华科研究生固体物理第7章习题(特选参考)

合集下载

(完整word版)固体物理学习题解答(完整版)

(完整word版)固体物理学习题解答(完整版)

《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。

从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。

答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。

分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。

因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(13)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2)体心立方:8(3)面心立方:6(4)六方密堆积:6(5)金刚石:。

固体物理课后习题与答案

固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。

在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。

在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。

也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。

2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。

晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。

3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。

除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。

4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。

价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。

在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。

由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。

这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。

电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。

《固体物理学》基础知识训练题及其参考答案

《固体物理学》基础知识训练题及其参考答案

《固体物理》基础知识训练题及其参考答案说明:本内容是以黄昆原著、韩汝琦改编的《固体物理学》为蓝本,重点训练读者在固体物理方面的基础知识,具体以19次作业的形式展开训练。

第一章作业1:1.固体物理的研究对象有那些?答:(1)固体的结构;(2)组成固体的粒子之间的相互作用与运动规律;(3)固体的性能与用途。

2.晶体和非晶体原子排列各有什么特点?答:晶体中原子排列是周期性的,即晶体中的原子排列具有长程有序性。

非晶体中原子排列没有严格的周期性,即非晶体中的原子排列具有短程有序而长程无序的特性。

3.试说明体心立方晶格,面心立方晶格,六角密排晶格的原子排列各有何特点?试画图说明。

有那些单质晶体分别属于以上三类。

答:体心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体的体心位置还有一个原子。

常见的体心立方晶体有:Li,Na,K,Rb,Cs,Fe等。

面心立方晶格:除了在立方体的每个棱角位置上有1个原子以外,在该立方体每个表面的中心还都有1个原子。

常见的面心立方晶体有:Cu, Ag, Au, Al等。

六角密排晶格:以ABAB形式排列,第一层原子单元是在正六边形的每个角上分布1个原子,且在该正六边形的中心还有1个原子;第二层原子单元是由3个原子组成正三边形的角原子,且其中心在第一层原子平面上的投影位置在对应原子集合的最低凹陷处。

常见的六角密排晶体有:Be,Mg,Zn,Cd等。

4.试说明, NaCl,金刚石,CsCl, ZnS晶格的粒子排列规律。

答:NaCl:先将两套相同的面心立方晶格,并让它们重合,然后,将一套晶格沿另一套晶格的棱边滑行1/2个棱长,就组成Nacl晶格;金刚石:先将碳原子组成两套相同的面心立方体,并让它们重合,然后将一套晶格沿另一套晶格的空角对角线滑行1/4个对角线的长度,就组成金刚石晶格;Cscl::先将组成两套相同的简单立方,并让它们重合,然后将一套晶格沿另一套晶格的体对角线滑行1/2个体对角线的长度,就组成Cscl晶格。

固体物理1-7讲习题参考答案

固体物理1-7讲习题参考答案

y
ε xx 代入 0 0
0
ε yy
0
0 Dx 0 ,有 Dy = D ε zz z
绕电场方向为轴转 180 度,电场不变
0 0 Dx′ 3 1 3 1 Dy′ = − 2 Dy + 2 Dz = − 4 ε yy + 4 ε zz E D z′ 1 3 3 3 ε yy + ε zz Dy + Dz 2 4 2 4
证:布里渊区边界垂直且平分倒格矢 K h ,故该边界面上任一矢量满足
(k −
1 Kh ) ⋅ Kh = 0 2 2k ⋅ K h − 1 Kh 2
2
即边界方程为
=0
取 K h 方向最短的倒格矢为 K 0 , K h = nK 0 将面间距公式 d =
2π K0
代入边界方程,有
2⋅

λ
cos ϕ −
可见,体心立方的倒格子是晶格常数为 b =
4π 的面心立方。 a 4π 同理可证,面心立方的倒格子是晶格常数为 的体心立方。 a
3.2.证明:倒格子原胞的体积为(2π)3/ Ω ,其中Ω为正格子原胞的体积 证:正格子原胞体积 Ω = a1 ⋅ (a 2 × a 3 ) 倒格子原胞体积 Ω = b1 ⋅ (b2 × b3 ) = b1 ⋅ [b2 ×
B ' A ' = AB(1 − 2 cos θ ) 1 − 2 cos θ = n cos θ : −1 ∼ +1 n = −1, 0,1, 2,3 θ = 0o , 60o ,90o ,120o ,180o

大学物理习题答案解析第七章

大学物理习题答案解析第七章

第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( ) (A ) (B ) (C ) (D )分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C )。

7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A ) (B ) (C ) (D )分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;.因而正确答案为(D ). 7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )r R B B 2=r R B B =r R B B =2r R B B 4=21==R r n n r R B r 2π2B r 2παB r cos π22αB r cos π2S B ⋅=m Φ(A ) ,(B ) ,(C ) ,(D ) ,分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )(B ) (C ) (D )分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。

