师点拨直接法求曲线方程的一般步骤(1)建立合适的直角坐标系.(2)设出所求曲线上点的坐标,把几何条件或等量关系用坐标表示为代数方程.(3)化简整理这个方程,检验并说明所求方程就是曲线的方程.直接法求曲线方程时最关键的就是把几何条件或等量关系“翻译”为代数方程,要注意“翻译”的等价性.(4)运用直接法应注意的问题①在用直接法求轨迹方程时,在化简的过程中,有时破坏了方程的同解性,此时就要补上遗漏的点或删除多余的点,这是不能忽视的.②若方程的化简过程是恒等变形,则最后的验证可以省略. 〔变式训练3〕(1)已知两定点A(-2,0),B(1,0),如果动点P 满足|PA|=2|PB|,则动点P 的轨迹是( B ) A .直线 B .圆 C .椭圆D .双曲线(2)(2021·湖南湘潭模拟)在平面直角坐标系xOy 中,已知点Q(1,0),直线l :x =2.若动点P 在直线l 上的射影为R ,且|PR →|=2|PQ →|,设点P 的轨迹为C .①求C 的轨迹方程;②设直线y =x +n 与曲线C 相交于A 、B 两点,试探究曲线C 上是否存在点M ,使得四边形MAOB 为平行四边形,若存在,求出点M 的坐标;若不存在,请说明理由.[解析] (1)设P(x ,y), 则x +22+y 2=2x -12+y 2,化简得x 2+y 2-4x =0,即(x -2)2+y 2=4, 其表示以(2,0)为圆心,4为半径的圆,故选B . (2)①设P(x ,y),由|PR →|=2|PQ →|, 得|2-x|=2·x -12+y 2,平方化简得C 的轨迹方程为x 22+y 2=1.②设A(x 1,y 1),B(x 2,y 2),M(x 3,y 3), 联立⎩⎪⎨⎪⎧y =x +n x 22+y 2=1,得x 2+2(x +n)2-2=0,即3x 2+4nx +2n 2-2=0,所以x 1+x 2=-4n 3,y 1+y 2=x 1+x 2+2n =2n3.假设存在点M 使得四边形MAOB 为平行四边形, 则OM →=OA →+OB →,所以(x 3,y 3)=(x 1,y 1)+(x 2,y 2), 所以x 3=x 1+x 2=-4n 3,y 3=y 1+y 2=2n3.由点M 在曲线C 上得x 232+y 23=1,代入得8n 29+4n29=1,解得n 2=34,n =±32.所以当n =±32时,曲线C 上存在点M 使得四边形MAOB 为平行四边形, 此时点M 的坐标为⎝ ⎛⎭⎪⎫-233,33或者M ⎝ ⎛⎭⎪⎫233,-33,当n≠±32,曲线C 上不存在点M 使得四边形MAOB 为平行四边形. 考点四 代入法(相关点法)求轨迹方程——师生共研例4 (2021·河南新乡模拟)在直角坐标系xOy 中,点M(-2,0),N 是曲线x =14y 2+2上的任意一点,动点C 满足MC →+NC →=0.(1)求点C 的轨迹方程;(2)经过点P(1,0)的动直线l 与点C 的轨迹交于A ,B 两点,在x 轴上是否存在定点D(异于点P),使得∠ADP =∠BDP ?若存在,求出D 的坐标;若不存在,请说明理由.[解析] (1)设C(x ,y),N(x 0,y 0), 则MC →=(x +2,y),NC →=(x -x 0,y -y 0), MC →+NC →=(2x -x 0+2,2y -y 0).又MC →+NC →=0,则⎩⎪⎨⎪⎧2x -x 0+2=0,2y -y 0=0,即⎩⎪⎨⎪⎧x 0=2x +2,y 0=2y.因为点N 为曲线x =14y 2+2上的任意一点,所以x 0=14y 20+2,所以2x +2=14(2y)2+2,整理得y 2=2x ,故点C 的轨迹方程为y 2=2x . (2)设存在点D(t,0),使得∠ADP =∠BDP , 所以k DA +k DB =0.由题易知,直线l 的倾斜角不可能为0°, 故设直线l 的方程为x =my +1,将x =my +1代入y 2=2x ,得y 2-2my -2=0. 设A(x 1,y 1),B(x 2,y 2),则y 1+y 2=2m ,y 1y 2=-2. 因为k DA +k DB =y 1x 1-t +y 2x 2-t =y 1my 1+1-t +y 2my 2+1-t =0,所以2my 1y 2+(1-t)(y 1+y 2)=0, 即-4m +2m·(1-t)=0,所以t =-1. 故存在点D(-1,0),使得∠ADP =∠BDP .名师点拨代入法(相关点法)求轨迹方程(1)当题目中的条件同时具有以下特征时,一般可以用相关点法求其轨迹方程: ①某个动点P 在已知方程的曲线上移动; ②另一个动点M 随P 的变化而变化;③在变化过程中P 和M 满足一定的规律.(2)代入法(相关点法)的基本步骤①设点:设被动点坐标为(x ,y),主动点坐标为(x 1,y 1);②求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧ x 1=f x ,y ,y 1=g x ,y ;③代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程;④检验:注意检验所求方程是否符合题意.〔变式训练4〕(2021·河北石家庄模拟)已知点Q 在椭圆C :x 216+y 210=1上,点P 满足OQ →=12(OF 1→+OP →)(其中O 为坐标原点,F 1为椭圆C 的左焦点),则点P 的轨迹为( D )A .圆B .抛物线C .双曲线D .椭圆 [解析] 设P(x ,y),Q(x 0,y 0),椭圆C 的左焦点F 1(-2,0),由题意知⎩⎪⎨⎪⎧ x 0=x -22,y 0=y 2 又x 2016+y 2010=1,∴x -2264+y 240=1,故选D . 考点五,参数法求轨迹方程——师生共研例5 (2021·河北衡水中学调研)已知圆C 1:x 2+y 2=2,圆C 2:x 2+y 2=4,如图,C 1,C 2分别交x 轴正半轴于点E ,A .射线OD 分别交C 1,C 2于点B ,D ,动点P 满足直线BP 与y 轴垂直,直线DP 与x 轴垂直.(1)求动点P 的轨迹C 的方程;(2)过点E 作直线l 交曲线C 与点M ,N ,射线OH ⊥l 于点H ,且交曲线C 于点Q .问:1|MN|+1|OQ|2的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.[分析] 显然点P(x ,y)的变动由∠AOD 的大小α(或k OD )决定,故可通过α(或k OD )建立x ,y 间的关系,即点P 的轨迹方程.[解析] (1)解法一:如图设∠BOE =α,则B(2cos α,2sin α),D(2cos α,2sin α),所以x P =2cos α,y P =2sin α.所以动点P 的轨迹C 的方程为x 24+y 22=1. 解法二:当射线OD 的斜率存在时,设斜率为k ,OD 方程为y =kx ,由⎩⎪⎨⎪⎧ y =kx x 2+y 2=2得y 2P =2k 21+k 2, 同理得x 2P =41+k 2, 所以x 2P +2y 2P=4即有动点P 的轨迹C 的方程为x 24+y 22=1. 当射线OD 的斜率不存在时,点(0,±2)也满足.