2018年高考物理《步步高》(全国通用

合集下载

新步步高2018版浙江高考物理选考总复习第一章实验1用打点计时器测速度实验2探究小车速度随时间变化规

新步步高2018版浙江高考物理选考总复习第一章实验1用打点计时器测速度实验2探究小车速度随时间变化规
解析 0.15 s恰好是BC的中间时刻,因此需要测出BC的长度,也就是纸带b的长度.
(3)若测得a段纸带的长度为2.0 cm,e段纸带的长度为10.0 cm,则可求出加速度的大小为____ m/s2. 2.0
解析 根据匀变速直线运动的规律 Δx=aT2,由于相邻两段的时间间隔都 是 0.1 s,可得:a=xe4-T2xa=2.0 m/s2.


123
解析
2.关于“探究小车速度随时间变化的规律”的实验操作,下列说法中错误的是( ) A.长木板不能侧向倾斜,也不能一端高一端低 B.在释放小车前,小车应停在靠近打点计时器处 C.应先接通电源,待打点计时器开始打点后再释放小车 √D.要在小车到达定滑轮前使小车停止运动
解析 长木板不能侧向倾斜,但可以一端高一端低,故选项A错误.
解析答案
5.某同学用如图7甲所示的实验装置“探究小车速度随时间变化的规律”:
45
图7
(1)电磁打点计时器接_________电源(填“低压直低流压”交“低流压交流”或“220 V交流”).
45
解析 电磁打点计时器接低压交流电源. (2)实验时,使小车靠近打点计时器,先________再_________.(填“接通电源”或“放接开通小电车源”)
x3-x2=x2-x1(或2x2=x1+x3)
x2+x3 10T
解析 因小车做匀加速直线运动,所以x3-x2=x2-x1,即2x2=x1+x3,c点是bd段的时间中点,则c点的瞬时速度等于该段的平均速度,vc

.
x2+x3
10T
解析答案
例2 实验中,如图3所示为一次记录小车运动情况的纸带,图中A、B、C、D、E为相邻的计数点,相邻计数点间的时间间隔T=0.1 s.