华科固体物理考研题

华科固体物理考研题

华科固体物理考研题(共24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--华中科技大学一九九九年招收硕士研究生入学考试试题 考试科目: 固体物理适用专业: 微电子学与固体电子学(除画图题外,所有答案都必须写在答题纸上,写在试题上及草稿纸上无效,考完后试题随答题纸交回)1.设半径为R 的硬球堆成体心立方晶格,计算可以放入其间隙位置的一个硬球的最大半径r2.已知NaCl 晶体平均每对离子的相互作用能为 2()n q B u r r rα=-+,其中马德隆常数 1.75α=, n = 9,平衡离子间距0 2.82r = Å,求其声学波与光学波之间的频率间隙Δω(Na 的原子量为23, Cl 的原子量为, 1原子质量单位为×2410-克,104.810q -=⨯静电单位电荷)3.已知碳在()铁中的扩散系数D 与温度关系的实验数据为:当温度为200度时,扩散系数D200℃ = 11210/cm -秒;温度为760℃时,D760℃ =-6210/cm 秒,试求扩散过程的激活能Q (千焦耳/摩尔)(气体常数R=焦耳/摩尔·开)4.设N 个电子在边长为L 的正方形框中自由运动,在求解薜定谔方程时所得电子的本征能量220()x y E n n E =+式中,x n ,y n ,为任意正整数,0E 为基态能量,试求绝对零度时系统的费米能F E5.设晶格势场对电子的作用力为L F ,电子受到的外场力为e F ,证明电子的有效质量*m 和电子的惯性质量m 的关系为:*ee L F m F F =+六.已知Na 的费米能 0F E = ,在 T = 0k 下, 测知其电导率σ= ×17110()cm -Ω⋅,试求该温度下Na 的电子的弛豫时间τ.(常数:104.810e cgsu -=⨯, m = ×2810g -,271.0510erg s -=⨯⋅,121.610lev erg -=⨯)华中科技大学 二00一年招收硕士研究生入学考试试题 考试科目: 固体物理 适用专业: 微电子学与固体电子学 (除画图题外,所有答案都必须写在答题纸上,写在试题上及草 稿纸上无效,考完后试题随答题纸交回)一、选择题(25分)1.晶体的宏观对称性中有( )种基本的对称操作2.金刚石晶格的布拉菲格子为( )A.简立方B.体心立方C.面心立方D.六角密排 晶体的结合方式为()A.离子结合B.共价结合C.金属性结合D.共价结合+离子结合 晶体的配位数是()晶体中有3支声学波和()支光学波6.体心立方晶格的晶格常数为a ,其倒格子原胞体积等于() A.31a B.338a π C.3316aπ D.3332a π 7.周期性势场中单电子本征波函数为()A.周期函数B.旺尼尔函数C.布洛赫函数D.r k e V18.极低温下,固体的比热Cv 与T 的关系()A .Cv 与T 成正比 B. Cv 与2T 成正比 C. Cv 与3T 成正比 D. Cv 与T 无关9.面心立方晶格的简约布里渊区是()A.截角八面体B.正12面体C.正八面体D.正立方体10.位错破坏了晶格的周期性,位错是()A.点缺陷B.线缺陷C.面缺陷D.热缺陷二、简要回答下列问题(20分)1.简述金属,绝缘体和半导体在能带结构上的差异.2.为什么对金属电导有贡献的只是费米面附近的电子?3.引起固体热膨胀的物理原因是什么?4.什么是金属的功函数,写出两块金属之间的接触电势差12V 与功函数1φ、2φ之间的关系式.三、(15分)一维周期场中电子的波πψax x x 3sin )(=,(a 是晶格常函数是数),试求电子在该状态的波矢。