(2)由(1)可知E 为C 的焦点,设直线l 的方程为x =my +2(斜率不为0时)且设点M(x 1,y 1),N(x 2,y 2),由⎩⎨⎧x =my +2x 2+2y 2=4,得(m 2+2)y 2+22my -2=0, 所以⎩⎪⎨⎪⎧y 1+y 2=-22m m 2+2y 1y 2=-2m 2+2, 所以1|MN|=11+m 2|y 1-y 2|=m 2+24m 2+1, 又射线OQ 方程为y =-mx , 代入椭圆C 的方程得x 2+2(mx)2=4, 即x 2Q =41+2m 2,y 2Q =4m 21+2m 2,1|OQ|2=1+2m 24m 2+1, 所以1|MN|+1|OQ|2=m 2+24m 2+1+1+2m 24m 2+1=34, 又当直线l 的斜率为0时,也符合条件.综上,1|MN|+1|OQ|2为定值,且为34.名师点拨(1)在选择参数时,参数可以具有某种物理或几何意义,如时间、速度、距离、角度、直线的斜率、点的横(纵)坐标等,也可以没有具体的意义,但要特别注意它的取值范围对动点坐标取值范围的影响.(2)参数法求轨迹方程的适用条件动点所满足的条件不易得出或不易转化为等式,也没有明显的相关点,但却较易发现(或经过分析可发现)这个动点的运动与某一个量或某两个变量(角、斜率、比值、截距等)有关.〔变式训练5〕若过点P(1,1)且互相垂直的两条直线l 1,l 2分别与x 轴、y 轴交于A 、B 两点,则AB 中点M 的轨迹方程为__x +y -1=0__.[解析] 当直线l 1的斜率存在时,l 2的斜率也存在,设直线l 1的方程是y -1=k(x -1),则直线l 2的方程是y -1=-1k (x -1),所以直线l 1与x 轴的交点为A ⎝ ⎛⎭⎪⎫1-1k ,0,l 2与y 轴的交点为B ⎝⎛⎭⎪⎫0,1+1k ,设AB 的中点M 的坐标为(x ,y),则有⎩⎪⎨⎪⎧ x =12⎝ ⎛⎭⎪⎫1-1k ,y =12⎝ ⎛⎭⎪⎫1+1k ,两式相加消去k ,得x +y =1⎝ ⎛⎭⎪⎫x ≠12,即x +y -1=0(x≠12),所以AB 中点M 的轨迹方程为x +y -1=0⎝ ⎛⎭⎪⎫x ≠12. 当直线l 1(或l 2)的斜率不存在时,点M 的坐标为⎝ ⎛⎭⎪⎫12,12,此点在直线x +y -1=0上. 综上,AB 中点M 的轨迹方程为x +y -1=0.另解:由题意易知|MP|=|MO|,∴M 的轨迹为线段OP 的中垂线,其方程为y -12=-⎝ ⎛⎭⎪⎫x -12, 即x +y -1=0.名师讲坛·素养提升高考中的轨迹问题例6 (2019·课标Ⅱ)已知点A(-2,0),B(2,0),动点M(x ,y)满足直线AM 与BM 的斜率之积为-12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连接QE 并延长交C 于点G .①证明:△PQG 是直角三角形;②求△PQG 面积的最大值.[解题思路] (1)由题直译得关系→化简,观察方程形式得结论(2)①设直线PQ :y =kx →与C 的方程联立得P ,Q 两点坐标→得直线QG 的方程→与C 的方程联立得G 的坐标→求PG 的斜率→得结论 ②利用公式求面积→得关于k 的函数→判断单调性求最值→得结论 [解析] (1)由题设得y x +2·y x -2=-12, 化简得x 24+y 22=1(|x|≠2), 所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)①证明:设直线PQ 的斜率为k ,则其方程为y =kx(k >0),由⎩⎪⎨⎪⎧ y =kx ,x 24+y 22=1得x =±21+2k 2. 记u =21+2k 2,则P(u ,uk),Q(-u ,-uk),E(u,0).于是直线QG 的斜率为k 2,方程为y =k 2(x -u). 由⎩⎪⎨⎪⎧ y =k 2x -u x 24+y 22=1, 得(2+k 2)x 2-2uk 2x +k 2u 2-8=0.①设G(x G ,y G ),则-u 和x G 是方程①的解,故x G =u 3k 2+22+k 2,由此得y G =uk 32+k 2.从而直线PG 的斜率为uk 32+k 2-uk u 3k 2+22+k 2-u =-1k . 所以PQ ⊥PG ,即△PQG 是直角三角形.②由①得|PQ|=2u 1+k 2,|PG|=2uk k 2+12+k 2, 所以△PQG 的面积S =12|PQ||PG|= 8k 1+k21+2k 22+k 2=8⎝ ⎛⎭⎪⎫1k +k 1+2⎝ ⎛⎭⎪⎫1k +k 2. 设t =k +1k,则由k >0得t≥2,当且仅当k =1时取等号, 因为S =8t 1+2t2在[2,+∞)单调递减,所以当t =2, 即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. [解题关键] ①利用方程思想得出点P 、Q 的坐标,进而利用换元法及整体代换法简化运算过程是顺利解决本题的关键;②正确利用基本不等式及函数单调性是求解△PQG 面积最值的关键.〔变式训练6〕(2020·新课标Ⅲ)在平面内,A ,B 是两个定点C 是动点,若OC →·BC →=1,则点C 的轨迹为( A )A .圆B .椭圆C .抛物线D .直线[解析] 不妨以AB 所在直线为x 轴,AB 的中点为原点,建立平面直角坐标系,设C(x ,y),A(-c,0),B(c,0),c >0,则AC →=(x +c ,y),BC →=(x -c ,y),由AC →·BC →=1,得(x +c)(x -c)+y·y=1,即x 2+y 2=c 2+1>0,∴点C 的轨迹为圆.故选A .。
2021届高考数学人教B版大一轮总复习:8-8 曲线与方程

平面解析几何
第八节 曲线与方程
最新考纲
考情分析
1.了解方程的曲线与曲线的
方程的对应关系.
曲线与方程一般在客观题中主要考查
2.了解解析几何的基本思想 圆的方程、椭圆方程、双曲线方程、
和利用坐标法研究几何问题 抛物线方程,以考查待定系数法和定
的基本方法.
义法为主;在主观题中往往仅作为某
3.能够根据所给条件选择适 一问的形式出现,重点结合圆锥曲线
(1)求△ABC 外接圆的标准方程; (2)若过定点 P 的直线与△ABC 的外接圆交于 E,F 两点,求 弦 EF 的中点的轨迹方程.
【解】 (1)由题意得 AC 的中点坐标为(0, 2),AB 的中点
坐标为12,32,kAC= 2,kAB=1,故 AC 的中垂线的斜率为- 22, AB 的中垂线的斜率为-1,则 AC 的中垂线的方程为 y- 2=-
2.小题热身
(1)若 M,N 为两个定点,且|MN|=6,动点 P 满足P→M·P→N=0,
则 P 点的轨迹是( A )
A.圆
B.椭圆
点(1,1)与到直线 x+2y-3=0 的距离相等的点的
轨迹是( D )
A.椭圆
B.双曲线
C.抛物线
D.一条直线
(3)已知点 O(0,0),A(1,-2),动点 P 满足|PA|=3|PO|,则 P 点的轨迹方程是( A )
解析:因为抛物线 x2=4y 的焦点 F(0,1),设线段 PF 的中点 坐标是(x,y),则 P(2x,2y-1)在抛物线 x2=4y 上,所以(2x)2=4(2y -1),化简得 x2=2y-1.
(5)已知点 P 是直线 2x-y+3=0 上的一个动点,定点 M(- 1,2),Q 是线段 PM 延长线上的一点,且|PM|=|MQ|,则 Q 点的 轨迹方程是_2_x_-__y_+__5_=__0___.