2018年高考物理《步步高》(全国通用

2018年高考物理《步步高》(全国通用

2018年高考物理《步步高》(全国通用•含答案及详细解析)一轮微专题复习题(10套“微专题”题+1套章末综合练习题,共11套题)第二章牛顿运动定律1.考点及要求:(1)牛顿运动定律(Ⅱ);(2)牛顿运动定律的应用(Ⅱ).2.方法与技巧:作用力与反作用力的关系可总结为“三同、三异、三无关”.三同:同大小、同变化、同消失.三异:异体、异向、异效.三无关:与物体的种类无关、与物体的状态无关,与是否与其他物体相互作用无关.1.(对惯性的理解)(多选)伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概伽利略根据小球在斜面上运动的实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础.早期物理学家关于惯性有下列说法,其中正确的是() A.物体抵抗运动状态变化的性质是惯性B.没有力的作用,物体只能处于静止状态C.行星在圆周轨道上保持匀速率运动的性质是惯性D.运动物体如果没有受到力的作用,将继续以同一速度沿同一直线运动2.(对牛顿第一定律的研究)伽利略对“自由落体运动”和“运动和力的关系”的研究,开创了科学实验和逻辑推理相结合的重要科学研究方法.图1中a、b分别表示这两项研究中实验和逻辑推理的过程,对这两项研究,下列说法正确的是() 图1 A.图a通过对自由落体运动的研究,合理外推得出小球在斜面上做匀变速运动B.图a中先在倾角较小的斜面上进行实验,可“冲淡”重力,使时间测量更容易C.图b中完全没有摩擦阻力的斜面是实际存在的,实验可实际完成中完全没有摩擦阻力的斜面是实际存在的,实验可实际完成D.图b的实验为“理想实验”,通过逻辑推理得出物体的运动需要力来维持的实验为“理想实验”,通过逻辑推理得出物体的运动需要力来维持3.(对牛顿第三定律的理解)牛顿在总结C·雷恩、J·沃利斯和C·惠更斯等人的研究结果后,提出了著名的牛顿第三定律,阐述了作用力和反作用力的关系,从而与牛顿第一和第二定律形成了完整的牛顿力学体系.下列关于作用力和反作用力的说法正确的是() A.物体先对地面产生压力,然后地面才对物体产生支持力.物体先对地面产生压力,然后地面才对物体产生支持力B.物体对地面的压力和地面对物体的支持力互相平衡.物体对地面的压力和地面对物体的支持力互相平衡C.人推车前进,人对车的作用力大于车对人的作用力.人推车前进,人对车的作用力大于车对人的作用力D.物体在地面上滑行,不论物体的速度多大,物体对地面的摩擦力与地面对物体的摩擦力始终大小相等始终大小相等4.(牛顿第三定律在受力分析中的应用)电视台体育频道讲解棋局节目中棋盘竖直放置,棋盘由磁石做成,棋子都可视为被磁石吸引的小磁体,若某棋子静止,则() A.棋盘面可选足够光滑的材料.棋盘面可选足够光滑的材料B.棋盘对棋子的作用力比棋子对棋盘的作用力大.棋盘对棋子的作用力比棋子对棋盘的作用力大C.棋盘对棋子的作用力比棋子的重力大.棋盘对棋子的作用力比棋子的重力大D.若棋盘对棋子的磁力越大,则对其摩擦力也越大.若棋盘对棋子的磁力越大,则对其摩擦力也越大5.一物体受绳子的拉力作用由静止开始前进,先做加速运动,然后改为匀速运动,再改做减速运动,则下列说法中正确的是() A.加速前进时,绳子拉物体的力大于物体拉绳子的力.加速前进时,绳子拉物体的力大于物体拉绳子的力B.减速前进时,绳子拉物体的力小于物体拉绳子的力.减速前进时,绳子拉物体的力小于物体拉绳子的力C.只有匀速前进时,绳子拉物体的力才与物体拉绳子的力大小相等.只有匀速前进时,绳子拉物体的力才与物体拉绳子的力大小相等D.不管物体如何前进,绳子拉物体的力与物体拉绳子的力大小总相等.不管物体如何前进,绳子拉物体的力与物体拉绳子的力大小总相等6.伽利略利用如图2所示的装置做如下实验:小球从左侧斜面上的O点由静止释放后运动至右侧斜面上升.斜面上先后铺垫三种粗糙程度逐渐减小的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3.对比三次实验结果,可直接得到的结论是() 图2 A.如果斜面光滑,小球可以上升到比O′点更高的位置′点更高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态.如果小球不受力,它将一直保持匀速运动或静止状态C.小球受到斜面的阻力越小,其上升的位置越高.小球受到斜面的阻力越小,其上升的位置越高D.自由落体运动是匀变速直线运动.自由落体运动是匀变速直线运动7.一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱与杆的总质量为M ,环的质量为m ,如图3所示,已知环沿杆匀加速下滑时,杆对环的摩擦力大小为f ,则此时箱对地面的压力大小为多少?则此时箱对地面的压力大小为多少?图3 答案解析1.AD [物体保持原来匀速直线运动状态或静止状态的性质叫惯性,即物体抵抗运动状态变化的性质,则A 项正确.没有力的作用,物体可能保持匀速直线运动状态或静止状态,则B 错.行星在圆周轨道上保持匀速率运动是由于受到改变运动状态的向心力作用,其运动状态是不断变化的,则C 错.D 项符合惯性定义,是正确的.]2.B [图a 是先在倾角较小的斜面上进行实验,“冲淡”重力,使时间测量更容易,A 项错误,B 项正确;完全没有摩擦阻力的斜面并不存在,C 项错;图b 中实验通过逻辑推理得出物体的运动不需要力来维持,D 项错.]3.D [由牛顿第三定律可知,作用力和反作用力同时产生,同时消失,选项A 错误;压力和支持力作用在两个不同的物体上,而平衡力是作用在同一个物体上,选项B 错误;作用力与反作用力等大反向,故人对车的作用力等于车对人的作用力,选项C 错误;物体对地面的摩擦力大小等于地面对物体的摩擦力,选项D 正确.]4.C [根据竖直方向上二力平衡知:f 静=G ,则G 应不超过最大静摩擦力,有f 静<f m =μF N ,F N 一定,要使棋子不滑下,应增大最大静摩擦力,为此应增大μ,棋盘面应选取较粗糙的材料,故A 错误;棋盘对棋子的作用力与棋子对棋盘的作用力是一对作用力与反作用力,大小相等,方向相反.故B 错误;棋盘对棋子的摩擦力与重力大小相等,棋盘对棋子的作用力是支持力与摩擦力的合力,所以比棋子的重力大,故C 正确;棋盘对棋子的静摩擦力与棋子的重力平衡,棋盘对棋子的磁力增大,摩擦力大小不变,故D 错误.]5.D [绳子拉物体的力与物体拉绳子的力是一对作用力和反作用力,大小相等,方向相反,与物体的运动状态和作用效果无关,与物体的运动状态和作用效果无关,加速前进、加速前进、匀速前进或减速前进时,匀速前进或减速前进时,绳子拉物体的力都绳子拉物体的力都等于物体拉绳子的力,故A 、B 、C 错误,D 正确.]6.C [在此实验中,若斜面光滑,只有重力做功,机械能守恒,小球最高只能上升到O ′位置,A 项错误.此实验说明小球受到的阻力越小,机械能损失越少,上升的位置越高,但不能直接说明小球不受力时,它将一直保持匀速运动或静止状态,更不能直接说明自由落体运动是匀变速直线运动,所以C项正确,B、D两项错误.]7.f+Mg解析箱子在竖直方向上受力情况如图所示,其受重力Mg、地面对它的支持力F N及环对它的摩擦力f′,由牛顿第三定律知f′=f. 由于箱子处于平衡状态,可得:F N=f′+Mg=f+Mg. 根据牛顿第三定律,箱子对地面的压力大小等于地面对箱子的弹力大小,则F N′=F N=f+Mg. 1.考点及要求:(1)牛顿运动定律(Ⅱ);(2)牛顿运动定律的应用(Ⅱ).2.方法与技巧:(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理;(2)弹簧(或橡皮绳):此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,其弹力的大小往往可以看成是不变的.间,在瞬时问题中,其弹力的大小往往可以看成是不变的.1.(弹簧模型)如图1所示,质量均为m的木块A和B用一轻弹簧相连,竖直放在光滑的水平面上,木块A上放有质量为2m的木块C,三者均处于静止状态.现将木块C迅速移开,若重力加速度为g,则在木块C移开的瞬间() 图1 A.木块B对水平面的压力迅速变为2mgB.弹簧的弹力大小为mgC.木块A的加速度大小为2gD.弹簧的弹性势能立即减小.弹簧的弹性势能立即减小2.(杆模型)如图2所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为() 图2 A.233g B.0 C.g D.33g3. 3. ((多选)如图3所示,A、B两物块质量均为m,用一轻弹簧相连,将A用长度适当的轻绳悬挂于天花板上,系统处于静止状态,B物块恰好与水平桌面接触,此时轻弹簧的伸长量为x,现将悬绳剪断,则下列说法正确的是() 图3 A.悬绳剪断瞬间A物块的加速度大小为2gB.悬绳剪断瞬间A物块的加速度大小为gC.悬绳剪断后A物块向下运动距离2x时速度最大时速度最大D.悬绳剪断后A物块向下运动距离x时加速度最小时加速度最小4.如图4所示,质量为M的框架放在水平地面上,一轻弹簧上端固定在框架上,下端连接一个质量为m的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为( ) 图4 A .gB.M -m m g C .0 D.M +m m g5.(多选)如图5所示,弹簧p 和细绳q 的上端固定在天花板上,下端用小钩钩住质量为m的小球C ,弹簧、细绳和小钩的质量均忽略不计.静止时p 、q 与竖直方向的夹角均为60°60°..下列判断正确的有( ) 图5 A .若p 和球突然脱钩,则脱钩后瞬间q 对球的拉力大小为mgB .若p 和球突然脱钩,则脱钩后瞬间球的加速度大小为32g C .若q 和球突然脱钩,则脱钩后瞬间p 对球的拉力大小为12mgD .若q 和球突然脱钩,则脱钩后瞬间球的加速度大小为g6. (多选多选)如图6所示,在动摩擦因数μ=0.2的水平面上,质量m =2 kg 的物块与水平轻弹簧相连,物块在与水平方向成θ=45°角的拉力F 作用下处于静止状态,此时水平面对物块的弹力恰好为零,g 取10 m/s 2,以下说法正确的是( ) 图6 A .此时轻弹簧的弹力大小为20 N B .当撤去拉力F 的瞬间,物块的加速度大小为8 m/s 2,方向向左,方向向左C .若剪断弹簧,则剪断的瞬间物块的加速度大小为8 m/s 2,方向向右,方向向右D .若剪断弹簧,则剪断的瞬间物块的加速度为0 7.物块A 1和A 2、B 1和B 2质量均为m ,A 1、A 2用刚性轻杆相连,B 1、B 2用轻质弹簧连接,两个装置都放在水平支托物上,处于平衡状态,个装置都放在水平支托物上,处于平衡状态,如图如图7所示.今突然迅速地撤去支托物,让物块下落,在撤去支托物的瞬间,A 1、A 2受到的合力分别为F A 1和F A 2,B 1、B 2受到的合力分别为F B 1和F B 2,则( ) 图7 A .F A 1=0,F A 2=2mg ,FB 1=0,F B 2=2mgB .F A 1=mg ,F A 2=mg ,F B 1=0,F B 2=2mgC .F A 1=0,F A 2=2mg ,F B 1=mg ,F B 2=mgD .F A 1=mg ,F A 2=mg ,F B 1=mg ,F B 2=mg答案解析1.C 2.A [撤离木板之前,小球处于三力平衡状态,木板对小球的弹力大小等于233mg .当木板突然撤离的瞬间,木板的弹力消失,突然撤离的瞬间,木板的弹力消失,但小球的重力不变,但小球的重力不变,但小球的重力不变,弹簧的弹力也不变,重力与弹簧的弹簧的弹力也不变,重力与弹簧的弹力的合力大小依旧等于木板对小球的弹力233mg ,根据牛顿第二定律有233mg =ma ,得a =233g ,选项A 正确.] 3.AC [剪断悬绳前,对B 受力分析,B 受到重力和弹簧的弹力,知弹力F =mg ,剪断瞬间,对A 分析,A 的合力为F 合=mg +F =2mg ,根据牛顿第二定律,得a =2g ,故选项A 正确,B 错误.弹簧开始处于伸长状态,弹簧开始处于伸长状态,弹力弹力F =mg =kx .当向下压缩,mg =F ′=kx ′时,速度最大,x ′=x ,所以下降的距离为2x ,选项C 正确,D 错误.]4.D [以框架为研究对象进行受力分析可知,当框架对地面压力为零时,其重力与弹簧对其弹力平衡,即F =Mg ,故可知弹簧处于压缩状态,再以小球为研究对象分析受力可知F+mg =ma ,联立可解得,小球的加速度大小为a =M +m m g ,故选项D 正确.] 5.BD [原来p 、q 对球的拉力大小均为mg .p 和球脱钩后,球将开始沿圆弧运动,将q 受的力沿法向和切线正交分解,如图甲,得F -mg cos 60°=m v 2r =0,即F =12mg ,合力为mg sin 60°=ma ,故a =32g ,选项A 错误,B 正确;q 和球突然脱钩后瞬间,p 的拉力未来得及改变,仍为mg ,因此合力为mg ,如图乙,球的加速度大小为g .故选项C 错误,D 正确.] 6.AB [物块在重力、拉力F 和弹簧的弹力作用下处于静止状态,由平衡条件得kx =F cos θ,mg =F sin θ,解得弹簧的弹力kx =mg tan 45°=20 20 N N ,故选项A 正确;撤去拉力F 的瞬间,由牛顿第二定律得kx -μmg =ma 1,解得a 1=8 m/s 2,方向向左,故选项B 正确;剪断弹簧的瞬间,弹簧的弹力消失,则F cos θ=ma 2,解得a 2=10 m/s 2,方向向右,故选项C 、D 错误.] 7.B [撤去支托物的瞬间,由于轻杆是刚体(认为无形变),所以弹力马上发生变化,A 1、A 2立即做自由落体运动,轻杆与A 1、A 2间弹力为零,所以F A 1=F A 2=mg ;撤去支托物前,由平衡条件知弹簧弹力大小为mg ,撤去支托物的瞬间,弹簧的形变因物块静止的惯性而不能马上改变,弹力仍保持原值,所以B 1受的合力F B 1=0,B 2受的合力F B 2=2mg ,故选项B 正确.]1.考点及要求:(1)牛顿运动定律的应用(Ⅱ);(2)匀变速直线运动的公式(Ⅱ).2.方法与技巧:(1)抓住两个分析:受力分析和运动过程分析;(2)解决动力学问题时对力的处理方法:合成法和正交分解法;(3)求解加速度是解决问题的关键.求解加速度是解决问题的关键.1.(已知运动分析受力)如图1所示,一物体从倾角为30°的斜面顶端由静止开始下滑,s 1段光滑,s 2段有摩擦,已知s 2=2s 1,物体到达斜面底端的速度刚好为零,求s 2段的动摩擦因数μ.(g 取10 m/s 2) 图1 2.(已知受力分析运动)如图2所示,在质量为m B =30 30 kg kg 的车厢B 内紧靠右壁,放一质量m A =20 kg 的小物体A (可视为质点),对车厢B 施加一水平向右的恒力F ,且F =120 N ,使之从静止开始运动.测得车厢B 在最初t =2.0 s 内移动s =5.0 m ,且这段时间内小物块未与车厢壁发生过碰撞.车厢与地面间的摩擦忽略不计.车厢壁发生过碰撞.车厢与地面间的摩擦忽略不计.图2 (1)计算B 在2.0 s 的加速度;的加速度;(2)求t =2.0 s 末A 的速度大小;的速度大小;(3)求t =2.0 s 内A 在B 上滑动的距离.上滑动的距离.3.如图3甲所示,在风洞实验室里,一根足够长的固定的均匀直细杆与水平方向成θ=37°角,质量m =1 1 kgkg 的小球穿在细杆上且静止于细杆底端O 处,开启送风装置,有水平向右的恒定风力F 作用于小球上,在t 1=2 s 时刻风停止.小球沿细杆运动的部分v -t 图象如图乙所示,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,忽略浮力.求:,忽略浮力.求:图3 (1)小球在0~2 s 内的加速度a 1和2~5 s 内的加速度a 2;(2)小球与细杆间的动摩擦因数μ和水平风力F 的大小.的大小.4.如图4所示为四旋翼无人机,它是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .g 取10 m/s 2. 图4 (1)无人机在地面上从静止开始,以最大升力竖直向上起飞.求在t =5 s 时离地面的高度h . (2)当无人机悬停在距离地面高度H =100 m 处,由于动力设备故障,无人机突然失去升力而坠落.求无人机坠落地面时的速度v . (3)在无人机从离地高度H =100 m 处坠落过程中,在遥控设备的干预下,动力设备重新启动提供向上最大升力.为保证安全着地,求飞行器从开始下落到恢复升力的最长时间t 1.答案解析1.32解析 设物体的质量为m ,在s 1段物体做匀加速直线运动,在s 2段物体做匀减速运动,在s 1段由牛顿第二定律得: mg sin θ=ma 1,解得a 1=g sin θ=5 m/s 2 在s 2段:μmg cos θ-mg sin θ=ma 2,解得a 2=μg cos θ-g sin θ 设s 1段结束时的速度为v ,根据运动学方程,在s 1段:v 2=2a 1s 1在s 2段:v 2=2a 2s 2,又s 2=2s 1解得:μ=322.(1)2.5 m /s 2 (2)4.5 m/s (3)0.5 m 解析 (1)设t =2.0 s 内车厢的加速度为a B ,由s =12a B t 2得 a B =2.5 m/s 2(2)对B ,由牛顿第二定律:F -f =m B a B ,得f =45 N 对A ,据牛顿第二定律得A 的加速度大小为a A =2.25 m/s 2所以t =2.0 s 末A 的速度大小为:v A =a A t =4.5 m/s. (3)在t =2.0 s 内A 运动的位移为s A =12a A t 2=4.5 m , A 在B 上滑动的距离Δs =s -s A =0.5 m. 3.(1)15 m /s 2,方向沿杆向上,方向沿杆向上10 m/s 2,方向沿杆向下,方向沿杆向下 (2)0.5 50 N 解析 (1)取沿细杆向上的方向为正方向,由题图可知,在0~2 s 内,a 1=Δv 1Δt 1=15 m/s 2(方向沿杆向上) 在2~5 s 内,a 2=Δv 2Δt 2=-10 m/s 2(“-”表示方向沿杆向下). (2)有风力F 时的上升过程,由牛顿第二定律,有 F cos θ-μ(mg cos θ+F sin θ)-mg sin θ=ma 1,停风后的上升阶段,由牛顿第二定律,有-μmg cos θ-mg sin θ=ma 2, 联立解得μ=0.5,F =50 N. 4.(1)75 m (2)40 m/s (3)535 5 s s 解析 (1)由牛顿第二定律:F -mg -f =ma 得a =6 m/s 2高度h =12at 2 解得h =75 m (2)下落过程中mg -f =ma 1 a 1=8 m/s 2落地时v 2=2a 1H 解得v =40 m/s (3)恢复升力后向下减速运动过程F -mg +f =ma 2 a 2=10 m/s 2设恢复升力时的速度为v m ,则有v 2m 2a 1+v 2m2a 2=H 得v m =4053 m/s 由v m =a 1t 1 解得t 1=553 s 1.考点及要求:超重和失重(Ⅰ).2.方法与技巧:(1)从受力的角度判断,当物体所受向上的拉力(或支持力)大于重力时物体处于超重状态,小于重力时处于失重状态,等于零时处于完全失重状态;(2)从加速度的角度判断,当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.1.(对超重和失重的理解)小明家住十层,他乘电梯从一层直达十层.则下列说法正确的是( ) A .他始终处于超重状态.他始终处于超重状态B .他始终处于失重状态.他始终处于失重状态C .他先后处于超重、平衡、失重状态.他先后处于超重、平衡、失重状态D .他先后处于失重、平衡、超重状态.他先后处于失重、平衡、超重状态2.(超重和失重的分析)如图1所示,四个质量、形状相同的斜面体放在粗糙的水平面上,将四个质量相同的物块放在斜面顶端,因物块与斜面的摩擦力不同,四个物块运动情况不同,放上A 物块后A 物块匀加速下滑,B 物块获一初速度后匀速下滑,C 物块获一初速度后匀减速下滑,放上D 物块后D 物块静止在斜面上,四个斜面体均保持静止.四种情况下斜面对地面的压力依次为F 1、F 2、F 3、F 4,则它们的大小关系是( ) 图1 A .F 1=F 2=F 3=F 4B .F 1>F 2>F 3>F 4C .F 1<F 2=F 4<F 3D .F 1=F 3<F 2<F 43.在德国首都柏林举行的世界田径锦标赛女子跳高决赛中,克罗地亚选手弗拉西奇以2.04 m 的成绩获得冠军.弗拉西奇的身高约为1.93 m ,忽略空气阻力,g 取10 m/s 2,如图2所示.则下列说法正确的是( ) 图2 A .弗拉西奇在下降过程中处于完全失重状态.弗拉西奇在下降过程中处于完全失重状态B .弗拉西奇起跳以后在上升的过程中处于超重状态.弗拉西奇起跳以后在上升的过程中处于超重状态C .弗拉西奇起跳时地面对她的支持力等于她所受的重力.弗拉西奇起跳时地面对她的支持力等于她所受的重力D .弗拉西奇起跳时的初速度大约为3 m/s 4.(多选)2013年12月2日1时30分,“嫦娥三号”探测器由长征三号乙运载火箭从西昌卫星发射中心成功发射;12月14日21时,“嫦娥三号”到达距月球表面4 4 mm 处,关闭所有发动机,首次实现软着陆.12月15日晚,“嫦娥三号”着陆器和巡视器顺利互拍成像,“嫦娥三号”任务取得圆满成功.则下列说法正确的是( ) A .发射初期,“嫦娥三号”处于超重状态.发射初期,“嫦娥三号”处于超重状态B .发射初期,“嫦娥三号”处于失重状态.发射初期,“嫦娥三号”处于失重状态C .从距月球表面4 m 处到着陆的过程中,“嫦娥三号”处于失重状态处到着陆的过程中,“嫦娥三号”处于失重状态D .从距月球表面4 m 处到着陆的过程中,“嫦娥三号”处于超重状态处到着陆的过程中,“嫦娥三号”处于超重状态5.如图3所示,物体A 被平行于斜面的细线拴在斜面的上端,整个装置保持静止状态,斜面被固定在台秤上,物体与斜面间无摩擦,被固定在台秤上,物体与斜面间无摩擦,装置稳定后,当细线被烧断,装置稳定后,当细线被烧断,装置稳定后,当细线被烧断,物体下滑时与静止时物体下滑时与静止时比较,台秤的示数( ) 图3 A .增加.增加B .减小.减小C .不变.不变D .无法确定.无法确定6.如图4所示,质量为M 的木楔ABC 静置于粗糙水平面上,在斜面顶端将一质量为m 的物体,以一定的初速度从A 点沿平行斜面的方向推出,物体m 沿斜面向下做减速运动,在减速运动过程中,下列说法中正确的是( ) 图4 A .地面对木楔的支持力大于(M +m )gB .地面对木楔的支持力小于(M +m )gC .地面对木楔的支持力等于(M +m )gD .地面对木楔的摩擦力为0 7.举重运动员在地面上能举起120 120 kg kg 的重物,而在运动着的升降机中却只能举起100 100 kg kg 的重物,求升降机运动的加速度;若在以2.5 m /s 2的加速度加速下降的升降机中,此运动员能举起质量多大的重物?(取g =10 m/s 2) 答案解析1.C [小明乘坐电梯从一层直达十层过程中,一定是先向上加速,再向上匀速,最后向上减速,减速,运动过程中加速度方向最初向上,运动过程中加速度方向最初向上,运动过程中加速度方向最初向上,中间为零,最后向下,因此先后对应的状态应该是中间为零,最后向下,因此先后对应的状态应该是超重、平衡、失重三个状态,C 对.] 2.C [设物块和斜面的总重力为G . A 物块匀加速下滑,加速度沿斜面向下,具有竖直向下的分加速度,存在失重现象,则F 1<G ;B 物块匀速下滑,合力为零,斜面体保持静止状态,合力也为零,则系统的合力也为零,故F 2=G . C 物块匀减速下滑,加速度沿斜面向上,具有竖直向上的分加速度,存在超重现象,则F 3>G ;D 物块静止在斜面上,合力为零,斜面体保持静止状态,合力也为零,则系统的合力也为零,故F 4=G .故有F 1<F 2=F 4<F 3,故C 正确,A 、B 、D 错误.] 3.A [在上升和下降过程中,弗拉西奇的加速度等于重力加速度,处于完全失重状态,选项A 正确,选项B 错误;弗拉西奇起跳时地面对她的支持力大于她所受的重力,选项C 错误;弗拉西奇在上升的过程中做竖直上抛运动,由运动学公式v 20=2gh可得初速度v 0=2gh=20×(2.04-1.932)m /s≈4.6 m/s ,选项D 错误.] 4.AC [发射初期,“嫦娥三号”加速上升,加速度向上,处于超重状态;从距月球表面4 m 处到着陆的过程中,关闭所有发动机,“嫦娥三号”加速度为重力加速度,处于失重状态,选项A 、C 正确,B 、D 错误.]5.B [细线被烧断物体沿斜面下滑时不受摩擦力,物体A 将加速下滑,则物体A 的加速度沿竖直向下方向的分量不为0,A 处于失重状态,故台秤的示数将减小,选项B 正确.] 6.A [物体m 沿斜面向下做减速运动,加速度方向沿斜面向上,则其沿竖直向上的方向有分量,系统处于超重状态,故A 正确,B 、C 错误;物体加速度沿水平方向的分量向右,说明地面对木楔的摩擦力方向水平向右,故D 错误.]7.2 m/s 2,方向向上,方向向上160 kg 解析 运动员在地面上能举起m 0=120 kg 的重物,则运动员能发挥的向上的最大支撑力 F =m 0g =1 200 N. 在运动着的升降机中只能举起m 1=100 100 kgkg 的重物,可见该重物超重了,升降机应具有向上的加速度,设此加速度为a 1,对重物由牛顿第二定律得F -m 1g =m 1a 1,解得a 1=2 2 m m /s 2.当升降机以a 2=2.5 m/s 2的加速度加速下降时,重物失重.设此时运动员能举起的重物质量为m 2,对重物由牛顿第二定律得m 2g -F =m 2a 2,解得m 2=160 kg. 1.考点及要求:(1)图象(Ⅱ);(2)牛顿运动定律(Ⅱ);(3)力的合成与分解(Ⅱ).2.方法与技巧:。