华科999-20年固体物理考研题

华科999-20年固体物理考研题

1华中科技大学一九九九年招收硕士研究生入学考试试题 考试科目: 固体物理 适用专业: 微电子学与固体电子学(除画图题外,所有答案都必须写在答题纸上,写在试题上及草稿纸上无效,考完后试题随答题纸交回)1.设半径为R 的硬球堆成体心立方晶格,计算可以放入其间隙位置的一个硬球的最大半径r2.已知NaCl 晶体平均每对离子的相互作用能为 2()n q B u r r rα=-+,其中马德隆常数 1.75α=, n = 9,平衡离子间距0 2.82r =Å,求其声学波与光学波之间的频率间隙Δω(Na 的原子量为23, Cl 的原子量为35.5, 1原子质量单位为1.67×2410-克,104.810q -=⨯静电单位电荷)3.已知碳在()铁中的扩散系数D 与温度关系的实验数据为:当温度为200度时,扩散系数D200℃ = 11210/cm -秒;温度为760℃时,D760℃ =-6210/cm 秒,试求扩散过程的激活能Q (千焦耳/摩尔)(气体常数R=8.31焦耳/摩尔·开)4.设N 个电子在边长为L 的正方形框中自由运动,在求解薜定谔方程时所得电子的本征能量220()x y E n n E =+式中,x n ,y n ,为任意正整数,0E 为基态能量,试求绝对零度时系统的费米能F E5.设晶格势场对电子的作用力为L F ,电子受到的外场力为e F ,证明电子的有效质量*m 和电子的惯性质量m 的关系为:*ee L F m F F =+六.已知Na 的费米能 0F E = 3.2ev ,在 T = 0k 下, 测知其电导率σ= 2.1×17110()cm -Ω⋅,试求该温度下Na 的电子的弛豫时间τ.(常数:104.810e cgsu -=⨯, m = 9.1×2810g -,271.0510erg s -=⨯⋅h ,121.610lev erg -=⨯)3华中科技大学二00一年招收硕士研究生入学考试试题 考试科目: 固体物理 适用专业: 微电子学与固体电子学(除画图题外,所有答案都必须写在答题纸上,写在试题上及草稿纸上无效,考完后试题随答题纸交回)一、选择题(25分)1.晶体的宏观对称性中有( )种基本的对称操作A.7B.8C.14D.322.金刚石晶格的布拉菲格子为( )A.简立方B.体心立方C.面心立方D.六角密排3.GaAs 晶体的结合方式为()A.离子结合B.共价结合C.金属性结合D.共价结合+离子结合4.NaCl 晶体的配位数是()A.4B.6C.8D.125.KBr 晶体中有3支声学波和()支光学波A.6B.3C.6ND.3N6.体心立方晶格的晶格常数为a ,其倒格子原胞体积等于() A.31aB.338a πC.3316a πD.3332a π 7.周期性势场中单电子本征波函数为()A.周期函数B.旺尼尔函数C.布洛赫函数D.r k e V1 8.极低温下,固体的比热Cv 与T 的关系()A .Cv 与T 成正比 B. Cv 与2T 成正比 C. Cv 与3T 成正比 D. Cv 与T 无关9.面心立方晶格的简约布里渊区是()A.截角八面体B.正12面体C.正八面体D.正立方体10.位错破坏了晶格的周期性,位错是()A.点缺陷B.线缺陷C.面缺陷D.热缺陷二、简要回答下列问题(20分)1.简述金属,绝缘体和半导体在能带结构上的差异.2.为什么对金属电导有贡献的只是费米面附近的电子?3.引起固体热膨胀的物理原因是什么?4.什么是金属的功函数,写出两块金属之间的接触电势差12V 与功函数1φ、2φ之间的关系式.三、(15分)一维周期场中电子的波函数是πψa x x x 3sin)(=,(a 是晶格常数),试求电子在该状态的波矢。

大学物理(华中科技版)第7章习题答案

大学物理(华中科技版)第7章习题答案

习 题7-1 一容积为34106.12m -⨯的真空系统已被抽到mmHg 5100.1-⨯的真空。

为了提高其真空度,将它放到k 500的烘箱内烘烤,使器壁释放出所吸附的气体.若烘烤后压强增为mmHg 2100.1-⨯,试求器壁释放出的分子数。

nkT p = kT pn =01122012)()(V kT p kT p V n n N -=-=∆ 2p »1p 22T p ∴»11T p 个)(1043.2106.125001038.176010013.1100.11742352022⨯=⨯⨯⨯⨯⨯⨯⨯=≈∆---V kT p N 7-2已知空气中几种主要成份的分压百分比是氮%78,氧%21,氩%1,求它们的质量百分比和空气在标准状态下的质量密度。

nkT p = VN n Aν=r r r A O N A O N A O N n n n p p p ννν::::::222222==014.0:232.0:754.04001.0:3221.0:2878.0::::222222=⨯⨯⨯==m olA A m ol O O m ol N N A O N rr r M M M m m m ννν3333/1029.1104.22)4001.03221.02878.0(2222cm g cmgV M M M molmolAA mol O O mol N N rr-⨯=⨯⨯+⨯+⨯=++=νννρ7-3 一个人呼吸时,若每吐出一口气都在若干时间内均匀地混合到全部大气中去,试在标准状态下估算另一个人每吸入的一口气中有多少个分子是那个人在那口气中吐出的?设呼吸一口气的体积约为1升。

每口气突出102269.24.22/1002.623⨯=⨯=N 个分子21m 地面上气柱的质量2450/100.11010013.11m kg g atm M ⨯≈⨯==地面上大气层的总质量kg S M M 182640100.51037.64100.1⨯≈⨯⨯⨯⨯=⨯=)(地π大气的总摩尔数molM M=ν 标态下大气的总体积L mol L molg g VV mol21211086.3/4.22/29100.5⨯=⨯⨯=⨯=ν 每升含71086.31069.22122≈⨯⨯=V N 个分子。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档