2021年高考数学一轮复习 9.8 曲线与方程 理 新人教A版

2021年高考数学一轮复习 9.8 曲线与方程 理 新人教A 版一、选择题1.(xx·石家庄质检)已知命题“曲线C 上的点的坐标是方程f (x ,y )=0的解”是正确的,则下列命题中正确的是( )A .满足方程f (x ,y )=0的点都在曲线C 上B .方程f (x ,y )=0是曲线C 的方程C .方程f (x ,y )=0所表示的曲线不一定是CD .以上说法都正确解析 曲线C 可能只是方程f (x ,y )=0所表示的曲线上的某一小段,因此只有C 正确. 答案 C2.设圆C 与圆x 2+(y -3)2=1外切,与直线y =0相切,则C 的圆心轨迹为( ) A .抛物线B .双曲线C .椭圆D .圆解析 设圆C 的半径为r ,则圆心C 到直线y =0的距离为r ,由两圆外切可得,圆心C 到点(0,3)的距离为r +1,也就是说,圆心C 到点(0,3)的距离比到直线y =0的距离大1,故点C 到点(0,3)的距离和它到直线y =-1的距离相等,符合抛物线的特征,故点C 的轨迹为抛物线. 答案 A3.(xx·大连模拟)已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程为( )A .x 2+y 2=2B .x 2+y 2=4 C .x 2+y 2=2(x ≠±2)D .x 2+y 2=4(x ≠±2)解析 MN 的中点为原点O ,易知|OP |=12|MN |=2,∴P 的轨迹是以原点O 为圆心,以r =2为半径的圆,除去与x 轴的两个交点. 答案 D4.(xx·珠海模拟)已知点A (1,0),直线l :y =2x -4,点R 是直线l 上的一点,若RA →=AP →,则点P 的轨迹方程为 ( )A. y =-2x B .y =2x C .y =2x -8D .y =2x +4解析 设P (x ,y ),R (x 1,y 1),由RA →=AP →知,点A 是线段RP 的中点,∴⎩⎪⎨⎪⎧x +x 12=1, y +y 12=0,即⎩⎪⎨⎪⎧x 1=2-x ,y 1=-y . ∵点R (x 1,y 1)在直线y =2x -4上,∴y 1=2x 1-4,∴-y =2(2-x )-4,即y =2x . 答案 B5.(xx·天津津南一模)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线解析 设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2, 解得⎩⎪⎨⎪⎧λ1= y +3x10,λ2=3y -x 10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5,所以点C 的轨迹为直线,故选A. 答案 A 二、填空题6.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积为__________. 解析 设P (x ,y ),由|PA |=2|PB |,得(x +2)2+y 2=2(x -1)2+y 2, ∴3x 2+3y 2-12x =0,即x 2+y 2-4x =0. ∴P 的轨迹为以(2,0)为圆心,半径为2的圆. 即轨迹所包围的面积等于4π. 答案 4π7.(xx·新课标全国Ⅱ卷)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.则圆心P 的轨迹方程为__________. 解析 设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2,从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. 答案 y 2-x 2=18.(xx·南京模拟)P 是椭圆x 2a 2+y 2b2=1上的任意一点,F 1,F 2 是它的两个焦点,O 为坐标原点,OQ →=PF 1→+PF 2→,则动点Q 的轨迹方程是__________. 解析 由于OQ →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →, 设Q (x ,y ),则OP →=-12OQ →=(-x 2,-y 2),即P 点坐标为(-x 2,-y2),又P 在椭圆上,则有(-x2)2a 2+(-y2)2b2=1上, 即x 24a 2+y 24b2=1. 答案 x 24a 2+y 24b2=1三、解答题9.设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN →=2MP →,PM →⊥PF →,当点P 在y 轴上运动时,求点N 的轨迹方程.解 设M (x 0,0),P (0,y 0),N (x ,y ),∵PM →⊥PF →,PM →=(x 0,-y 0),PF →=(1,-y 0), ∴(x 0,-y 0)·(1,-y 0)=0,∴x 0+y 20=0. 由MN →=2MP →得(x -x 0,y )=2(-x 0,y 0),∴⎩⎪⎨⎪⎧x -x 0=-2x 0,y =2y 0,即⎩⎪⎨⎪⎧x 0=-x ,y 0=12y , ∴-x +y 24=0,即y 2=4x .故所求的点N 的轨迹方程是y 2=4x .10.已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4,动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线. 解 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系.由|O 1O 2|=4,得O 1(-2,0)、O 2(2,0). 设动圆M 的半径为r ,则由动圆M 与圆O 1内切, 有|MO 1|=r -1;由动圆M 与圆O 2外切,有|MO 2|=r +2. ∴|MO 2|-|MO 1|=3.∴点M 的轨迹是以O 1,O 2为焦点, 实轴长为3的双曲线的左支. ∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29- 4y 27=1(x ≤-32).能力提升题组 (建议用时:25分钟)11.(xx·合肥模拟)动点P 在直线x =1上运动,O 为坐标原点.以OP 为直角边,点O 为直角顶点作等腰直角三角形OPQ ,则动点Q 的轨迹是 ( )A .圆B .两条平行直线C .抛物线D .双曲线解析 设Q (x ,y ),P (1,y 0), 由题意知|OP |=|OQ |, 且OP →·OQ →=0,⎩⎪⎨⎪⎧x 2+y 2=1+y 20, ①x +y 0y =0, ② ∴y 0=-x y 代入①得x 2+y 2=1+⎝ ⎛⎭⎪⎫-x y 2,化简即y 2=1,∴y =±1,表示两条平行直线,故选B. 答案 B12.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为( )A .y 2=8xB .y 2=-8xC .y 2=4xD .y 2=-4x解析 设点P 的坐标为(x ,y ),则MN →=(4,0),MP →=(x +2,y ),NP →=(x -2,y ). ∴|MN →|=4,|MP →|=(x +2)2+y 2,MN →·NP →=4(x -2).根据已知条件得4(x +2)2+y 2=4(2-x ).整理得y 2=-8x .∴点P 的轨迹方程为y 2=-8x . 答案 B13.(xx·杭州模拟)坐标平面上有两个定点A ,B 和动点P ,如果直线PA ,PB 的斜率之积为定值m ,则点P 的轨迹可能是:①椭圆;②双曲线;③抛物线;④圆;⑤直线.试将正确的序号填在横线上:__________. 解析 设A (a ,0),B (-a ,0),P (x ,y ), 则yx -a ·yx +a=m ,即y 2=m (x 2-a 2).①当m =-1时,为圆;②当m >0时,为双曲线;③当m <0且m ≠-1时为椭圆;④当m =0时,为直线.故选①②④⑤.答案 ①②④⑤14.(xx·烟台模拟)已知点C (1,0),点A ,B 是⊙O :x 2+y 2=9上任意两个不同的点,且满足AC →·BC →=0,设P 为弦AB 的中点. (1)求点P 的轨迹T 的方程;(2)试探究在轨迹T 上是否存在这样的点:它到直线x =-1的距离恰好等于到点C 的距离?若存在,求出这样的点的坐标;若不存在,说明理由.解 (1)连接CP ,OP ,由AC →·BC →=0,知AC ⊥BC , ∴|CP |=|AP |=|BP |=12|AB |,由垂径定理知|OP |2+|AP |2=|OA |2, 即|OP |2+|CP |2=9,设点P (x ,y ),有(x 2+y 2)+[(x -1)2+y 2]=9, 化简,得x 2-x +y 2=4.(2)存在,根据抛物线的定义,到直线x =-1的距离等于到点C (1,0)的距离的点都在抛物线y 2=2px 上,其中p2=1.∴p =2,故抛物线方程为y 2=4x ,由方程组⎩⎪⎨⎪⎧y 2=4x ,x 2-x +y 2=4得x 2+3x -4=0, 解得x 1=1,x 2=-4,由x ≥0,故取x =1,此时y =±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).@23162 5A7A 婺37728 9360 鍠21207 52D7 勗23078 5A26 娦 35942 8C66豦20483 5003 倃f32816 8030 耰34156 856C 蕬25310 62DE 拞40407 9DD7 鷗532370 7E72 繲。
高考数学一轮总复习第八章解析几何8.8曲线与方程课时训练理(2021年整理)

2019年高考数学一轮总复习第八章解析几何8.8 曲线与方程课时跟踪检测理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年高考数学一轮总复习第八章解析几何8.8 曲线与方程课时跟踪检测理)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年高考数学一轮总复习第八章解析几何8.8 曲线与方程课时跟踪检测理的全部内容。
8。