2018高考物理步步高 第五章 第1讲

2018高考物理步步高 第五章  第1讲

第1讲功功率动能定理一、功1.定义:一个物体受到力的作用,如果在力的方向上发生了一段位移,就说这个力对物体做了功.2.必要因素:力和物体在力的方向上发生的位移.3.物理意义:功是能量转化的量度.4.计算公式(1)恒力F的方向与位移l的方向一致时:W=Fl.(2)恒力F的方向与位移l的方向成某一夹角α时:W=Fl cos_α.5.功的正负(1)当0≤α<π2时,W >0,力对物体做正功.(2)当π2<α≤π时,W <0,力对物体做负功,或者说物体克服这个力做了功.(3)当α=π2时,W =0,力对物体不做功.6.一对作用力与反作用力的功]7.一对平衡力的功一对平衡力作用在同一个物体上,若物体静止,则两个力都不做功;若物体运动,则这一对力所做的功一定是数值相等,一正一负或均为零.二、功率1.定义:功与完成这些功所用时间的比值. 2.物理意义:描述力对物体做功的快慢. 3.公式(1)P =W t,P 为时间t 内物体做功的快慢. (2)P =Fv①v 为平均速度,则P 为平均功率. ②v 为瞬时速度,则P 为瞬时功率.③当力F 和速度v 不在同一直线上时,可以将力F 分解或者将速度v 分解.深度思考由公式P =Fv 得到F 与v 成反比正确吗答案 不正确,在P 一定时,F 与v 成反比. 三、动能 动能定理 1.动能(1)定义:物体由于运动而具有的能叫动能. (2)公式:E k =12mv 2.(3)矢标性:动能是标量,只有正值.(4)状态量:动能是状态量,因为v 是瞬时速度. 2.动能定理(1)内容:在一个过程中合外力对物体所做的功,等于物体在这个过程中动能的变化量. (2)表达式:W =12mv 22-12mv 21=E k2-E k1.(3)适用条件:①既适用于直线运动,也适用于曲线运动.②既适用于恒力做功,也适用于变力做功.③力可以是各种性质的力,既可以同时作用,也可以分阶段作用.(4)应用技巧:若整个过程包含了几个运动性质不同的分过程,既可以分段考虑,也可以整个过程考虑.深度思考物体的速度改变,动能一定改变吗答案不一定.如匀速圆周运动.1.(粤教版必修2P67第5题)用起重机将质量为m 的物体匀速吊起一段距离,那么作用在物体上的各力做功情况应是下列说法中的哪一种( )A .重力做正功,拉力做负功,合力做功为零B .重力做负功,拉力做正功,合力做正功C .重力做负功,拉力做正功,合力做功为零D .重力不做功,拉力做正功,合力做正功 答案 C2.(粤教版必修2P77第2题)(多选)一个物体在水平方向的两个恒力作用下沿水平方向做匀速直线运动,若撤去其中的一个力,则( )A .物体的动能可能减少B .物体的动能可能不变C .物体的动能可能增加D .余下的力一定对物体做功 答案 ACD3.(多选)关于功率公式P =Wt和P =Fv 的说法正确的是( ) A .由P =W t知,只要知道W 和t 就可求出任意时刻的功率 B .由P =Fv 既能求某一时刻的瞬时功率,也可以求平均功率 C .由P =Fv 知,随着汽车速度的增大,它的功率也可以无限增大 D .由P =Fv 知,当汽车发动机功率一定时,牵引力与速度成反比 答案 BD4.(人教版必修2P59第1题改编)如图1所示,两个物体与水平地面间的动摩擦因数相等,它们的质量也相等.在甲图中用力F 1拉物体,在乙图中用力F 2推物体,夹角均为α,两个物体都做匀速直线运动,通过相同的位移.设F1和F2对物体所做的功分别为W1和W2,物体克服摩擦力做的功分别为W3和W4,下列判断正确的是( )图1A.F1=F2B.W1=W2C.W3=W4D.W1-W3=W2-W4答案D5.有一质量为m的木块,从半径为r的圆弧曲面上的a点滑向b点,如图2所示.若由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )图2A.木块所受的合外力为零B.因木块所受的力都不对其做功,所以合外力做的功为零C.重力和摩擦力的合力做的功为零D.重力和摩擦力的合力为零答案C命题点一功的分析与计算1.常用办法:对于恒力做功利用W=Fl cos α;对于变力做功可利用动能定理(W=ΔE k);对于机车启动问题中的定功率启动问题,牵引力的功可以利用W=Pt.2.几种力做功比较(1)重力、弹簧弹力、电场力、分子力做功与位移有关,与路径无关.(2)滑动摩擦力、空气阻力、安培力做功与路径有关.(3)摩擦力做功有以下特点①单个摩擦力(包括静摩擦力和滑动摩擦力)可以做正功,也可以做负功,还可以不做功.②相互作用的一对静摩擦力做功的代数和总等于零;相互作用的一对滑动摩擦力做功的代数和不为零,且总为负值.③相互作用的一对滑动摩擦力做功过程中会发生物体间机械能转移和机械能转化为内能,内能Q=F f x相对.例1一物体静止在粗糙水平地面上.现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v.若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v.对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则( ) A.W F2>4W F1,W f2>2W f1B.W F2>4W F1,W f2=2W f1C.W F2<4W F1,W f2=2W f1D.W F2<4W F1,W f2<2W f1物体从静止开始经过同样的时间.答案 C 解析 根据x =v +v 02t 得,两过程的位移关系x 1=12x 2,根据加速度的定义a =v -v 0t,得两过程的加速度关系为a 1=a 22.由于在相同的粗糙水平地面上运动,故两过程的摩擦力大小相等,即F f1=F f2=F f ,根据牛顿第二定律得,F 1-F f1=ma 1,F 2-F f2=ma 2,所以F 1=12F 2+12F f ,即F 1>F 22.根据功的计算公式W =Fl ,可知W f1=12W f2,W F 1>14W F 2,故选项C 正确,选项A 、B 、D错误.判断力是否做功及做正、负功的方法1.看力F 的方向与位移l 的方向间的夹角α——常用于恒力做功的情形. 2.看力F 的方向与速度v 的方向间的夹角α——常用于曲线运动的情形.3.根据动能的变化:动能定理描述了合外力做功与动能变化的关系,即W合=ΔE k,当动能增加时合外力做正功;当动能减少时合外力做负功.1.如图3所示,质量为m的物体置于倾角为θ的斜面上,物体与斜面间的动摩擦因数为μ,在外力作用下,斜面以加速度a沿水平方向向左做匀加速运动,运动中物体m与斜面体相对静止.则关于斜面对m的支持力和摩擦力的下列说法中错误的是( )图3A.支持力一定做正功B.摩擦力一定做正功C.摩擦力可能不做功D.摩擦力可能做负功答案B解析支持力方向垂直斜面向上,故支持力一定做正功.而摩擦力是否存在需要讨论,若摩擦力恰好为零,物体只受重力和支持力,如图所示,此时加速度a =g tan θ,当a >g tan θ时,摩擦力沿斜面向下,摩擦力与位移夹角小于90°,则做正功;当a <g tan θ时,摩擦力沿斜面向上,摩擦力与位移夹角大于90°,则做负功.综上所述,B 选项是错误的.2.以一定的初速度竖直向上抛出一个小球,小球上升的最大高度为h ,空气阻力的大小恒为F ,则从抛出到落回到抛出点的过程中,空气阻力对小球做的功为( )A .0B .-FhC .FhD .-2Fh答案 D解析 阻力与小球速度方向始终相反,故阻力一直做负功,W =-Fh +(-Fh )=-2Fh ,D 选项正确.命题点二 功率的理解和计算 1.平均功率与瞬时功率 (1)平均功率的计算方法 ①利用P =W t.②利用P =F v cos α,其中v 为物体运动的平均速度. (2)瞬时功率的计算方法①利用公式P =Fv cos α,其中v 为t 时刻的瞬时速度. ②P =Fv F ,其中v F 为物体的速度v 在力F 方向上的分速度. ③P =F v v ,其中F v 为物体受到的外力F 在速度v 方向上的分力. 2.机车的两种启动模型3.机车启动问题常用的三个公式(1)牛顿第二定律:F-F f=ma.(2)功率公式:P=F·v.(3)速度公式:v=at.说明:F为牵引力,F f为机车所受恒定阻力.例2在检测某种汽车性能的实验中,质量为3×103kg 的汽车由静止开始沿平直公路行驶,达到的最大速度为40 m/s ,利用传感器测得此过程中不同时刻该汽车的牵引力F 与对应速度v ,并描绘出如图4所示的F -1v图象(图线ABC 为汽车由静止到达到最大速度的全过程,AB 、BO 均为直线).假设该汽车行驶中所受的阻力恒定,根据图线ABC :图4(1)求该汽车的额定功率;(2)该汽车由静止开始运动,经过35 s 达到最大速度40 m/s ,求其在BC 段的位移.①最大速度在图象中对应的力;②AB 、BO 均为直线.答案 (1)8×104W (2)75 m解析 (1)由图线分析可知:图线AB 表示牵引力F 不变即F =8 000 N ,阻力F f 不变,汽车由静止开始做匀加速直线运动;图线BC 的斜率表示汽车的功率P 不变,达到额定功率后,汽车所受牵引力逐渐减小,汽车做加速度减小的变加速直线运动,直至达到最大速度40 m/s ,此后汽车做匀速直线运动.由图可知:当最大速度v max =40 m/s 时,牵引力为F min =2 000 N 由平衡条件F f =F min 可得F f =2 000 N 由公式P =F min v max 得额定功率P =8×104W.(2)匀加速运动的末速度v B =P F,代入数据解得v B =10 m/s 汽车由A 到B 做匀加速运动的加速度为a =F -F f m=2 m/s 2设汽车由A 到B 所用时间为t 1,由B 到C 所用时间为t 2,位移为x ,则t 1=v B a=5 s ,t 2=35 s -5 s =30 sB 点之后,对汽车由动能定理可得Pt 2-F f x =12mv 2C -12mv 2B ,代入数据可得x =75 m.1.求解功率时应注意的“三个”问题(1)首先要明确所求功率是平均功率还是瞬时功率;(2)平均功率与一段时间(或过程)相对应,计算时应明确是哪个力在哪段时间(或过程)内做功的平均功率;(3)瞬时功率计算时应明确是哪个力在哪个时刻(或状态)的功率. 2.机车启动中的功率问题(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m =P F min =PF 阻(式中F min 为最小牵引力,其值等于阻力F 阻).(2)机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,但速度不是最大,v =P F <v m =P F 阻.3.一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P 随时间t 的变化如图5所示.假定汽车所受阻力的大小F f恒定不变.下列描述该汽车的速度v随时间t变化的图线中,可能正确的是( )图5答案 A解析 当汽车的功率为P 1时,汽车在运动过程中满足P 1=F 1v ,因为P 1不变,v 逐渐增大,所以牵引力F 1逐渐减小,由牛顿第二定律得F 1-F f =ma 1,F f 不变,所以汽车做加速度减小的加速运动,当F 1=F f 时速度最大,且v m =P 1F 1=P 1F f.当汽车的功率突变为P 2时,汽车的牵引力突增为F 2,汽车继续加速,由P 2=F 2v 可知F 2减小,又因F 2-F f =ma 2,所以加速度逐渐减小,直到F 2=F f 时,速度最大v m ′=P 2F f,此后汽车做匀速直线运动.综合以上分析可知选项A 正确.4.一起重机的钢绳由静止开始匀加速提起质量为m 的重物,当重物的速度为v 1时,起重机的功率达到最大值P ,以后起重机保持该功率不变,继续提升重物,直到以最大速度v 2匀速上升,重物上升的高度为h ,则整个过程中,下列说法正确的是( )A .钢绳的最大拉力为P v 2B .钢绳的最大拉力为mgC .重物匀加速的末速度为P mgD .重物匀加速运动的加速度为Pmv 1-g 答案 D解析 加速过程重物处于超重状态,钢绳拉力较大,匀速运动阶段钢绳的拉力为P v 2,故A 错误;加速过程重物处于超重状态,钢绳拉力大于重力,故B 错误;重物匀加速运动的末速度不是运动的最大速度,此时钢绳对重物的拉力大于其重力,故其速度小于P mg,故C 错误;重物匀加速运动的末速度为v 1,此时的拉力为F =P v 1,由牛顿第二定律得:a =F -mg m =Pmv 1-g ,故D 正确.命题点三 动能定理及其应用 1.动能定理 (1)三种表述①文字表述:所有外力对物体做的总功等于物体动能的增加量; ②数学表述:W 合=12mv 2-12mv 20或W 合=E k -E k0;③图象表述:如图6所示,E k -l 图象中的斜率表示合外力.图6(2)适用范围①既适用于直线运动,也适用于曲线运动; ②既适用于恒力做功,也适用于变力做功;③力可以是各种性质的力,既可同时作用,也可分阶段作用. 2.解题的基本思路(1)选取研究对象,明确它的运动过程; (2)分析受力情况和各力的做功情况;(3)明确研究对象在过程的初末状态的动能E k1和E k2;(4)列动能定理的方程W 合=E k2-E k1及其他必要的解题方程,进行求解.例3我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图7所示,质量m=60 kg的运动员从长直助滑道AB的A 处由静止开始以加速度a= m/s2匀加速滑下,到达助滑道末端B时速度v B=24 m/s,A与B 的竖直高度差H=48 m,为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C处附近是一段以O为圆心的圆弧.助滑道末端B与滑道最低点C的高度差h=5 m,运动员在B、C间运动时阻力做功W=-1 530 J,取g=10 m/s2.图7(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大.答案 (1)144 N (2) m解析 (1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,则有v 2B =2ax ① 由牛顿第二定律有mg Hx-F f =ma ② 联立①②式,代入数据解得F f =144 N③(2)设运动员到达C 点时的速度为v C ,在由B 到达C 的过程中,由动能定理得mgh +W =12mv 2C -12mv 2B ④设运动员在C 点所受的支持力为F N ,由牛顿第二定律有F N -mg =m v2C R⑤由题意和牛顿第三定律知F N =6mg ⑥ 联立④⑤⑥式,代入数据解得R = m.5.(多选)(2015·浙江理综·18)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为×104kg ,设起飞过程中发动机的推力恒为×105N ;弹射器有效作用长度为100 m ,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则( )A .弹射器的推力大小为×106N B .弹射器对舰载机所做的功为×108J C .弹射器对舰载机做功的平均功率为×107 WD .舰载机在弹射过程中的加速度大小为32 m/s 2答案 ABD解析 设总推力为F ,位移x =100 m ,阻力F 阻=20%F ,对舰载机加速过程由动能定理得Fx -20%F ·x =12mv 2,解得F =×106 N ,弹射器推力F 弹=F -F 发=×106 N -×105 N =×106N ,A 正确;弹射器对舰载机所做的功为W =F 弹·x =×106×100 J=×108J ,B 正确;弹射器对舰载机做功的平均功率P =F 弹·0+v 2=×107 W ,C 错误;根据运动学公式v 2=2ax ,得a =v 22x=32 m/s 2,D 正确.6.(多选)(2016·浙江理综·18)如图8所示为一滑草场.某条滑道由上下两段高均为h ,与水平面倾角分别为45°和37°的滑道组成,滑草车与草地之间的动摩擦因数为μ.质量为m 的载人滑草车从坡顶由静止开始自由下滑,经过上、下两段滑道后,最后恰好静止于滑道的底端(不计滑草车在两段滑道交接处的能量损失,sin37°=,cos 37°=.则( )图8A .动摩擦因数μ=67B .载人滑草车最大速度为2gh 7C .载人滑草车克服摩擦力做功为mghD .载人滑草车在下段滑道上的加速度大小为35g答案 AB解析 对滑草车从坡顶由静止滑下,到底端静止的全过程,得mg ·2h -μmg cos45°·h sin 45°-μmg cos 37°·h sin 37°=0,解得μ=67,选项A 正确;对经过上段滑道过程,根据动能定理得,mgh -μmg cos 45°·h sin 45°=12mv 2,解得v =2gh7,选项B 正确;载人滑草车克服摩擦力做功为2mgh ,选项C 错误;载人滑草车在下段滑道上的加速度大小为a =μmg cos 37°-mg sin 37°m =335g ,选项D 错误.7.如图9所示,用跨过光滑定滑轮的缆绳将海面上一艘失去动力的小船沿直线拖向岸边.已知拖动缆绳的电动机功率恒为P ,小船的质量为m ,小船受到的阻力大小恒为F f ,经过A 点时的速度大小为v 0,小船从A 点沿直线加速运动到B 点经历时间为t 1,A 、B 两点间距离为d ,缆绳质量忽略不计.求:图9(1)小船从A 点运动到B 点的全过程克服阻力做的功W f ; (2)小船经过B 点时的速度大小v 1; (3)小船经过B 点时的加速度大小a . 答案 (1)F f d (2) v 20+2mPt 1-F f d(3)Pm 2v 20+2m Pt 1-F f d-F fm解析 (1)小船从A 点运动到B 点克服阻力做功W f =F f d ①(2)小船从A 点运动到B 点,电动机牵引缆绳对小船做功W =Pt 1②由动能定理有W -W f =12mv 21-12mv 20③由①②③式解得v 1= v 20+2mPt 1-F f d ④(3)设小船经过B 点时缆绳的拉力大小为F ,缆绳与水平方向的夹角为θ,电动机牵引缆绳的速度大小为v ,则P =Fv ⑤ v =v 1cos θ⑥由牛顿第二定律有F cos θ-F f =ma ⑦由④⑤⑥⑦式解得a=Pm2v20+2m Pt1-F f d-F fm.求解变力做功的五种方法一、用动能定理求变力做功动能定理既适用于直线运动,也适用于曲线运动,既适用于求恒力做功,也适用于求变力做功,因为使用动能定理可由动能的变化来求功,所以动能定理是求变力做功的首选.典例1如图10所示,质量为m的小球用长L的细线悬挂而静止在竖直位置.现用水平拉力F将小球缓慢拉到细线与竖直方向成θ角的位置.在此过程中,拉力F做的功为( )图10A.FL cos θB.FL sin θC.FL(1-cos θ) D.mgL(1-cos θ)答案D解析在小球缓慢上升过程中,拉力F为变力,此变力F的功可用动能定理求解.由W F-mgL(1-cos θ)=0得W F=mgL(1-cos θ),故D正确.二、利用微元法求变力做功将物体的位移分割成许多小段,因小段很小,每一小段上作用在物体上的力可以视为恒力,这样就将变力做功转化为在无数个无穷小的位移上的恒力所做功的代数和,此法在中学阶段常应用于求解大小不变、方向改变的变力做功问题.典例2如图11所示,在一半径为R=6 m的圆弧形桥面的底端A,某人把一质量为m=8 kg的物块(可看成质点).用大小始终为F=75 N 的拉力从底端缓慢拉到桥面顶端B(圆弧AB在一竖直平面内),拉力的方向始终与物块在该点的切线成37°角,整个圆弧桥面所对的圆心角为120°,g取10 m/s2,sin 37°=,cos 37°=.求这一过程中:图11(1)拉力F 做的功;(2)桥面对物块的摩擦力做的功. 答案 (1) J (2)- J解析 (1)将圆弧AB 分成很多小段l 1、l 2、…、l n ,拉力在每一小段上做的功为W 1、W 2、…、W n .因拉力F 大小不变,方向始终与物块在该点的切线成37°角,所以W 1=Fl 1cos 37°、W 2=Fl 2cos 37°、…、W n =Fl n cos 37°所以W F =W 1+W 2+…+W n =F cos 37°(l 1+l 2+…+l n )=F cos 37°·16·2πR = J.(2)因为重力G 做的功W G =-mgR (1-cos 60°)=-240 J ,而因物块在拉力F 作用下缓慢移动,动能不变,由动能定理知W F +W G +W f =0所以W f =-W F -W G =- J +240 J =- J. 三、化变力为恒力求变力做功变力做功直接求解时,通常都比较复杂,但若通过转换研究对象,有时可化为恒力做功,可以用W =Fl cos α求解,此法常常应用于轻绳通过定滑轮拉物体的问题中.四、用平均力求变力做功在求解变力做功时,若物体受到的力的方向不变,而大小随位移是成线性变化的,即为均匀变化,则可以认为物体受到一大小为F =F 1+F 22的恒力作用,F 1、F 2分别为物体初、末状态所受到的力,然后用公式W =F l cos α求此力所做的功.五、用F -x 图象求变力做功在F -x 图象中,图线与x 轴所围“面积”的代数和就表示力F 在这段位移所做的功,且位于x轴上方的“面积”为正,位于x轴下方的“面积”为负,但此方法只适用于便于求图线所围面积的情况(如三角形、矩形、圆等规则的几何图).典例3轻质弹簧右端固定在墙上,左端与一质量m= kg的物块相连,如图12甲所示,弹簧处于原长状态,物块静止且与水平面间的动摩擦因数μ=.以物块所在处为原点,水平向右为正方向建立x轴,现对物块施加水平向右的外力F,F随x轴坐标变化的情况如图乙所示,物块运动至x= m处时速度为零,则此时弹簧的弹性势能为(g=10 m/s2)( )图12A. J B. JC. J D. J答案A解析物块与水平面间的摩擦力为F f=μmg=1 N.现对物块施加水平向右的外力F,由F-x图象面积表示功可知F做功W= J,克服摩擦力做功W f=F f x= J.由功能关系可知,W-W f=E p,此时弹簧的弹性势能为E p= J,选项A正确.题组1 功和功率的分析与计算1.一个成年人以正常的速度骑自行车,受到的阻力为总重力的倍,则成年人骑自行车行驶时的功率最接近于( )A.1 W B.10 W C.100 W D.1 000 W答案C解析 设人和车的总质量为100 kg ,匀速行驶时的速率为5 m/s ,匀速行驶时的牵引力与阻力大小相等F ==20 N ,则人骑自行车行驶时的功率为P =Fv =100 W ,故C 正确.2.(多选)一质量为1 kg 的质点静止于光滑水平面上,从t =0时刻开始,受到水平外力F 作用,如图1所示.下列判断正确的是( )图1A .0~2 s 内外力的平均功率是4 WB .第2 s 内外力所做的功是4 JC .第2 s 末外力的瞬时功率最大D .第1 s 末与第2 s 末外力的瞬时功率之比为9∶4 答案 AD解析 第1 s 末质点的速度v 1=F 1m t 1=31×1 m/s=3 m/s.第2 s 末质点的速度v 2=v 1+F 2m t 2=(3+11×1) m/s=4 m/s.则第2 s 内外力做功W 2=12mv 22-12mv 21= J0~2 s 内外力的平均功率 P =12mv 22t=错误! W =4 W.选项A 正确,选项B 错误;第1 s 末外力的瞬时功率P 1=F 1v 1=3×3 W=9 W , 第2 s 末外力的瞬时功率P 2=F 2v 2=1×4 W=4 W ,故P 1∶P 2=9∶4.选项C 错误,选项D 正确.3.如图2甲所示,静止于光滑水平面上坐标原点处的小物块,在水平拉力F 作用下,沿x 轴方向运动,拉力F 随物块所在位置坐标x 的变化关系如图乙所示,图线为半圆.则小物块运动到x 0处时F 所做的总功为( )图2A .0F m x 0F m x 0x 20答案 C解析 F 为变力,但F -x 图象包围的面积在数值上表示拉力做的总功.由于图线为半圆,又因在数值上F m =12x 0,故W =12π·F 2m =12π·F m ·12x 0=π4F m x 0.题组2 动能定理及其简单应用4.如图3所示,光滑斜面的顶端固定一弹簧,一小球向右滑行,并冲上固定在地面上的斜面.设小球在斜面最低点A 的速度为v ,压缩弹簧至C 点时弹簧最短,C 点距地面高度为h ,则小球从A 到C 的过程中弹簧弹力做功是( )图3A .mgh -12mv 2mv 2-mghC .-mghD .-(mgh +12mv 2)答案 A解析 小球从A 点运动到C 点的过程中,重力和弹簧的弹力对小球做负功,由于支持力与位移始终垂直,则支持力对小球不做功,由动能定理,可得W G +W F =0-12mv 2,重力做功为W G =-mgh ,则弹簧的弹力对小球做功为W F =mgh -12mv 2,所以正确选项为A.5.(多选)质量为1 kg 的物体静止在水平粗糙的地面上,在一水平外力F 的作用下运动,如图4甲所示,外力F 和物体克服摩擦力F f 做的功W 与物体位移x 的关系如图乙所示,重力加速度g 取10 m/s 2.下列分析正确的是( )图4A .物体与地面之间的动摩擦因数为B .物体运动的位移为13 mC .物体在前3 m 运动过程中的加速度为3 m/s 2D .x =9 m 时,物体的速度为3 2 m/s 答案 ACD解析 由W f =F f x 对应图乙可知,物体与地面之间的滑动摩擦力F f =2 N ,由F f =μmg 可得μ=,A 正确;由W F =Fx 对应图乙可知,前3 m 内,拉力F 1=5 N,3~9 m 内拉力F 2=2 N ,物体在前3 m 内的加速度a 1=F 1-F f m =3 m/s 2,C 正确;由动能定理得:W F -F f x =12mv 2可得:x =9 m 时,物体的速度为v =3 2 m/s ,D 正确;物体的最大位移x m =W FF f= m ,B 错误.6.(多选)如图5所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平方向射中木块,并最终留在木块中与木块一起以速度v 运动.已知当子弹相对木块静止时,木块前进距离为l ,子弹进入木块的深度为d ,若木块对子弹的阻力F f 视为恒定,则下列关系式中正确的是( )图5A .F f l =12Mv 2B .F f d =12Mv 2C .F f d =12mv 20-12(M +m )v 2D .F f (l +d )=12mv 20-12mv 2答案 ACD解析 画出如图所示的运动过程示意图,从图中不难看出,当木块前进距离l ,子弹进入木块的深度为d 时,子弹相对于地发生的位移为l +d ,由牛顿第三定律,子弹对木块的作用力大小也为F f .子弹对木块的作用力对木块做正功,由动能定理得:F f l =12Mv 2木块对子弹的作用力对子弹做负功,由动能定理得: -F f (l +d )=12mv 2-12mv 2两式联立得:F f d =12mv 20-12(M +m )v 2所以,本题正确答案为A 、C 、D. 题组3 动能定理在多过程问题中的应用7.如图6所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.图6(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R)答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得v B =2gR ③ 从A 到B ,根据动能定理,有mg (H -R )+W f =12mv 2B -0④由③④式得W f =-(mgH -2mgR )(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12mv 2P -0⑤过P 点时,根据向心力公式,有mg cos θ-N =m v2P R⑥N =0⑦cos θ=hR⑧由⑤⑥⑦⑧式解得h =23R .8.如图7甲所示,轻弹簧左端固定在竖直墙上,右端点在O 位置.质量为m 的物块A (可视为质点)以初速度v 0从距O 点右方x 0处的P 点向左运动,与弹簧接触后压缩弹簧,将弹簧右端压到O ′点位置后,A 又被弹簧弹回.A 离开弹簧后,恰好回到P 点.物块A 与水平面间的动摩擦因数为μ.求:图7(1)物块A 从P 点出发又回到P 点的过程,克服摩擦力所做的功.。