8 曲线与方程[课时跟踪检测][基础达标]1.已知M(-2,0),N(2,0),|PM|-|PN|=4,则动点P的轨迹是( ) A.双曲线B.双曲线左支C.一条射线D.双曲线右支解析:根据双曲线的定义知动点P的轨迹类似双曲线,但不满足2c〉2a>0的条件,故动点P的轨迹是一条射线.答案:C2.方程x=错误!所表示的曲线是()A.双曲线的一部分B.椭圆的一部分C.圆的一部分D.直线的一部分解析:x=错误!两边平方,可变为x2+4y2=1(x≥0),表示的曲线为椭圆的一部分.答案:B3.设点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程为( )A.y2=2xB.(x-1)2+y2=4C.y2=-2xD.(x-1)2+y2=2解析:如图,设P(x,y),圆心为M(1,0).连接MA,PM,则MA⊥PA,且|MA|=1,又因为|PA|=1,所以|PM|=错误!=错误!,即|PM|2=2,所以(x -1)2+y2=2.答案:D4.已知A (-1,0),B (1,0)两点,过动点M 作x 轴的垂线,垂足为N ,若错误!2=λ错误!·错误!,当λ〈0时,动点M 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线解析:设M (x ,y ),则N (x ,0),所以错误!2=y 2,λ错误!·错误!=λ(x+1,0)·(1-x ,0)=λ(1-x 2),所以y 2=λ(1-x 2),即x 2+错误!=1。
2021年高考数学一轮复习 第八章 第八节 曲线与方程演练知能检测 文

2021年高考数学一轮复习 第八章 第八节 曲线与方程演练知能检测 文[全盘巩固]1.如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )A .3B .2 C. 3 D.2解析:选B 设椭圆长半轴长为a (a >0),则双曲线半实轴的长为a2,由于双曲线与椭圆共焦点,设焦距为2c ,所以双曲线的离心率e 1=c a 2=2ca,椭圆的离心率e 2=c a ,所以e 1e 2=2caca=2.2.(xx·新课标全国卷Ⅰ)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1 D.x 218+y 29=1 解析:选D 由题意知k AB =12,设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,x 1+x 2x 1-x 2a2+y 1+y 2y 1-y 2b 2=0.由AB 的中点是(1,-1)知⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=-2,则b 2a 2=y 1-y 2x 1-x 2=12,联立a 2-b 2=9, 解得a 2=18,b 2=9,故椭圆E 的方程为x 218+y 29=1.3.(xx·长春模拟)已知实数4,m,9构成一个等比数列,则圆锥曲线x 2m+y 2=1的离心率为( )A.306B.7C.306或7 D.56或7 解析:选C 因为4,m,9成等比数列,所以m =±6,当m =6时,x 26+y 2=1为椭圆a2=6,b 2=1,c 2=5.所以离心率e =c a =56=306;当m =-6时,y 2-x 26=1为双曲线,a 2=1,b 2=6,c 2=7,所以离心率e =c a=7.4.(xx·湖州模拟)在平面直角坐标系xOy 中,抛物线C :y 2=2px (p >0)的焦点为F ,M是抛物线C 上的点,若△OFM 的外接圆与抛物线C 的准线相切,且该圆面积为9π,则p =( )A .2B .4C .6D .8解析:选B 依题意得,△OFM 的外接圆半径为3,△OFM 的外接圆圆心应位于线段OF 的垂直平分线x =p 4上,圆心到准线x =-p 2的距离等于3,即有p 4+p2=3,由此解得p =4.5.(xx·全国高考)已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A 、B 两点.若·=0,则k = ( )A.12B.22 C. 2 D .2 解析:选D 如图所示,设F 为焦点,取AB 中点P ,过A ,B 分别作准线的垂线,垂足分别为G ,H ,连接MF ,MP ,由·=0,知MA ⊥MB ,则|MP |=12|AB |=12(|AG |+|BH |),所以MP 为直角梯形BHGA 的中位线,所以MP ∥AG ∥BH ,所以∠GAM =∠AMP =∠MAP ,又|AG |=|AF |,AM为公共边,所以△AMG ≌△AMF ,所以∠AFM =∠AGM =90°,则MF ⊥AB ,所以k =-1k MF=2.6. 如图,已知过抛物线y 2=2px (p >0)的焦点F 的直线x -my +m =0与抛物线交于A 、B两点,且△OAB (O 为坐标原点)的面积为22,则m 6+m 4的值是( )A .1 B. 2 C .2 D .4解析:选C 设A (x 1,y 1),B (x 2,y 2),由题意可知,p2=-m ,将x =my -m 代入抛物线方程y 2=2px (p >0)中,整理得y 2-2pmy +2pm =0,由根与系数的关系,得y 1+y 2=2pm ,y 1y 2=2pm ,则(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=(2pm )2-8pm =16m 4+16m 2,又△OAB 的面积S =12×p 2|y 1-y 2|=12(-m )×4m 4+m 2=22,两边平方即可得m 6+m 4=2.7.(xx·安徽高考)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.解析:法一:设直线y =a 与y 轴交于点M ,抛物线y =x 2上要存在点C ,只要以|AB |为直径的圆与抛物线y =x 2有除A 、B 外的交点即可,也就是使|AM |≤|MO |,即a ≤a (a >0),所以a ≥1.法二:易知a >0,设C (m ,m 2),由已知可令A (a ,a ),B (-a ,a ),则=(m -a ,m2-a ),=(m +a ,m 2-a ),因为⊥,所以m 2-a +m 4-2am 2+a 2=0,可得(m 2-a )(m 2+1-a )=0.因为由题易知m 2≠a ,所以m 2=a -1≥0,故a ∈[1,+∞).答案:[1,+∞)8.若C (-3,0),D (3,0),M 是椭圆x 24+y 2=1上的动点,则1|MC |+1|MD |的最小值为________.解析:由椭圆x 24+y 2=1知c 2=4-1=3,∴c =3,∴C ,D 是该椭圆的两焦点,令|MC |=r 1,|MD |=r 2, 则r 1+r 2=2a =4,∴1|MC |+1|MD |=1r 1+1r 2=r 1+r 2r 1r 2=4r 1r 2, 又∵r 1r 2≤r 1+r 224=164=4,∴1|MC |+1|MD |=4r 1r 2≥1. 当且仅当r 1=r 2时,上式等号成立.故1|MC |+1|MD |的最小值为1. 答案:19.曲线C 是平面内与两个定点F 1(-1,0)和F 2(1,0)的距离的积等于常数a 2(a >1)的点的轨迹.给出下列三个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积不大于12a 2.其中,所有正确结论的序号是________.解析:因为原点O 到两个定点F 1(-1,0),F 2(1,0)的距离的积是1,而a >1,所以曲线C不过原点,即①错误;因为F 1(-1,0),F 2(1,0)关于原点对称,所以|PF 1||PF 2|=a 2对应的轨迹关于原点对称,即②正确;因为S △F 1PF 2=12|PF 1||PF 2|sin ∠F 1PF 2≤12|PF 1||PF 2|=12a 2,即△F 1PF 2的面积不大于12a 2,所以③正确.答案:②③10.已知椭圆C 的中心为坐标原点O ,一个长轴顶点为(0,2),它的两个短轴顶点和焦点所组成的四边形为正方形,直线l 与y 轴交于点P (0,m ),与椭圆C 交于异于椭圆顶点的两点A ,B ,且=2.(1)求椭圆的方程; (2)求m 的取值范围.解:(1)由题意,知椭圆的焦点在y 轴上,设椭圆方程为y 2a 2+x 2b2=1(a >b >0),由题意,知a =2,b =c ,又a 2=b 2+c 2,则b =2,所以椭圆方程为y 24+x 22=1.(2)设A (x 1,y 1),B (x 2,y 2),由题意,知直线l 的斜率存在, 设其方程为y =kx +m ,与椭圆方程联立,即⎩⎪⎨⎪⎧y 2+2x 2=4,y =kx +m ,消去y , 得(2+k 2)x 2+2mkx +m 2-4=0, Δ=(2mk )2-4(2+k 2)(m 2-4)>0, 由根与系数的关系,知⎩⎪⎨⎪⎧x 1+x 2=-2mk2+k 2,x 1x 2=m 2-42+k 2,又=2,即有(-x 1,m -y 1)=2(x 2,y 2-m ), 所以-x 1=2x 2.则⎩⎪⎨⎪⎧x 1+x 2=-x 2,x 1x 2=-2x 22,所以m 2-42+k 2=-2⎝ ⎛⎭⎪⎫2mk 2+k 22. 整理,得(9m 2-4)k 2=8-2m 2,又9m 2-4=0时等式不成立,所以k 2=8-2m 29m 2-4>0,得49<m 2<4,此时Δ>0.所以m 的取值范围为⎝⎛⎭⎪⎫-2,-23∪⎝ ⎛⎭⎪⎫23,2.11.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 1(-1,0),长轴长与短轴长的比是2∶ 3.(1)求椭圆的方程;(2)过F 1作两直线m ,n 交椭圆于A ,B ,C ,D 四点,若m ⊥n ,求证:1|AB |+1|CD |为定值.解:(1)由已知得⎩⎨⎧2a ∶2b =2∶3,c =1,a 2=b 2+c 2.解得a =2,b = 3.故所求椭圆方程为x 24+y 23=1.(2)证明:由已知F 1(-1,0),当直线m 不垂直于坐标轴时,可设直线m 的方程为y =k (x+1)(k ≠0).由⎩⎪⎨⎪⎧y =k x +1,x 24+y23=1,得(3+4k 2)x 2+8k 2x +4k 2-12=0.由于Δ>0,设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,|AB |=1+k 2[x 1+x 22-4x 1x 2]= 1+k2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-8k 23+4k 22-4×4k 2-123+4k 2=121+k23+4k2. 同理|CD |=121+k23k 2+4. 所以1|AB |+1|CD |=3+4k 2121+k 2+3k 2+4121+k2=71+k 2121+k 2=712. 当直线m 垂直于坐标轴时,此时|AB |=3,|CD |=4;或|AB |=4,|CD |=3,1|AB |+1|CD |=13+14=712. 综上,1|AB |+1|CD |为定值712.12.(xx·江西高考)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝ ⎛⎭⎪⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记PA ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.解:(1)由P ⎝ ⎛⎭⎪⎫1,32在椭圆上,得1a 2+94b 2=1.① 依题设知a =2c ,则b 2=3c 2.②②代入①解得c 2=1,a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1.(2)法一:由题意可设直线AB 的斜率为k , 则直线AB 的方程为y =k (x -1).③代入椭圆方程3x 2+4y 2=12,并整理,得(4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-34k 2+3.④ 在方程③中令x =4,得M 的坐标为(4,3k ).从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12.由于A ,F ,B 三点共线,则有k =k AF =k BF ,即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝ ⎛⎭⎪⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-x 1+x 2+1.⑤④代入⑤得k 1+k 2=2k -32·8k24k 2+3-24k 2-34k 2+3-8k24k 2+3+1=2k -1, 又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.法二:设B (x 0,y 0)(x 0≠1),则直线FB 的方程为y =y 0x 0-1(x -1),令x =4,求得M ⎝⎛⎭⎪⎫4,3y 0x 0-1, 从而直线PM 的斜率为k 3=2y 0-x 0+12x 0-1,联立⎩⎪⎨⎪⎧y =y 0x 0-1x -1,x 24+y23=1,得A ⎝ ⎛⎭⎪⎫5x 0-82x 0-5,3y 02x 0-5,则直线PA 的斜率为k 1=2y 0-2x 0+52x 0-1,直线PB 的斜率为k 2=2y 0-32x 0-1,所以k 1+k 2=2y 0-2x 0+52x 0-1+2y 0-32x 0-1=2y 0-x 0+1x 0-1=2k 3,故存在常数λ=2符合题意.[冲击名校]如图,已知椭圆x24+y23=1的左焦点为F ,过点F 的直线交椭圆于A ,B 两点,线段AB的中点为G ,AB 的中垂线与x 轴和y 轴分别交于D ,E 两点.(1)若点G 的横坐标为-14,求直线AB 的斜率;(2)记△GFD 的面积为S 1,△OED (O 为原点)的面积为S 2.试问:是否存在直线AB ,使得S 1=S 2?说明理由.解:(1)依题意可知,直线AB 的斜率存在,设其方程为y =k (x +1).将其代入x 24+y 23=1,整理得(4k 2+3)x 2+8k 2x +4k 2-12=0. 设A (x 1,y 1),B (x 2,y 2),所以x 1+x 2=-8k24k 2+3.故点G 的横坐标为x 1+x 22=-4k 24k 2+3=-14.解得k =±12.(2)假设存在直线AB ,使得S 1=S 2,显然直线AB 不能与x ,y 轴垂直.由(1)可得G ⎝ ⎛⎭⎪⎫-4k 24k 2+3,3k 4k 2+3. 设D 点坐标为(x D,0). 因为DG ⊥AB ,所以3k 4k 2+3-4k24k 2+3-x D ×k =-1, 解得x D =-k 24k 2+3,即D ⎝ ⎛⎭⎪⎫-k 24k 2+3,0.因为△GFD ∽△OED ,所以S 1=S 2⇔|GD |=|OD |.所以 ⎝ ⎛⎭⎪⎫-k 24k 2+3--4k 24k 2+32+⎝ ⎛⎭⎪⎫-3k 4k 2+32=⎪⎪⎪⎪⎪⎪-k 24k 2+3, 整理得8k 2+9=0. 因为此方程无解,所以不存在直线AB ,使得S 1=S 2.[高频滚动](xx·北京高考)已知A ,B ,C 是椭圆W :x 24+y 2=1上的三个点,O 是坐标原点.(1)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积;(2)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 解:(1)椭圆W :x 24+y 2=1的右顶点B 的坐标为(2,0).因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A (1,m ),代入椭圆方程得14+m 2=1,即m =±32.所以菱形OABC 的面积是12|OB |·|AC |=12×2×2|m |= 3.(2)四边形OABC 不可能为菱形,理由如下: 假设四边形OABC 为菱形.因为点B 不是W 的顶点,且直线AC 不过原点,所以可设AC 的方程为y =kx +m (k ≠0,m ≠0).由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m ,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k2.所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.因为M 为AC 和OB 的交点,所以直线OB 的斜率为-14k.因为k ·⎝ ⎛⎭⎪⎫-14k ≠-1,所以AC 与OB 不垂直. 所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 22410 578A 垊33211 81BB 膻!28746 704A 灊34381 864D虍337060 90C4 郄34104 8538 蔸40802 9F62 齢23026 59F2 姲35806 8BDE 诞39462 9A26 騦 20709 50E5 僥。
2021届高考数学人教B版大一轮总复习57 双曲线

课时作业57 双曲线一、选择题1.已知双曲线x 29-y 24=1,则其焦距为( D ) A. 5 B .2 5 C.13 D .213解析:由双曲线方程知c 2=9+4=13,∴c =13,∴焦距为213,故选D.2.(2019·北京卷)已知双曲线x 2a 2-y 2=1(a >0)的离心率是5,则a =( D )A. 6 B .4 C .2D.12 解析:解法1:由双曲线方程可知b 2=1,所以c =a 2+b 2=a 2+1,所以e =c a =a 2+1a =5,解得a =12,故选D.解法2:由e =5,e 2=1+b 2a 2,b 2=1,得5=1+1a 2,得a =12,故选D.3.已知双曲线x 2m -y 2m +6=1(m >0)的虚轴长是实轴长的2倍,则双曲线的标准方程为( D )A.x 22-y 24=1B.x 24-y 28=1 C .x 2-y28=1D.x 22-y 28=1解析:由题意,得2m =m +6,解得m =2,∴双曲线的标准方程为x 22-y 28=1,故选D.4.(2020·合肥市质量检测)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =2x ,且经过点P (6,4),则双曲线的方程是( C )A.x 24-y 232=1 B.x 23-y 24=1C.x 22-y 28=1D .x 2-y24=1解析:因为双曲线的一条渐近线方程为y =2x ,所以ba =2 ①.又双曲线过点P (6,4),所以6a 2-16b 2=1 ②.①②联立,解得a =2,b =22,所以双曲线的方程为x 22-y 28=1,故选C.5.已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是( D )A .直线B .圆C .椭圆D .双曲线解析:因为N 为线段F 1M 的中点,O 为线段F 1F 2的中点,所以|F 2M |=2|ON |=2.因为P 在线段F 1M 的中垂线上,所以|PF 1|=|PM |,所以||PF 1|-|PF 2||=|F 2M |=2|ON |=2<|F 1F 2|,所以点P 的轨迹是双曲线,故选D.6.(2019·全国卷Ⅲ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO |=|PF |,则△PFO 的面积为( A )A.324 B.322 C .22D .3 2解析:不妨设点P 在第一象限,根据题意可知c 2=6,所以|OF |= 6.又tan ∠POF =b a =22,所以等腰三角形POF 的高h =62×22=32,所以S △PFO =12×6×32=324.7.(2020·洛阳市第二次联考)经过点(2,1),且渐近线与圆x 2+(y -2)2=1相切的双曲线的标准方程为( A )A.x 2113-y 211=1 B.x 22-y 2=1 C.y 2113-x 211=1 D.y 211-x 2113=1解析:设双曲线的渐近线方程为y =kx ,即kx -y =0,由渐近线与圆x 2+(y -2)2=1相切可得圆心(0,2)到渐近线的距离等于半径1,由点到直线的距离公式可得|k ×0-2|k 2+1=1,解得k =±3.因为双曲线经过点(2,1),所以双曲线的焦点在x 轴上,可设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),将点(2,1)代入可得4a 2-1b 2=1,由⎩⎪⎨⎪⎧4a 2-1b 2=1,ba =3,得⎩⎨⎧a 2=113,b 2=11,故所求双曲线的方程为x 2113-y 211=1.故选A.8.已知双曲线x 24-y 22=1的右焦点为F ,P 为双曲线左支上一点,点A (0,2),则△APF 周长l 的最小值为( B )A .4+ 2B .4(1+2)C .2(2+6)D.6+3 2解析:设双曲线的左焦点为F ′.