2018高考物理步步高 第七章 实验八

2018高考物理步步高 第七章  实验八

实验八 测量电源的电动势和内阻1.实验原理 闭合电路欧姆定律. 2.实验器材电池、电压表、电流表、滑动变阻器、开关、导线、坐标纸和刻度尺. 3.基本操作(1)电流表用0.6 A 的量程,电压表用3 V 的量程,按图1连接好电路.图1(2)把滑动变阻器的滑片移到使阻值最大的一端.(3)闭合开关,调节滑动变阻器,使电流表有明显示数并记录一组数据(I 1,U 1).用同样的方法再测量几组I 、U 值,填入表格中. (4)断开开关,拆除电路,整理好器材.1.实验数据求E 、r 的处理方法(1)列方程求解:由U =E -Ir 得⎩⎪⎨⎪⎧U 1=E -I 1rU 2=E -I 2r ,解得E 、r .(2)用作图法处理数据,如图2所示.图2①图线与纵轴交点为E ; ②图线与横轴交点为I 短=Er ;③图线的斜率表示r =|ΔUΔI |.2.注意事项(1)为了使路端电压变化明显,可使用内阻较大的旧电池. (2)电流不要过大,应小于0.5 A ,读数要快.(3)要测出不少于6组的(I ,U )数据,变化范围要大些.(4)若U -I 图线纵轴刻度不从零开始,则图线和横轴的交点不再是短路电流,内阻应根据r =|ΔUΔI|确定. (5)电流表要内接(因为r 很小). 3.误差来源(1)偶然误差:用图象法求E 和r 时作图不准确. (2)系统误差:电压表分流.命题点一 教材原型实验例1 用如图3所示电路测量电源的电动势和内阻.实验器材:待测电源(电动势约3 V ,内阻约2 Ω),保护电阻R 1(阻值10 Ω)和R 2(阻值5 Ω),滑动变阻器R ,电流表A ,电压表V ,开关S ,导线若干. 实验主要步骤:图3(ⅰ)将滑动变阻器接入电路的阻值调到最大,闭合开关;(ⅱ)逐渐减小滑动变阻器接入电路的阻值,记下电压表的示数U和相应电流表的示数I;(ⅲ)以U为纵坐标,I为横坐标,作U-I图线(U、I都用国际单位);(ⅳ)求出U-I图线斜率的绝对值k和在横轴上的截距a.回答下列问题:(1)电压表最好选用________;电流表最好选用______.A.电压表(0~3 V,内阻约15 kΩ)B.电压表(0~3 V,内阻约3 kΩ)C.电流表(0~200 mA,内阻约2 Ω)D.电流表(0~30 mA,内阻约2 Ω)(2)滑动变阻器的滑片从左向右滑动,发现电压表示数增大.两导线与滑动变阻器接线柱连接情况是________.A.两导线接在滑动变阻器电阻丝两端的接线柱B.两导线接在滑动变阻器金属杆两端的接线柱C.一条导线接在滑动变阻器金属杆左端接线柱,另一条导线接在电阻丝左端接线柱D.一条导线接在滑动变阻器金属杆右端接线柱,另一条导线接在电阻丝右端接线柱(3)选用k、a、R1和R2表示待测电源的电动势E和内阻r的表达式E=________,r=________,代入数值可得E和r的测量值.答案(1)A C(2)C(3)ka k-R2解析(1)电压表内阻越大,分流越小,误差也就越小,所以选内阻较大的电压表A;当滑动变阻器接入电阻最小时通过电流表电流最大,此时通过电流表电流大小约为I=ER1+R2+r≈176 mA,所以选量程为200 mA的电流表C.(2)由电路分析可知,若滑动变阻器的滑片右移电压表示数变大,则滑动变阻器接入电路部分阻值增大,选项C 符合题意.(3)由E =U +I (r +R 2),得U =-I (r +R 2)+E ,对比伏安特性曲线可知,图象斜率的绝对值k =r +R 2,所以电源内阻r =k -R 2;令U =0,得I =E r +R 2=Ek ,由题意知与横轴截距为a ,所以a =I =Ek,则E =ka .1.利用图4所示的电路测定一节干电池的电动势和内阻,要求尽量减小实验误差.供选择的器材有:图4A .电流表A(0~0.6 A)B .电压表V 1(0~3 V)C .电压表V 2(0~15 V)D .滑动变阻器R 1(0~20 Ω)E .滑动变阻器R 2(0~200 Ω)F .定值电阻R 0=1 ΩG .开关一个,导线若干(1)实验中电压表应选用________,滑动变阻器应选用________(选填相应器材前的字母). (2)闭合开关,电压表和电流表均有示数,但是无论怎么移动滑动变阻器的滑片,电压表的读数变化都非常小.同学们讨论后,在原电路的基础上又加了一个定值电阻R 0,问题得到解决.请你在虚线框内画出改进后的电路图.某位同学记录了6组数据,对应的点已经标在坐标纸上.在图5坐标纸上画出U -I 图线,并根据所画图线可得出干电池的电动势E =______ V ,内电阻r =________ Ω.(结果均保留两位有效数字)图5答案 (1)B D (2)见解析图 1.5 0.14(0.13~0.18)解析 (1)由于干电池的电动势为1.5 V ,所以应选电压表B ,C 的量程太大,误差太大;选用小的滑动变阻器便于操作,故选D.(2)电路图如图甲所示,U -I 图线如图乙所示图象的纵截距表示电源电动势,故有E =1.5 V ,所以内阻为r =1.5-1.00.44 Ω-1 Ω≈0.14 Ω.2.利用电流表和电压表测定一节干电池的电动势和内阻.要求尽量减小实验误差. (1)应该选择的实验电路是图6中的________(选填“甲”或“乙”).图6(2)现有电流表(0~0.6 A)、开关和导线若干,以及以下器材: A .电压表(0~15 V) B .电压表(0~3 V) C .滑动变阻器(0~50 Ω)D.滑动变阻器(0~500 Ω)实验中电压表应选用__________;滑动变阻器应选用__________.(选填相应器材前的字母) (3)某位同学记录的6组数据如表所示,其中5组数据的对应点已经标在图7中,请标出余下一组数据的对应点,并画出U-I图线.图7(4)根据(3)中所画图线可得出干电池的电动势E=________ V,内电阻r=________ Ω.(5)实验中,随着滑动变阻器滑片的移动,电压表的示数U及干电池的输出功率P都会发生变化.下列示意图中正确反映P-U关系的是________.答案(1)甲(2)B C(3)如图所示(4)1.50(1.49~1.51)0.83(0.81~0.85)(5)C解析(1)干电池内阻相对一般电流表内阻而言较小,为减小电流表分压带来的系统误差,故应选甲.(2)干电池电动势约为1.5 V ,电压表选B 可减小读数误差.滑动变阻器应选C ,若选D ,由于总阻值较大,则滑片滑动时移动范围小,不便调节.(3)图线应为直线,作图时使尽量多的点在线上,不在线上的点应均匀分布在线的两侧,误差较大的点舍去.(4)由U =E -Ir 可得图象上的纵轴截距E =1.50 V ,斜率的绝对值r ≈0.83 Ω. (5)输出功率P =UI =-1r (U -E 2)2+E 24r,应为开口向下的抛物线,C 正确.3.手机、电脑等电器已经普及到人们的日常生活中,这些电器都要用到蓄电池.某同学利用下列器材测定一节蓄电池的电动势和内阻.蓄电池的电动势约为3 V . A .量程是0.6 A ,内阻约为0.5 Ω的电流表; B .量程是3 V ,内阻是6 kΩ的电压表; C .量程是15 V ,内阻是30 kΩ的电压表;D .阻值为0~1 kΩ,额定电流为0.5 A 的滑动变阻器;E .阻值为0~10 Ω,额定电流为2 A 的滑动变阻器;F .定值电阻4 Ω,额定功率4 W ;G .开关S 一个,导线若干.(1)为了减小实验误差,电压表应选择________(填器材代号),图8中的导线应连接到________处(填“①”或“②”),改变滑动变阻器阻值的时候,为了使电压表和电流表的读数变化比较明显,滑动变阻器应选择________(填器材代号).图8(2)用(1)问中的实验电路进行测量,读出电压表和电流表的读数,画出对应的U -I 图线如图9所示,由图线可得该蓄电池的电动势E =______ V ,内阻r =______ Ω.(结果保留两位有效数字)图9答案 (1)B ① E (2)3.2 1.3解析 (1)蓄电池的电动势约为3 V ,电压表C 的量程太大,选电压表B.导线接①处,与电池串联的定值电阻阻值已知,有利于准确测出电池的内阻.电流表量程为0.6 A ,由R =EI 得回路中的总电阻不能小于5 Ω,滑动变阻器D 总阻值太大,操作不方便,滑动变阻器选E.(2)由图线在纵轴上的截距可得蓄电池的电动势E =3.2 V ,图线斜率的绝对值|k |≈5.3 Ω,减去与电池串联的定值电阻的阻值4 Ω,可得电池的内阻r =1.3 Ω. 命题点二 实验拓展创新例2 图10甲是利用两个电流表A 1和A 2测量干电池电动势E 和内阻r 的电路原理图.图中S 为开关,R 为滑动变阻器,定值电阻R 1和A 1内阻之和为10 000 Ω(比r 和滑动变阻器的总电阻都大得多),A 2为理想电流表.(1)按电路原理图在图乙虚线框内各实物图之间画出连线.图10(2)在闭合开关S 前,将滑动变阻器的滑动端c 移动至________(填“a 端”“中央”或“b 端”).(3)闭合开关S ,移动滑动变阻器的滑动端c 至某一位置,读出电流表A 1和A 2的示数I 1和I 2.多次改变滑动端c 的位置,得到的数据为:在图11所示的坐标纸上以I 1为纵坐标、I 2为横坐标画出所对应的I 1-I 2图线.图11(4)利用所得图线求得电源的电动势E =________ V ,内阻r =________ Ω.(均保留两位小数) (5)该电路中电源输出的短路电流I m =________ A .(保留两位有效数字)答案 (1)见解析图 (2)b 端 (3)见解析图 (4)1.49(1.48~1.50) 0.60(0.55~0.65) (5)2.5(2.3~2.7)解析 (1)连线如图所示.(2)实验前滑动变阻器接入电路电阻值应最大. (3)如图所示.(4)由图线上读出两组数值,代入E =I 1(R 1+R A1)+(I 1+I 2)r 构成方程组联立求解E 和r . (5)短路电流I m =Er.4.某同学准备利用下列器材测量干电池的电动势和内阻.A .待测干电池一节,电动势约为1.5 V ,内阻约为几欧姆B .直流电压表V ,量程为3 V ,内阻非常大C .定值电阻R 0=150 ΩD .电阻箱RE .导线和开关根据如图12甲所示的电路连接图进行实验操作.多次改变电阻箱的阻值,记录每次电阻箱的阻值R 和电压表的示数U .在1U-R 坐标系中描出的坐标点如图乙所示.图12(1)分别用E 和r 表示电源的电动势和内阻,则1U 与R 的关系式为_______________________.(2)在图乙坐标纸上画出1U-R 关系图线.(3)根据图线求得斜率k =________ V -1·Ω-1,截距b =________ V -1(保留两位有效数字).(4)根据图线求得电源电动势E =________ V ,内阻r =________ Ω(保留三位有效数字).答案 (1)1U =1ER 0R +R 0+r ER 0(2)见解析图 (3)4.4×10-3(4.2×10-3~4.6×10-3) 0.70(0.69~0.71) (4)1.52(1.45~1.55) 9.09(7.50~10.5)解析 (1)由闭合电路欧姆定律可知:E =U +U R 0(R +r ),整理可知1U =1ER 0R +R 0+r ER 0. (2)作图如图所示.(3)根据图线求得斜率k =1.50-0.70180V -1·Ω-1≈4.4×10-3 V -1·Ω-1,截距b =0.70 V -1. (4)由方程可知1ER 0=k =4.4×10-3 V -1·Ω-1,R 0+r ER 0=b =0.70,解得E ≈1.52 V ;r ≈9.09 Ω. 5.某同学设想运用如图13甲所示的实验电路,测量未知电阻R x 的阻值、电流表A 的内阻和电源(内阻忽略不计)的电动势,实验过程中电流表的读数始终符合实验要求.(1)为了测量未知电阻R x 的阻值,他在闭合开关之前应该将两个电阻箱的阻值调至________(填“最大”或“最小”),然后闭合开关K 1,将开关K 2拨至1位置,调节R 2使电流表A 有明显读数I 0;接着将开关K 2拨至2位置.保持R 2不变,调节R 1,当调节R 1=34.2 Ω时,电流表A 读数仍为I 0,则该未知电阻的阻值R x =________ Ω.(2)为了测量电流表A 的内阻R A 和电源(内阻忽略不计)的电动势E ,他将R 1的阻值调到R 1=1.5 Ω,R 2调到最大,将开关K 2拨至2位置,闭合开关K 1;然后多次调节R 2,并在表格中记录下了各次R 2的阻值和对应电流表A 的读数I ;最后根据记录的数据,他画出了如图乙所示的图象,根据你所学知识和题中所给字母写出该图象对应的函数表达式为:____________;利用图象中的数据可求得,电流表A 的内阻R A =______ Ω,电源(内阻忽略不计)的电动势E =________ V.图13答案 (1)最大 34.2 (2)1I =R 2E +R 1+R A E0.5 4 解析 (1)为了保护电路,需要将电阻箱的阻值都调至最大,因为两种情况下电流表示数相同,R x 和R 1等效,所以R x =R 1=34.2 Ω.(2)根据闭合电路欧姆定律得:E =I (R 1+R 2+R A ),解得1I =1E R 2+R 1+R A E ,故1I-R 2图象的斜率为1E ,则纵截距为R 1+R A E ,代入数据可得:1E =1-0.52,R 1+R A E=0.5,解得E =4 V ,R A =0.5 Ω.。

最新-2018届“步步高”高考物理大二轮复习练习(人教版):专题过关二力与物体的直线运动 精品

最新-2018届“步步高”高考物理大二轮复习练习(人教版):专题过关二力与物体的直线运动 精品

2018届“步步高”高考物理大二轮复习练习(人教版):专题过关二 力与物体的直线运动(时间:90分钟 满分:100分)一、选择题(每小题4分,共40分)1.设物体运动的加速度为a 、速度为v 、位移为x .现有四个不同物体的运动图象如图所示, 物体C 和D 的初速度均为零,则其中表示物体做单向直线运动的图象是()2.质量为1 kg 的物体静止在水平面上,物体与水平面之间的动摩擦因数为0.2.对物体施加一 个大小变化、方向不变的水平拉力F ,使物体在水平面上运动了3t 0的时间.为使物体在3t 0时间内发生的位移最大,力F 随时间的变化情况应该为下面四个图中的 ()3.如图1所示,水平地面上的物体质量为1 kg ,在水平拉力F =2 N 的作 用下从静止开始做匀加速直线运动,前2 s 内物体的位移为3 m ;则物体运动的加速度大小( )A .3 m/s 2B .2 m/s 2C .1.5 m/s 2D .0.75 m/s 24.如图2所示,水平面上质量为10 kg 的木箱与墙角距离为2358 m ,某人用F =125 N 的力,从静止开始推木箱,推力与水平方向成37°角斜向下,木箱与水平面之间的动摩擦因数为0.4.若推力作用一段时间t 后撤去,木箱恰好能到达墙角处,则这段时间t 为(取sin 37°=0.6,cos 37°=0.8, g =10 m/s 2)( )A .3 sB.655 sC.310 70 sD.32 7 s 5.某同学站在观光电梯内随电梯一起经历了下列三种运动:加速上升、匀速上升、减速上 升 (加速度大小a <g ),则下列说法正确的是( )图1图2A.三种运动因为都是上升过程,所以该同学始终处于超重状态B.只有加速上升过程中,该同学处于超重状态C.三种运动因为支持力均做正功,所以该同学机械能均增加D.只有加速上升过程,机械能增加6.为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图3所示,当此车减速上坡时,乘客( )A.处于失重状态B.重力势能增加C.受到向前的摩擦力作用D.所受力的合力沿斜面向上7.汽车B在平直公路上行驶,发现前方沿同方向行驶的汽车A速度较小,为了避免相撞,距A车25 m处B车制动,此后它们的v-t图象如图4所示,则()A.B的加速度大小为3.75 m/s2B.A、B在t=4 s时的速度相同C.A、B在0~4 s内的位移相同D.A、B两车不会相撞8.如图5甲所示,Q1、Q2为两个固定点电荷,其中Q1带正电,它们连线的延长线上有a、b两点.一正试探电荷以一定的初速度沿直线从b点开始经a点向远处运动,其速度图象如图乙所示.则()甲乙图5A.Q2带正电B.a、b两点的电势φa>φbC.a、b两点电场强度E a>E bD.试探电荷从b到a的过程中电势能减小9.如图6所示,水平面绝缘且光滑,一绝缘的轻弹簧左端固定,右端有一带正电荷的小球,小球与弹簧不相连,空间存在着水平向左的匀强电场,带电小球在电场力和弹簧弹力的作用下静止,现保持电场强度的大小不变,突然将电场反向,若将此时作为计时起点,则下列描述速度与时间、加速度与位移之间变化关系的图象正确的是( )图3 图4图610.如图7所示,水平放置的光滑金属长导轨MM ′和NN ′之间接有电阻R ,导轨平面在直 线OO ′左、右两侧的区域分别处在方向相反与轨道平面垂直的匀强磁场中,设左、右区域的磁场的磁感应强度的大小分别为B 1和B 2,一根金属棒ab 垂直放在导轨上并与导轨接触良好,棒和导轨的电阻均不计.金属棒ab 始终在水平向右的恒定拉力F 的作用下,在左边区域中恰好以速度v 0做匀速直线运动,则以下说法中正确的是 ()图7A .若B 2=B 1时,棒进入右边区域后先做加速运动,最后以速度v 02做匀速直线运动B .若B 2=B 1时,棒进入右边区域后仍以速度v 0做匀速直线运动C .若B 2=2B 1时,棒进入右边区域后先做减速运动,最后以速度v 02做匀速直线运动D .若B 2=2B 1时,棒进入右边区域后先做加速运动,最后以速度4v 0做匀速直线运动 二、实验题(11题4分,12题8分,13题6分,共18分)11.(4分)在验证牛顿运动定律的实验中,某同学挑选的一条点迹清晰的纸带如图8所示, 已知相邻两个点间的时间间隔为T ,从A 点到B 、C 、D 、E 、F 点的距离依次为x 1、x 2、x 3、x 4、x 5(图中未标x 3、x 4、x 5),则由此可求得打C 点时纸带的速度v C =________.图812.(8分)测定木块与长木板之间的动摩擦因数时,采用如图9所示的装置,图中长木板水平 固定.图9(1)实验过程中,电火花计时器应接在________(选填“直流”或“交流”)电源上.调整定滑轮高度,使______________.(2)已知重力加速度为g ,测得木块的质量为M ,砝码盘和砝码的总质量为m ,木块的加速度为a ,则木块与长木板间动摩擦因数μ=________________. (3)如图10为木块在水平木板上带动纸带运动打出的一条纸带的一部分,0、1、2、3、4、5、6为计数点,相邻两计数点间还有4个打点未画出.从纸带上测出x 1=3.20 cm ,x 2=4.52 cm ,x 5=8.42 cm ,x 6=9.70 cm.则木块加速度大小a =图10________ m/s 2(保留两位有效数字).13.(6分)如图11所示是某同学设计的“探究质量m 一定时,加速度a 与物体所受合力F 间的关系”的实验.图11(a)为实验装置简图,其中A 为小车,B 为打点计时器,C 为装有砂的砂桶,其质量为m C ,D 为一端带有定滑轮的长方形木板,不计空气阻力.图11(1)实验中认为细绳对小车拉力F 等于______________;(2)图11(b)为某次实验得到的纸带的一部分(交流电的频率为50 Hz),可由图中数据求出小车加速度值为______ m/s 2;(3)保持小车质量不变,改变砂和砂桶质量,该同学根据实验数据作出了加速度a 与合力F 图线如图11(c),该图线不通过原点O ,明显超出偶然误差范围,其主要原因可能是实验中没有进行____________的操作步骤.三、解答题(14题14分,15题12分,16题16分,共42分)14.(14分)猎狗能以最大速度v 1=10 m/s 持续地奔跑,野兔只能以最大速度v 2=8 m/s 的速 度持续奔跑.一只野兔在离洞窟x 1=200 m 处的草地上玩耍,被猎狗发现后即以最大速度朝野兔追来.兔子发现猎狗时,与猎狗相距x 2=60 m ,兔子立即跑向洞窟.设猎狗、野兔、洞窟总在同一直线上,求:野兔的加速度至少要多大才能保证安全回到洞窟. 15.(12分)如图12所示,水平面上放有质量均为m =1 kg 的物块A 和B , A 、B 与地面的动摩擦因数分别为μ1=0.4和μ2=0.1,相距l =0.75 m .现给物块A 一初速度使之向B 运动,与此同时给物块B 一个F =3 N 水 平向右的力由静止开始运动,经过一段时间A 恰好追上B .g =10 m/s 2.求: (1)物块B 运动的加速度大小; (2)物块A 初速度大小;(3)从开始到物块A 追上物块B 的过程中,力F 对物块B 所做的功. 16.(16分)如图13所示,固定于水平面的U 型金属导轨abcd ,电阻不 计,导轨间距L =1.0 m ,左端接有电阻R =2 Ω.金属杆PQ 的质量m =0.2 kg ,电阻r =1 Ω,与导轨间动摩擦因数μ=0.2,滑动时保持与导轨垂直.在水平面上建立xoy 坐标系,x ≥0的空间存在竖直向下的磁场,磁感应强度仅随横坐标x 变化.金属杆受水平恒力F =2.4 N 的 作用,从坐标原点开始以初速度v 0=1.0 m/s 向右做匀加速运动,经t 1=0.4 s 到达x 1=0.8 m 处,g 取10 m/s 2.求:(1)磁感应强度B 与坐标x 应满足的关系;图12图13(2)金属杆运动到x 1处,PQ 两点间的电势差;(3)金属杆从开始运动到B =32T 处的过程中克服安培力所做的功.答案 1.C 2.D 3.C 4.A 5.BC 6.AB 7.BD 8.B 9.AC 10.B11.v C =x 3-x 12T12.(1)交流(1分) 细线与长木板平行(1分,答“细线水平”同样给分) (2)mg -(m +M )a Mg (3分) (3)1.3(3分)13.(1)m C g (2)3.0(2.6~3.4) (3)平衡摩擦力 14.4 m/s 215.(1)2 m/s 2 (2)3 m/s (3)0.75 J16.(1)B = 31+10x (2)2 V (3)1.5 J。

2018版新步步高高考物理(全国用)大一轮复习讲义课件:第二章相互作用第2讲

2018版新步步高高考物理(全国用)大一轮复习讲义课件:第二章相互作用第2讲
静摩擦系数μ取决于相互接触的两物体表面的材料性质及表面状况.如图,
质量为m的物块静止于斜面上,逐渐增大斜面的倾角θ,直到θ等于某特定
值φ时,物块达到“欲动未动”的临界状态,此时的摩擦力为最大静摩擦力,
物块m的平衡方程为FN-Gcos φ=0,Ffm-Gsin φ=0.
又Ffm=μFN, 解得μ=tan φ, φ称为摩擦角, 只与静摩
的侧面推压木柴的力约为
d A. l F
分析 答案

l B.dF
解析
l C.2dF
d D.2lF
d l l = ,得推压木柴的力 F 1=F2= F. F F1 d
题组阶梯突破
7.(多选)生活中拉链在很多衣服上得到应用, 图是衣服上拉链的一部分, 当 我们把拉链拉开的时候, 拉头与拉链接触处呈三角形, 使很难直接分开的拉 链很容易地拉开, 关于其中的物理原理, 以下说法正确的是 答案 A.拉开拉链的时候,三角形的物体增大了拉拉链的拉力 B.拉开拉链的时候,三角形的物体将拉力分解为两个较大的分力 √ C.拉开拉链的时候,三角形的物体将拉力分解为方向不同的两个 √ 分力 D.以上说法都不正确
其合力随夹角的增大而减小,当两力反向时,合力最小;当两力同向时,
合力最大.
(2)三个共点力的合成.
①最大值:三个力共线且同向时,其合力最大,为F1+F2+F3.
②最小值:任取两个力,求出其合力的范围,如果第三个力在这个范围
之内,则三个力的合力的最小值为零,如果第三个力不在这个范围内,
则合力的最小值为最大的一个力减去另外两个较小的力的大小之和.
深度思考
判断下列说法是否正确.
(1)两个力的合力一定大于任一个分力.( × )
(2)合力与分力是等效替代关系,因此受力分析时不能重复分析.( √ )