双曲线的右焦点为F (6,0),△APF 的周长l =|AF |+|AP |+|PF |=|AF |+|AP |+2a +|PF ′|,要使△APF 周长最小,只需|AP |+|PF ′|最小,如图,当A ,P ,F ′三点共线时|AP |+|PF ′|取得最小值,此时l =2|AF |+2a =4(1+2),故选B.9.(2019·天津卷)已知抛物线y 2=4x 的焦点为F ,准线为l .若l 与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( D )A. 2B. 3 C .2D. 5解析:由题意,可得F (1,0),直线l 的方程为x =-1,双曲线的渐近线方程为y =±b a x .将x =-1代入y =±b a x ,得y =±b a ,所以点A ,B 的纵坐标的绝对值均为b a .由|AB |=4|OF |可得2ba =4,即b =2a ,b 2=4a 2,故双曲线的离心率e =c a =a 2+b 2a 2= 5.10.(2020·广东省七校联合体联考)若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的中心为O ,过C 的右顶点A 1和右焦点F 分别作垂直于x 轴的直线,交C 的渐近线于A ,B 两点和M ,N 两点,若△OAB 与△OMN 的面积比为14,则C 的渐近线方程为( B )A .y =±xB .y =±3x C .y =±2xD .y =±3x解析:如图,因为AB ∥MN ,所以△OAB ∽△OMN ,又△OAB 与△OMN 的面积比为14,所以|OA 1||OF |=a c =12,则a =12c ,所以b 2=c 2-a 2=34c 2,则b =32c ,所以双曲线x 2a 2-y2b 2=1(a >0,b >0)的渐近线方程为y =±ba x =±32c 12c=±3x ,故选B.11.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点A 为双曲线右支上一点,线段AF 1交左支于点B ,若AF 2⊥BF 2,且|BF 1|=13|AF 2|,则该双曲线的离心率为( B )A. 2B.655C.355D .3解析:设|AF 2|=x ,∵点A 在双曲线的右支上,∴|AF 1|=2a +x .∵|BF 1|=|AF 2|3,∴|BF 1|=x 3,∴|AB |=2a +2x3.∵点B 在双曲线的左支上,∴|BF 2|=2a +x 3.∵AF 2⊥BF 2,∴(2a +2x 3)2-(2a +x 3)2=x 2,化简得x =2a ,∴|AF 1|=4a ,|AB |=103a ,∴cos ∠BAF 2=35.在△AF 1F 2中,由余弦定理得|AF 1|2+|AF 2|2-2|AF 1||AF 2|cos ∠BAF 2=|F 1F 2|2,即16a 2+4a 2-2×4a ×2a ×35=4c 2,即13a 2=5c 2,∴c a =655,∴双曲线的离心率为655,故选B.12.(2020·贵阳市监测考试)已知点F 是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A ,B 两点,若△ABE 是钝角三角形,则该双曲线的离心率的取值范围是( B )A .(1,2)B .(2,+∞)C .(1,3]D .[3,+∞)解析:根据双曲线的对称性,可知∠AEF >π4可使△ABE 为钝角三角形,即b 2a >a +c ⇒b 2>a 2+ac ⇒c 2>2a 2+ac ⇒e 2-e -2>0(e >1),所以e >2,选B.二、填空题13.(2019·江苏卷)在平面直角坐标系xOy 中,若双曲线x 2-y2b 2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是解析:因为双曲线x 2-y 2b 2=1(b >0)经过点(3,4),所以9-16b 2=1,得b =2,所以该双曲线的渐近线方程是y =±bx =±2x .14.(2020·石家庄检测)已知双曲线C :x 2-4y 2=1,过点P (2,0)的直线l 与C 有唯一公共点,则直线l 的方程为y =±12(x -2).解析:∵双曲线C 的方程为x 2-4y 2=1,∴a =1,b =12,∴渐近线方程为y =±12x .∵P (2,0)在双曲线内部且直线l 与双曲线有唯一公共点,∴直线l 与双曲线的渐近线平行,∴直线l 的斜率为±12,∴直线l 的方程为y =±12(x -2).15.(2020·昆明市诊断测试)已知点P (1,3)在双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线上,F 为C 的右焦点,O 为原点,若∠FPO =90°,则C 的方程为x 24-y 212=1.解析:设双曲线的一条渐近线方程为y =ba x ,由渐近线过点P (1,3),得ba =3,且|OP |=2.焦点到渐近线的距离是b ,即|PF |=b ,在Rt △OPF 中,|OF |2=|OP |2+|PF |2,即c 2=22+b 2.又c 2=a 2+b 2,所以a =2,b =23,所以双曲线C 的方程为x 24-y 212=1.16.(2020·济南市质量评估)古希腊数学家阿波罗尼斯在他的著作《圆锥曲线论》中记截了用平面切割圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的轴重合),已知两个圆锥的底面半径均为1,母线长均为2,记过圆锥轴的平面ABCD 为平面α(α与两个圆锥侧面的交线为AC ,BD ),用平行于α的平面截圆锥,该平面与两个圆锥侧面的交线即双曲线Γ的一部分,且双曲线Γ的两条渐近线分别平行于AC ,BD ,则双曲线Γ的离心率为( A )A.233 B. 2 C.3D .2解析:设与平面α平行的平面为β,以AC ,BD 的交点在平面β内的射影为坐标原点,两圆锥的轴在平面β内的射影为x 轴,在平面β内与x 轴垂直的直线为y 轴,建立平面直角坐标系.根据题意可设双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0).由题意可得双曲线Γ的渐近线方程为y =±33x ,即b a =33,所以离心率e =ca =1+(b a )2=233.17.(2020·济南市模拟)已知一族双曲线E n :x 2-y 2=n2 019(n ∈N *,且n ≤2 019),设直线x =2与E n 在第一象限内的交点为A n ,点A n 在E n 的两条渐近线上的射影分别为B n ,C n .记△A n B n C n 的面积为a n ,则a 1+a 2+a 3+…+a 2 019=5052.解析:因为双曲线的方程为x 2-y 2=n2 019(n ∈N *,且n ≤2 019),所以其渐近线方程为y =±x ,设点A n (2,y n ),则4-y 2n =n 2 019(n ∈N *,且n ≤2 019).记A n (2,y n )到两条渐近线的距离分别为d 1,d 2,则S △A n B n C n =12d 1d 2=12×|2+y n |2×|2-y n |2=|4-y 2n |4=n 2 0194=n 4×2 019,故a n =n 4×2 019,因此{a n }为等差数列,故a 1+a 2+a 3+…+a 2 019=14×2 019×2 019+14×2 019×2 019×2 0182=5052. 18.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,渐近线方程是y =±255x ,点A (0,b ),且△AF 1F 2的面积为6.(1)求双曲线C 的标准方程;(2)直线l :y =kx +m (k ≠0,m ≠0)与双曲线C 交于不同的两点P ,Q ,若|AP |=|AQ |,求实数m 的取值范围.解:(1)由题意得b a =255①,S △AF 1F 2=12×2c ·b =6②,a 2+b 2=c 2③,由①②③求得a 2=5,b 2=4, ∴双曲线C 的标准方程是x 25-y 24=1.(2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点为D (x 0,y 0).将y =kx +m 与x 25-y 24=1联立,消去y ,整理得(4-5k 2)x 2-10kmx -5m 2-20=0,由4-5k 2≠0及Δ>0,得⎩⎪⎨⎪⎧4-5k 2≠0,m 2-5k 2+4>0,④ ∴x 1+x 2=10km4-5k 2,x 1·x 2=-5m 2+204-5k 2,∴x 0=x 1+x 22=5km 4-5k 2,y 0=kx 0+m =4m4-5k 2.由|AP |=|AQ |知,AD ⊥PQ ,∴k AD =y 0-2x 0=4m4-5k 2-25km 4-5k 2=-1k ,化简得10k 2=8-9m ,⑤ 将⑤代入④,得m <-92或m >0. 由10k 2=8-9m >0,得m <89.综上,实数m 的取值范围是m <-92或0<m <89.快乐分享,知识无界!感谢您的下载!由Ruize收集整理!。
2021届高考数学人教版一轮创新:第8章 第8讲 曲线与方程

1
PART ONE
基础知识过关
求曲线方程的基本步骤
1.概念辨析 (1)f(x0,y0)=0 是点 P(x0,y0)在曲线 f(x,y)=0 上的充要条件.( ) (2)方程 x2+xy=x 的曲线是一个点和一条直线.( ) (3)到两条互相垂直的直线距离相等的点的轨迹方程是 x2=y2.( ) (4)方程 y= x与 x=y2 表示同一曲线.( ) 答案 (1)√ (2)× (3)× (4)×
第八章 平面解析几何 第8讲 曲线与方程
[考纲解读] 1.了解方程的曲线与曲线的方程的对应关系,能用解析几何的 基本思想和坐标法研究几何问题.(重点) 2.能够根据所给条件选择适当的方法求曲线的轨迹方程,并掌握求曲线方 程的两种常见题型:①根据曲线确定方程,可用待定系数法;②求轨迹方 程,可用直接法、定义法、代入法(相关点法)、参数法.(难点) [考向预测] 从近三年高考情况来看,本讲是高考中的一个命题热点.预测 2021 年高考将会有以下两种命题方式:①用定义法求曲线的方程;②由已 知条件直接求曲线的方程.题型为解答题中的一问,试题难度中等偏上.考 查知识点多,能力要求较高,尤其是运算变形能力.解题时注意函数与方 程思想及等价转化思想的应用.
答案
2.小题热身 (1)已知点 P(x,y)满足方程 x2-y2+2x+1=0,则点 P(x,y)的轨迹是
() A.圆 C.两条直线
B.一条直线 D.直线的交点
解析 点 P(x,y)满足方程 x2-y2+2x+1=0,即(x+1)2=y2,可得 x+ 1=±y,即 x+y+1=0 或 x-y+1=0,故点 P(x,y)的轨迹是两条直线.
解析 如图,延长 F1M 交 AF2 延长线于点 N,
故|AF1|=|AN|,|AF1|-|AF2|=2a,
2021年高考数学 第八章 第8课时 曲线与方程知能演练轻松闯关 新人教A版

2021年高考数学 第八章 第8课时 曲线与方程知能演练轻松闯关 新人教A 版1.方程(x -y )2+(xy -1)2=0表示的曲线是( )A .一条直线和一条双曲线B .两条双曲线C .两个点D .以上答案都不对解析:选C .(x -y )2+(xy -1)2=0⇔⎩⎨⎧x -y =0,xy -1=0.故⎩⎨⎧x =1,y =1,或⎩⎨⎧x =-1,y =-1.2.若点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,则点P (x ,y )的轨迹方程为( )A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y解析:选C .点P (x ,y )到点F (0,2)的距离比它到直线y +4=0的距离小2,说明点P (x ,y )到点F (0,2)和到直线y +2=0的距离相等,所以P 点的轨迹为抛物线,设抛物线方程为x 2=2py (p >0),其中p =4,故所求的轨迹方程为x 2=8y .3.(xx·河南焦作模拟)设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A|=1,则P 点的轨迹方程为( )A .y 2=2xB .(x -1)2+y 2=4C .y 2=-2xD .(x -1)2+y 2=2解析:选D .如图,设P (x ,y ),圆心为M (1,0).连接M A ,则M A ⊥P A ,且|M A|=1.又∵|P A|=1,∴|PM |=|M A|2+|P A|2=2,即|PM |2=2,∴(x -1)2+y 2=2.4.平面直角坐标系中,已知两点A(3,1),B(-1,3),若点C 满足O C →=λ1O A →+λ2O B →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线 解析:选A .设C(x ,y ), 则O C →=(x ,y ),O A →=(3,1),O B →=(-1,3).∵O C →=λ1O A →+λ2O B →,∴⎩⎪⎨⎪⎧x =3λ1-λ2y =λ1+3λ2,又λ1+λ2=1,∴x +2y -5=0,表示一条直线.5.设动点P 在直线x -1=0上,O 为坐标原点,以OP 为直角边,点O 为直角顶点作等腰直角三角形OP Q ,则动点Q 的轨迹是( )A .椭圆B .两条平行直线C .抛物线D .双曲线 解析:选B .设Q(x ,y ),P (1,a ),a ∈R ,则有OP →·O Q →=0,且|OP →|=|O Q →|,∴⎩⎪⎨⎪⎧x 2+y 2=1+a 2,x +ay =0, 消去a ,得x 2+y 2=1+x 2y 2=x 2+y 2y2.∵x 2+y 2≠0,∴y =±1.即动点Q 的轨迹为两条平行直线y =±1.6.(xx·广东阳江质检)已知点A(-2,0),B(3,0),动点P (x ,y ),满足P A →·P B →=x 2-6,则动点P 的轨迹是________.解析:∵动点P (x ,y )满足P A →·P B →=x 2-6,∴(-2-x ,-y )·(3-x ,-y )=x 2-6,∴动点P 的轨迹方程是y 2=x ,轨迹为抛物线.答案:抛物线7.已知定点A(1,0)和定直线l :x =-1,在l 上有两动点E ,F 且满足A E →⊥A F →,另有动点P ,满足EP →∥O A →,FO →∥OP →(O 为坐标原点),则动点P 的轨迹方程为________.解析:设P (x ,y ),E (-1,y 1),F (-1,y 2)(y 1,y 2均不为零).由EP →∥O A →⇒y 1=y ,即E (-1,y ).由FO →∥OP →⇒y 2=-y x.由A E →⊥A F →⇒y 2=4x (x ≠0).答案:y 2=4x (x ≠0)8.点P 是圆C :(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线C P 的交点为Q ,则点Q 的轨迹方程是______________.解析:依题意有|Q P |=|Q F |,则||QC|-|Q F ||=|C P |=2,又|C F |=4>2,故点Q 的轨迹是以C 、F 为焦点的双曲线,a =1,c =2,得b 2=3,所求轨迹方程为x 2-y 23=1.答案:x 2-y 23=19.已知点A(-1,0),B(2,4),△ABC 的面积为10,求动点C 的轨迹方程.解:∵AB =32+42=5,∴AB 边上高h =205=4.故C 的轨迹是与直线AB 距离等于4的两条平行线.∵k AB =43,AB 的方程为4x -3y +4=0,可设轨迹方程为4x -3y +c =0. 由|c -4|5=4,得c =24或c =-16,故动点C 的轨迹方程为4x -3y -16=0或4x -3y +24=0.10.过双曲线x 2-y 2=1上一点M 作直线x +y =2的垂线,垂足为N ,求线段M N 的中点P 的轨迹方程.解:设动点P 的坐标为(x ,y ),点M 的坐标为(x 0,y 0), 则N(2x -x 0,2y -y 0).由N 在直线x +y =2上,得2x -x 0+2y -y 0=2.①由PM 垂直于直线x +y =2,得y -y 0x -x 0=1,即x -y -x 0+y 0=0.②由①②得x 0=32x +12y -1,y 0=12x +32y -1,代入双曲线方程得⎝ ⎛⎭⎪⎫32x +12y -12-⎝ ⎛⎭⎪⎫12x +32y -12=1, 整理得2x 2-2y 2-2x +2y -1=0,即点P 的轨迹方程为2x 2-2y 2-2x +2y -1=0.[能力提升]1.已知两条直线l 1:2x -3y +2=0和l 2:3x -2y +3=0,有一动圆(圆心和半径都动)与l 1、l 2都相交,且l 1、l 2被圆截得的弦长分别是定值26和24,则圆心的轨迹方程是( )A .(x +1)2-y 2=65B .(x -1)2-y 2=65C .(x +1)2+y 2=65D .(x -1)2+y 2=65解析:选A .设动圆的圆心为M (x ,y ),半径为r ,点M 到直线l 1,l 2的距离分别为d 1和d 2.由弦心距、半径、半弦长间的关系得,⎩⎨⎧2r 2-d 21=26,2r 2-d 22=24,即⎩⎪⎨⎪⎧r 2-d 21=169,r 2-d 22=144, 消去r 得动点M 满足的几何关系为d 22-d 21=25,即(3x -2y +3)213-(2x -3y +2)213=25.化简得(x +1)2-y 2=65.此即为所求的动圆圆心M 的轨迹方程.2.已知定点F 1(-2,0),F 2(2,0),N 是圆O :x 2+y 2=1上任意一点,点F 1关于点N 的对称点为M ,线段F 1M 的中垂线与直线F 2M 相交于点P ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .圆解析:选B .设N(a ,b ),M (x ,y ),则a =x -22,b =y2,代入圆O 的方程得点M 的轨迹方程是(x -2)2+y 2=22,此时|PF 1|-|PF 2|=|PF 1|-(|PF 1|±2)=±2,即||PF 1|-|PF 2||=2,故所求的轨迹是双曲线.3.直线x a +y2-a=1与x ,y 轴交点的中点的轨迹方程为______________.解析:设直线x a +y2-a=1与x ,y 的轴交点为A(a ,0),B(0,2-a ),AB 中点为M (x ,y ),则x =a 2,y =1-a2,消去a ,得x +y =1.