高2021届高2018级版步步高3-5高中物理第三章 5

高2021届高2018级版步步高3-5高中物理第三章 5

5核裂变[学习目标] 1.知道什么是核裂变.2.知道链式反应及链式反应的条件, 并能计算裂变释放的核能.3.了解裂变反应堆的工作原理, 知道如何控制核反应的速度以及如何防止核污染.一、核裂变1.核裂变重核被中子轰击后分裂成两个(或几个)中等质量原子核, 并放出核能的过程.2.铀核裂变用中子轰击铀核时, 铀核发生裂变, 其产物是多种多样的, 其中一种典型的反应是235 92U+10 n→144 56Ba+8936Kr+310n.3.链式反应当一个中子引起一个重核裂变后, 裂变释放的中子再引起其他重核裂变, 且能不断继续下去, 这种反应称为链式反应.4.链式反应的条件(1)铀块的体积大于等于临界体积.(2)有足够数量的慢中子.二、核电站1.核反应堆:利用核能发电的核心设施是核反应堆.它主要由以下几部分组成:(1)燃料:铀棒.(2)减速剂:铀235容易捕获慢中子发生反应, 可采用石墨、重水、普通水作减速剂.(3)控制棒:为控制能量释放的速度, 需控制中子的数目, 采用镉棒作为控制棒来控制链式反应的速度.2.工作原理:核燃料裂变释放的能量, 使反应区温度升高.3.能量输出:利用水或液态的金属钠等流体在反应堆内外循环流动, 把反应堆内的热量传输出去, 用于发电.4.核污染的处理:在反应堆的外面需要修建很厚的水泥层, 用来屏蔽裂变反应放出的各种射线, 核废料具有很强的放射性, 需要装入特制的容器, 深埋地下或海底.[即学即用]1.判断下列说法的正误.(1)铀核的裂变是一种天然放射现象.(×)(2)铀块的体积大于或等于临界体积时链式反应才能不停地进行下去.(√)(3)中子的速度越快, 越容易发生铀核裂变.(×)(4)铀核裂变的产物是钡和氪, 且固定不变.(×)(5)核反应堆是通过调节中子数目以控制反应速度.(√)(6)核反应堆用过的核废料无毒无害.(×)2.当235 92U俘获一个慢中子后发生的裂变反应可以有多种方式, 其中一种可表示为:235 92U+10 n→139 54Xe+9438Sr+310n.已知235 92U的原子质量为235.043 9 u, 10n的原子质量为1.008 7 u, 139 54Xe的原子质量为138.917 8 u, 9438Sr的原子质量为93.915 4 u, 且1 u的质量对应的能量为9.3×102 MeV, 此裂变反应释放出的能量是________MeV.答案 1.8×102解析ΔE=Δm·c2=(235.043 9+1.008 7-138.917 8-93.915 4-3×1.008 7)×9.3×102 MeV≈1.8×102 MeV.一、核裂变及链式反应[导学探究]如图1为铀核裂变示意图.图1(1)什么是裂变?写出上述铀核裂变的核反应方程.(2)只要有中子轰击铀块就可以产生链式反应吗?答案(1)重核分裂成几个中等质量原子核的现象称为核裂变.上面这个过程可以用下面的方程式来表示235 92U+10n→144 56Ba+8936Kr+310n(2)铀块体积应大于或等于临界体积、要有足够数量的慢中子才能发生链式反应.[知识深化]1.常见的裂变方程(1)235 92U+10n―→139 54Xe+9538Sr+210n(2)235 92U+10n―→144 56Ba+8936Kr+310n2.链式反应发生的条件(1)铀块的体积大于或等于临界体积.体积超过临界体积时, 保证中子能够碰到铀核.(2)有足够浓度的铀235.(3)有足够数量的慢中子.3.铀的同位素中铀235比铀238更容易发生链式反应.4.核裂变时发生质量亏损, 放出能量.例1铀核裂变时, 对于产生链式反应的重要因素, 下列说法中正确的是()A.铀块的质量是重要因素, 与体积无关B.为了使裂变的链式反应容易发生, 最好直接利用裂变时产生的中子C.若铀235的体积超过它的临界体积, 裂变的链式反应就能够发生D.能否发生链式反应与铀的质量无关答案 C解析要使铀核裂变产生链式反应, 铀块的体积必须大于或等于临界体积或铀块的质量大于或等于临界质量, 裂变反应中产生的中子为快中子, 这些快中子不能直接引发新的裂变, 如果铀块的质量大, 则其体积大, 若超过临界体积时则发生链式反应, 由此知A、B、D错误, C 正确.二、重核裂变释放的核能的计算[导学探究]下面是铀核裂变反应中的一个核反应方程:235 92U+10n→136 54Xe+9038Sr+1010n.已知铀235的质量为235.043 9 u, 中子的质量为1.008 7 u, 锶90的质量为89.907 7 u, 氙136的质量为135.907 2 u, 则此核反应中质量亏损是多少?释放的总能量是多少?(已知1 u相当于931.5 MeV的能量)答案质量亏损是反应前的总质量减去反应后的总质量:Δm=(235.043 9+1.008 7-89.907 7-135.907 2-10×1.008 7)u=0.150 7 u释放的总能量为ΔE=931.5×0.150 7 MeV=140.377 05 MeV.[知识深化]1.铀核裂变为中等质量的原子核, 发生质量亏损, 所以放出能量.一个铀235核裂变时释放的能量如果按200 MeV估算, 1 kg铀235全部裂变放出的能量相当于2 800 t标准煤完全燃烧时释放的能量, 裂变时能产生几百万度的高温.2.计算释放的核能:质量单位为“u”时, 可直接用“1 u的质量亏损放出能量931.5 MeV”计算总能量;当质量单位为“kg”时, 直接乘以(3.0×108)2, 总能量单位为焦耳.例2用中子轰击铀核(235 92U), 其中的一个可能反应是分裂成钡(141 56Ba)和氪(9236Kr)两部分, 放出3个中子.它们的质量如下:m U=390.313 9×10-27 kg, m n=1.674 9×10-27 kg;m Ba=234.001 6×10-27 kg, m Kr=152.604 7×10-27 kg.试写出核反应方程, 求出反应中释放的核能.答案10n+235 92U―→141 56Ba+9236Kr+310n 3.220 2×10-11 J解析铀核裂变方程为10n+235 92U―→141 56Ba+9236Kr+310n,则核反应前后的质量亏损为Δm=m U+m n-m Ba-m Kr-3m n=3.578×10-28 kg,由爱因斯坦质能方程可得释放的核能为ΔE=Δmc2=3.578×10-28×(3×108)2 J=3.220 2×10-11 J.三、核电站1.核电站的主要组成:核电站的核心设施是核反应堆, 反应堆用的核燃料是铀235, 它的主要部件列表如下:2.核电站发电的优点(1)消耗的核燃料少.(2)作为核燃料的铀、钍等在地球上可采储量大, 所能提供的能量大.(3)对环境的污染要比火力发电小.例3如图2所示是慢中子反应堆的示意图, 对该反应堆的下列说法中正确的是()图2A.铀235容易吸收快中子后发生裂变反应B.快中子跟减速剂的原子核碰撞后能量减少, 变成慢中子, 慢中子容易被铀235俘获而引起裂变反应C.控制棒由镉做成, 当反应过于激烈时, 使控制棒插入浅一些, 让它少吸收一些中子, 链式反应的速度就会慢一些D.要使裂变反应更激烈一些, 应使控制棒插入深一些, 使大量快中子碰撞控制棒后变成慢中子, 链式反应的速度就会快一些答案 B解析快中子容易与铀235“擦肩而过”, 快中子跟减速剂的原子核碰撞后能量减少, 变成慢中子, 慢中子容易被铀235俘获而引起裂变反应, 选项B正确, A错误;控制棒由镉做成, 镉吸收中子的能力很强, 当反应过于激烈时, 使控制棒插入深一些, 让它多吸收一些中子, 链式反应的速度就会慢一些, 要使反应更激烈, 应使控制棒插入浅一些, 选项C、D都错误.1.(对核裂变的理解)(多选)铀核裂变是核电站核能的重要来源, 其一种裂变反应为235 92U+10 n―→144 56Ba+8936Kr+310n, 下列说法正确的有()A.上述裂变反应中伴随着中子放出B.铀块体积对链式反应的发生无影响C.铀核的链式反应可人工控制D.铀核的半衰期会受到环境温度的影响答案AC解析从裂变反应方程式可以看出裂变反应中伴随着中子放出, A对;铀块体积对链式反应的发生有影响, B错;铀核的链式反应可人工控制, C对;铀核的半衰期不会受到环境温度的影响, D错.2.(核反应堆的认识)如图3所示, 镉棒在核反应中的作用是()图3A.使快中子变成慢中子B.使慢中子变成快中子C.使反应速度加快D.控制反应速度, 调节反应速度的快慢答案 D解析在核反应堆中石墨使快中子变为慢中子, 镉棒吸收中子, 控制反应速度, 调节反应速度的快慢.3.(对裂变方程的理解)在众多的裂变反应中, 有一种反应方程为235 92U+10n→141 56Ba+9236Kr+a X, 其中X为某种粒子, a为X的个数, 则()A.X为中子, a=2B.X为中子, a=3C.X为质子, a=2D.X为质子, a=3答案 B解析根据核电荷数守恒可知, X的电荷数为0, X必为中子10n, 由质量数守恒可知a=3, 选项B正确.4.(裂变释放核能的计算)铀核(235 92U)裂变成钡(141 56Ba)和氪(9236Kr).已知235 92U、141 56Ba、9236Kr以及中子的质量分别是235.043 9u、140.913 9 u、91.897 3 u和1.008 7 u.(已知1 u相当于931.5 MeV的能量)(1)试写出铀核裂变反应方程, 并计算1个235U核裂变时放出的核能;(2)我国秦山核电站的装机容量为3.0×105 kW, 假如全部235U都能够发生这样的裂变, 释放核能的1.2%可转化为电能, 试由此估算电站1年要消耗多少235 92U?答案(1)235 92U+10n→141 56Ba+9236Kr+310n200.6 MeV(2)9.6×103 kg解析(1)核反应方程为235 92U+10n→141 56Ba+9236Kr+310n,核反应中的质量亏损为Δm=235.043 9 u-140.913 9 u-91.897 3 u-2×1.008 7 u=0.215 3 u则一个235U核裂变所释放的能量为ΔE=0.215 3×931.5 Mev=200.6 Mev.(2)核电站1年所产生的电能为E=Pt, t=365×24×3 600 s.每摩尔235U全部裂变所释放的能量为N A·ΔE, N A为阿伏伽德罗常量, 而235U的摩尔质量为M U=0.235 kg/mol,所以电站1年要消耗的235 92U的质量m=PtηN AΔE M U, 其中ΔE=200.6 MeV=3.2×10-11 J代入数据得m=9.6×103 kg.一、选择题考点一重核的裂变及裂变过程1.当一个重核裂变时, 它所产生的两个核()A.含有的总质子数比裂变前重核的质子数少B.含有的总中子数比裂变前重核的中子数多C.裂变时释放的能量等于俘获中子时得到的能量D.可能是多种形式的两个核的组合答案 D解析一个重核裂变时, 在产生两个核的同时, 也放出中子, 所以新产生的两个核的总中子数比裂变前重核的中子数要少, 两个核的总质子数与裂变前重核的质子数相等, 选项A、B错误;裂变时放出的能量主要是反应前后质量亏损而产生的能量, 要远大于俘获中子时得到的能量, C项错误;重核裂变的产物是多种多样的, D项正确.2.1938年哈恩用中子轰击铀核, 发现产物中有原子核钡(Ba)、氪(Kr)、中子和一些γ射线.下列关于这个实验的说法中正确的是()A.这个实验的核反应方程是235 92U+10n→144 56Ba+8936Kr+10nB.这是一个核裂变过程, 反应后粒子质量之和大于反应前粒子质量之和C.这个反应中释放出的能量不可以用爱因斯坦的质能方程来计算D实验中产生的γ射线穿透能力极强答案 D解析根据质量数守恒、电荷数守恒, 铀核裂变的核反应方程应为:235 92U+10n→144 56Ba+8936Kr+310 n, 选项A错误;铀核裂变过程中产生γ射线, 放出能量, 发生质量亏损, 释放的能量可根据爱因斯坦的质能方程计算, 选项B、C错误;核反应中产生的γ射线, 穿透能力极强, 选项D 正确.3.原子核反应有广泛的应用, 如用于核电站等, 在下列核反应中, 属于核裂变反应的是()A.10 5B+10n→73Li+42HeB.238 92U→234 90Th+42HeC.14 7N+42He→17 8O+11HD.235 92U+10n→141 56Ba+9236Kr+310n答案 D4.一个235 92U原子核在中子的轰击下发生一种可能的裂变反应的裂变方程为235 92U+10n→X+9438Sr +210n, 则下列叙述正确的是()A.X原子核中含有86个中子B.X原子核中含有141个核子C.因为裂变时释放能量, 根据E=mc2, 所以裂变后的总质量数增加D.因为裂变时释放能量, 出现质量亏损, 所以生成物的总质量数减少答案 A解析X原子核中的核子数为(235+1)-(94+2)=140个, B错误;中子数为140-(92-38)=86个, A正确;裂变时释放能量, 出现质量亏损, 但是其总质量数是不变的, C、D错误.考点二核电站5.原子反应堆是实现可控制的重核裂变链式反应的一种装置, 它的主要组成部分是()A.原子燃料、减速剂、冷却系统和控制调节系统B.原子燃料、减速剂、发热系统和传热系统C.原子燃料、调速剂、碰撞系统和热系统D.原子燃料、中子源、原子能聚存和输送系统答案 A解析核反应堆的主要部分包括①燃料, 即浓缩铀235;②减速剂, 采用石墨、重水或普通水;③控制调节系统, 用控制棒控制链式反应的速度;④冷却系统, 水或液态金属钠等流体在反应堆内外循环流动, 把反应堆的热量传输出去, 用于发电, 故A正确, B、C、D错误.6.(多选)为使链式反应平稳进行, 可采用下列办法中的()A.铀块可制成任何体积B.铀核裂变释放的中子可直接去轰击另外的铀核C.通过慢化剂使产生的中子减速D.用镉棒作为控制棒, 控制反应的剧烈程度, 使反应平稳进行答案CD解析铀块小于临界体积将不会发生裂变反应, A错;中子的速度不能太快, 否则会与铀核“擦肩而过”, 铀核不能“捉”住它, 不能发生核裂变, B错;镉棒吸收中子, 控制反应剧烈程度, 使反应平稳进行, D对;通过慢化剂使中子减速, 目的是使中子更容易被铀核俘获, 发生链式反应, C 对.考点三 核裂变释放核能的计算7.(多选)核电站的核能来源于235 92U 核的裂变, 下列说法中正确的是( )A.反应后的核废料已不具有放射性, 不需要进一步处理B.235 92U 的一种可能的裂变是变成两个中等质量的原子核, 如139 54Xe 和9538Sr, 反应方程式为235 92U +10n →139 54Xe +9538Sr +210n C.235 92U 原子核中有92个质子、143个中子 D.一个235 92U 核裂变的质量亏损为Δm =0.215 5 u, 则释放的核能约201 MeV答案 BCD解析 反应后的核废料仍然具有放射性, 需要进一步处理, 故A 错误;发生核反应的过程满足电荷数守恒和质量数守恒, 可判断B 正确;92为U 元素的质子数, 中子数为235-92=143, 故C 正确;根据质能方程与质量亏损可知, 裂变时释放的能量是ΔE =0.215 5×931.5 MeV ≈201 MeV, 故D 正确.8.一个铀235吸收一个中子发生核反应时大约放出196 MeV 的能量, 则1 g 纯235 92U 完全发生核反应时放出的能量为(N A 为阿伏伽德罗常量)( )A.N A ×196 MeVB.235N A ×196 MeVC.235×196 MeVD.N A 235×196 MeV 答案 D解析 由于1 mol 的铀核质量为235 g,1 g 铀235为1235mol, 因此1 g 纯235 92U 完全发生核反应时释放的能量ΔE =N A 235×196 MeV , 故D 正确. 二、非选择题9.(裂变释放核能的计算)现有的核电站常用的核反应之一是:235 92U +10n ―→143 60Nd +Zr +310n +8 0-1e +ν(1)核反应方程中的ν是反中微子, 它不带电, 质量数为零, 试确定生成物锆(Zr)的电荷数与质量数;(2)已知铀核的质量为235.043 9 u, 中子的质量为1.008 7 u, 钕(Nd)核的质量为142.909 8 u, 锆(Zr)核的质量为89.904 7 u, 试计算1 kg 铀235裂变释放的能量为多少?(1 u =1.660 6×10-27kg)答案 (1)40 90 (2)8.1×1013 J解析 (1)锆的电荷数Z =92-60+8=40,质量数A =236-146=90.核反应方程中用符号9040Zr 表示.(2)1 kg 铀235中铀核的个数为n =1235.043 9×1.660 6×10-27(个)=2.56×1024(个) 不考虑核反应中生成的电子质量,1个铀235核裂变产生的质量亏损为Δm =0.212 u,释放的能量为ΔE =0.212×931.5 MeV ≈197.5 MeV则1 kg 铀235完全裂变释放的能量为E =n ΔE =2.56×1024×197.5 MeV ≈8.1×1013 J.10.(核裂变反应的综合应用)在可控核反应堆中需要使快中子减速, 轻水、重水和石墨等常用作减速剂.中子在重水中可与21H 核碰撞减速, 在石墨中与12 6C 核碰撞减速.上述碰撞可简化为弹性碰撞模型.某反应堆中快中子与静止的靶核发生对心正碰, 通过计算说明, 仅从一次碰撞考虑, 用重水和石墨作减速剂, 哪种减速效果更好?答案 用重水作减速剂减速效果更好解析 设中子质量为M n , 靶核质量为M , 由动量守恒定律得M n v 0=M n v 1+M v 212M n v 02=12M n v 12+12M v 22 解得v 1=M n -M M n +M v 0在重水中靶核质量M H =2M n ,v 1H =M n -M H M n +M Hv 0=-13v 0 在石墨中靶核质量M C =12M n ,v 1C =M n -M C M n +M Cv 0=-1113v 0 与重水靶核碰后中子速度较小, 故重水减速效果更好.。