∵a ≠0,a ≠2,∴x ≠0,x ≠1.答案:x +y =1(x ≠0,x ≠1)4.(xx·四川成都质检)P 是椭圆x 2a 2+y 2b2=1(a >b >0)上的任意一点,F 1,F 2是它的两个焦点,O 为坐标原点,有一动点Q 满足O Q →=PF 1→+PF 2→,则动点Q 的轨迹方程是______________.解析:由O Q →=PF 1→+PF 2→, 又PF 1→+PF 2→=PM →=2PO →=-2OP →, 设Q(x ,y ),则OP →=-12O Q →=⎝ ⎛⎭⎪⎫-x 2,-y 2,即P 点坐标为⎝ ⎛⎭⎪⎫-x 2,-y2.又P 在椭圆上,则有⎝ ⎛⎭⎪⎫-x 22a2+⎝ ⎛⎭⎪⎫-y 22b2=1, 即x 24a 2+y 24b2=1. 答案:x 24a 2+y 24b2=15.(xx·高考辽宁卷) 如图,抛物线C 1:x 2=4y ,C 2:x 2=-2py (p >0).点M (x 0,y 0)在抛物线C 2上,过M 作C 1的切线,切点为A ,B(M 为原点O 时,A ,B 重合于O ).当x 0=1-2时,切线M A 的斜率为-12.(1)求p 的值;(2)当M 在C 2上运动时,求线段AB 中点N 的轨迹方程(A ,B 重合于O 时,中点为O ). 解:(1)因为抛物线C 1:x 2=4y 上任意一点(x ,y )的切线斜率为y ′=x2,且切线M A 的斜率为-12,所以A 点坐标为(-1,14),故切线M A 的方程为y =-12(x +1)+14.因为点M (1-2,y 0)在切线M A 及抛物线C 2上,于是 y 0=-12(2-2)+14=-3-224,①y 0=-(1-2)22p =-3-222p.②由①②得p =2.(2)设N(x ,y ),A(x 1,x 214),B(x 2,x 224),x 1≠x 2,由N 为线段AB 中点知x =x 1+x 22,③y =x 21+x 228.④切线M A ,M B 的方程为y =x 12(x -x 1)+x 214,⑤y =x 22(x -x 2)+x 224.⑥由⑤⑥得M A ,M B 的交点M (x 0,y 0)的坐标为x 0=x 1+x 22,y 0=x 1x 24.因为点M (x 0,y 0)在C 2上,即x 20=-4y 0,所以x 1x 2=-x 21+x 226.⑦由③④⑦得x 2=43y ,x ≠0.当x 1=x 2时,A ,B 重合于原点O ,AB 中点N 为O ,坐标满足x 2=43y .因此AB 中点N 的轨迹方程为x 2=43y .6.(选做题)(xx·湖北恩施质检)在直角坐标平面上,O 为原点,M 为动点,|OM →|=5,O N →=255OM →.过点M 作MM 1⊥y 轴于点M 1,过N 作NN 1⊥x 轴于点N 1,OT →=M 1M →+N 1N →.记点T 的轨迹为曲线C ,点A(5,0)、B(1,0),过点A 作直线l 交曲线C 于两个不同的点P 、Q(点Q 在A 与P 之间).(1)求曲线C 的方程;(2)是否存在直线l ,使得|B P |=|BQ|,并说明理由.解:(1)设点T 的坐标为(x ,y ),点M 的坐标为(x ′,y ′),则M 1的坐标为(0,y ′),O N →=255OM →=255(x ′,y ′),于是点N 的坐标为⎝ ⎛⎭⎪⎫255x ′,255y ′,N 1的坐标为⎝ ⎛⎭⎪⎫255x ′,0, 所以M 1M →=(x ′,0),N 1N →=⎝ ⎛⎭⎪⎫0,255y ′.由OT →=M 1M →+N 1N →,有(x ,y )=(x ′,0)+⎝ ⎛⎭⎪⎫0,255y ′,所以⎩⎪⎨⎪⎧x =x ′,y =255y ′.由此得x ′=x ,y ′=52y . 由|OM →|=5,得x ′2+y ′2=5,所以x 2+⎝ ⎛⎭⎪⎫52y 2=5,得x 25+y 24=1,即所求的方程表示的曲线C 是椭圆.(2)点A(5,0)在曲线C 即椭圆的外部,当直线l 的斜率不存在时,直线l 与椭圆C 无交点,所以直线l 的斜率存在,并设为k ,直线l 的方程为y =k (x -5).由方程组⎩⎪⎨⎪⎧x 25+y 24=1,y =k (x -5),得(5k 2+4)x 2-50k 2x +125k 2-20=0.依题意知Δ=20(16-80k 2)>0, 得-55<k <55.当-55<k <55时,设交点P (x 1,y 1),Q(x 2,y 2),P Q 的中点为R(x 0,y 0),则x 1+x 2=50k 25k 2+4,x 0=x 1+x 22=25k25k 2+4.∴y 0=k (x 0-5)=k ⎝ ⎛⎭⎪⎫25k 25k 2+4-5=-20k5k 2+4.又|B P |=|BQ|⇔BR ⊥l ⇔k ·k BR =-1,k ·k BR =k ·20k 5k 2+41-25k 25k 2+4=20k 24-20k 2=-1⇔20k 2=20k 2-4,而20k 2=20k 2-4不成立,所以不存在直线l ,使得|B P |=|BQ|.27520 6B80 殀]34833 8811 蠑32601 7F59 罙524033 5DE1 巡33047 8117 脗37428 9234 鈴23948 5D8C 嶌#29837 748D 璍 29475 7323 猣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[练案57]第八讲曲线与方程
A组基础巩固
一、单选题
1.(2019·云南质量检测)已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为( D )
A.x2+y2=2 B.x2+y2=4
C.x2+y2=2(x≠±2) D.x2+y2=4(x≠±2)
[解析] MN的中点为原点O,易知|OP|=1
2
|MN|=2,∴P的轨迹是以原点
O为圆心,2为半径的圆,除去与x轴的两个交点,即P的轨迹方程为x2+y2=4(x≠±2),故选D.
2.方程x-1lg(x2+y2-1)=0所表示的曲线图形是( D )
3.已知点F(1,0),直线l:x=-1,点B是l上的动点.若过B垂直于y 轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是( D ) A.双曲线B.椭圆
C.圆D.抛物线
[解析] 连接MF,由中垂线性质知|MB|=|MF|,
即M 到定点F 的距离与它到直线x =-1距离相等. ∴点M 的轨迹是抛物线,∴D 正确.
4.(2019·金华模拟)已知点P 是直线2x -y +3=0上的一个动点,定点M(-1,2),Q 是线段PM 延长线上的一点,且|PM|=|MQ|,则Q 点的轨迹方程是( D )
A .2x +y +1=0
B .2x -y -5=0
C .2x -y -1=0
D .2x -y +5=0
[解析] 设Q(x ,y),∵|PM|=|MQ|,∴M 为线段PQ 的中点,∴则P 为(-2-x,4-y),代入2x -y +3=0,得Q 点的轨迹方程为2x -y +5=0.
5.(2019·四川雅安调研)设动点P 在直线x =1上,O 为坐标原点,以OP 为直角边、点O 为直角顶点作等腰Rt △OPQ ,则动点Q 的轨迹是( B )
A .圆
B .两条平行直线
C .抛物线
D .双曲线
[解析] 设P(1,a),Q(x ,y).以点O 为直角顶点作等腰直角三角形OPQ ,ay
x ×1
=-1,x =-ay ,∵|OP|=|OQ|,∴1+a 2=x 2+y 2=a 2y 2+y 2=(a 2+1)y 2,而a 2+1>0,∴y 2=1,∴y =1或y =-1,∴动点Q 的轨迹是两条平行于x 轴的直线.
6.若曲线C 上存在点M ,使M 到平面内两点A(-5,0),B(5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”,以下曲线不是..
“好曲线”的是( B ) A .x +y =5 B .x 2+y 2=9 C.x 2
25+y 2
9=1 D .x 2=16y。