2018高考物理步步高 第七章 第2讲

2018高考物理步步高 第七章  第2讲

第2讲闭合电路欧姆定律一、闭合电路的欧姆定律1.内容:在外电路为纯电阻的闭合电路中,电流的大小跟电源的电动势成正比,跟内、外电路的电阻之和成反比.2.公式(1)I=ER+r(只适用于纯电阻电路).(2)E=U外+Ir(适用于所有电路).3.路端电压U与电流I的关系(1)关系式:U=E-Ir.(2)U-I图象如图1所示.图1①当电路断路即I=0时,纵坐标的截距为电源电动势.②当外电路短路即U=0时,横坐标的截距为短路电流.③图线的斜率的绝对值为电源的内阻.二、电路中的功率及效率问题1.电源的总功率(1)任意电路:P总=IE=IU外+IU内=P出+P内.(2)纯电阻电路:P总=I2(R+r)=E2 R+r.2.电源内部消耗的功率P内=I2r=IU内=P总-P出.3.电源的输出功率(1)任意电路:P出=IU=IE-I2r=P总-P内.(2)纯电阻电路:P 出=I 2R =E 2R (R +r )2=E 2(R -r )2R+4r .(3)纯电阻电路中输出功率随R 的变化关系 ①当R =r 时,电源的输出功率最大为P m =E 24r .②当R >r 时,随着R 的增大输出功率越来越小. ③当R <r 时,随着R 的增大输出功率越来越大.④当P 出<P m 时,每个输出功率对应两个外电阻R 1和R 2,且R 1R 2=r 2. ⑤P 出与R 的关系如图2所示.图24.电源的效率(1)任意电路:η=P 出P 总×100%=UE ×100%.(2)纯电阻电路:η=R R +r×100%=11+r R ×100%因此在纯电阻电路中R 越大,η越大.深度思考 当R =r 时,电源的输出功率最大,则此时电源的效率是不是最大? 答案 不是解析 由η=11+r R×100%可知,当R =r 时,η=50%.故此时效率不是最大.1.判断下列说法是否正确.(1)闭合电路中的电流跟电源电动势成正比,跟整个电路的电阻成反比.( √ ) (2)电动势是电源两极间的电压.( × ) (3)当外电阻增大时,路端电压也增大.( √ ) (4)闭合电路中的短路电流无限大.( × )(5)电动势的单位跟电压的单位一致,所以电动势就是两极间的电压.( × ) (6)在闭合电路中,外电阻越大,电源的输出功率越大.( × ) (7)电源的输出功率越大,电源的效率越高.( × )2.(人教版选修3-1P63第3题)许多人造卫星都用太阳电池供电.太阳电池由许多片电池板组成.某电池板不接负载时的电压是600 μV ,短路电流是30 μA.则这块电池板的内阻( ) A .2 Ω B .20 Ω C .200 Ω D .2 000 Ω 答案 B3.(人教版选修3-1P63第4题)电源的电动势为4.5 V 、外电阻为4.0 Ω时,路端电压为4.0 V ,若在外电路中分别并联一个6.0 Ω的电阻和串联一个6.0 Ω的电阻.则两种情况下的路端电压为( )A .4.3 V 3.72 VB .3.73 V 4.3 VC .3.72 V 4.3 VD .4.2 V 3.73 V答案 C4.(人教版选修3-1P66第2题)一个量程为0~150 V 的电压表,内阻为20 kΩ,把它与一个大电阻串联后接在110 V 电路的两端,电压表的读数是5 V .这个外接电阻是( ) A .240 Ω B .420 kΩ C .240 kΩ D .420 Ω 答案 B命题点一 闭合电路欧姆定律及动态分析 1.电路动态分析的两种方法(1)程序法:电路结构的变化→R 的变化→R总的变化→I总的变化→U端的变化→固定支路⎩⎪⎨⎪⎧并联分流I 串联分压U →变化支路. (2)极限法:即因滑动变阻器滑片滑动引起的电路变化问题,可将滑动变阻器的滑片分别滑至两个极端去讨论. 2.闭合电路的故障分析 (1)故障特点①断路特点:表现为路端电压不为零而电流为零.②短路特点:用电器或电阻发生短路,表现为有电流通过电路但它两端电压为零. (2)检查方法①电压表检测:如果电压表示数为零,则说明可能在并联路段之外有断路,或并联路段被短路.②电流表检测:当电路中接有电源时,可用电流表测量各部分电路上的电流,通过对电流值的分析,可以确定故障的位置.在运用电流表检测时,一定要注意电流表的极性和量程.③欧姆表检测:当测量值很大时,表示该处断路,当测量值很小或为零时,表示该处短路.在运用欧姆表检测时,电路一定要切断电源.例1 (多选)(2016·江苏单科·8)如图3所示的电路中,电源电动势为12 V ,内阻为2 Ω,四个电阻的阻值已在图中标出,闭合开关S ,下列说法正确的有( )图3A .路端电压为10 VB .电源的总功率为10 WC .a 、b 间电压的大小为5 VD .a 、b 间用导线连接后,电路的总电流为1 A 答案 AC解析 外电路的总电阻R =20×2020+20 Ω=10 Ω,总电流I =E R +r =1 A ,则路端电压U =IR =10V ,A 对;电源的总功率P 总=EI =12 W ,B 错;a 、b 间电压大小为U ab =0.5×15 V -0.5×5 V = 5 V ,C 项对;a 、b 间用导线连接后,外电路的总电阻为R ′=2×5×155+15 Ω=7.5 Ω,电路中的总电流I ′=ER ′+r≈1.26 A ,D 项错误.1.如图4所示,E 为内阻不能忽略的电池,R 1、R 2、R 3为定值电阻,S 0、S 为开关,V 与A 分别为电压表与电流表.初始时S 0与S 均闭合,现将S 断开,则( )图4A .V 的读数变大,A 的读数变小B .V 的读数变大,A 的读数变大C .V 的读数变小,A 的读数变小D .V 的读数变小,A 的读数变大 答案 B解析 S 断开,相当于外电阻变大,由闭合电路欧姆定律知电路中总电流减小,则路端电压增大,V 的示数变大,R 1的电压减小,故R 3的电压增大,故电流表示数变大,B 正确. 2.如图5所示,虚线框内为高温超导限流器,它由超导部件和限流电阻并联组成.超导部件有一个超导临界电流I C ,当通过限流器的电流I >I C 时,将造成超导体失超,从超导态(电阻为零,即R 1=0)转变为正常态(一个纯电阻,且R 1=3 Ω),以此来限制电力系统的故障电流.已知超导临界电流I C =1.2 A ,限流电阻R 2=6 Ω,小灯泡L 上标有“6 V 6 W ”的字样,电源电动势E =8 V ,内阻r =2 Ω.原来电路正常工作,超导部件处于超导态,灯泡L 正常发光,现灯泡L 突然发生短路,则( )图5A .灯泡L 短路前通过R 2的电流为47AB .灯泡L 短路后超导部件将由超导态转化为正常态,通过灯泡的电流为1 AC .灯泡L 短路后通过R 1的电流为43 AD .灯泡L 短路后通过R 2的电流为2 A 答案 C解析 标有“6 V 6 W ”的小灯泡L 电阻R =U 2P =6 Ω,灯泡L 正常发光时通过灯泡L 的电流I =PU =1 A ,超导部件处于超导态,其电阻为零,1 A 电流全部通过超导部件,即灯泡L短路前通过R 2的电流为零,A 错误.灯泡L 短路后,电流增大超过超导部件超导临界电流,将由超导态转化为正常态,外电路电阻R ′=2 Ω,由闭合电路欧姆定律可得,通过灯泡的电流I =ER ′+r =2 A ,B 错误.由并联电路电流分配规律可知,灯泡L 短路后通过R 1的电流为43 A ,通过R 2的电流为23 A ,C 正确,D 错误. 命题点二 电路中的功率及效率问题例2 如图6所示的电路中,两平行金属板之间的带电液滴处于静止状态,电流表和电压表均为理想电表,由于某种原因灯泡L 的灯丝突然烧断,其余用电器均不会损坏,则下列说法正确的是( )图6A.电流表、电压表的读数均变小B.电源内阻消耗的功率变大C.液滴将向上运动D.电源的输出功率变大答案 C解析当L的灯丝突然烧断时电路中总电阻增大,则总电流减小,电源的内电压和R1电压减小,由闭合电路的欧姆定律可知,路端电压增大,故电容器C的电压增大,板间场强增大,带电液滴所受的电场力增大,则该液滴将向上运动,C正确.由于C两端的电压增大,R2、R3中的电流增大,则电流表、电压表的读数均变大,A错误.因干路电流减小,则电源内阻消耗的功率变小,B错误.由于电源的内外电阻的关系未知,不能判断电源的输出功率如何变化,D错误.选C.3.(多选)在如图7所示的U-I图象中,直线Ⅰ为某一电源的路端电压与电流的关系图线,直线Ⅱ为某一电阻R的U-I图线.用该电源直接与电阻R相连组成闭合电路,由图象可知()图7A.电源的电动势为3 V,内阻为0.5 ΩB.电阻R的阻值为1 ΩC.电源的输出功率为4 WD.电源的效率为50%答案ABC解析由图线Ⅰ可知,电源的电动势为3 V,内阻为r=EI短=0.5 Ω;由图线Ⅱ可知,电阻R的阻值为1 Ω,该电源与电阻R直接相连组成的闭合电路的电流为I=Er+R=2 A,路端电压U=IR=2 V(可由题图读出),电源的输出功率为P=UI=4 W,电源的效率为η=UI EI×100%≈66.7%,故选项A、B、C正确,D错误.4.(多选)如图8所示,图中直线①表示某电源的路端电压与电流的关系图线,图中曲线②表示该电源的输出功率与电流的关系图线,则下列说法正确的是()图8A .电源的电动势为50 VB .电源的内阻为253ΩC .电流为2.5 A 时,外电路的电阻为15 ΩD .输出功率为120 W 时,输出电压是30 V 答案 ACD解析 电源的路端电压和电流的关系为:U =E -Ir ,显然直线①的斜率的绝对值等于r ,纵轴的截距为电源的电动势,从题图中看出E =50 V ,r =50-206-0 Ω=5 Ω,A 正确,B 错误;当电流为I 1=2.5 A 时,由回路中电流I 1=Er +R 外,解得外电路的电阻R 外=15 Ω,C 正确;当输出功率为120 W 时,由题图中P -I 关系图线看出对应干路电流为4 A ,再从U -I 图线读取对应的输出电压为30 V ,D 正确. 命题点三 电源和电阻U -I 图象的比较例3 如图9直线A 为某电源的U -I 图线,曲线B 为某小灯泡L 1的U -I 图线的一部分,用该电源和小灯泡L 1串联起来组成闭合回路时灯泡L 1恰能正常发光,则下列说法中正确的是( )图9A .此电源的内电阻为23ΩB .灯泡L 1的额定电压为3 V ,额定功率为6 WC .把灯泡L 1换成阻值恒为1 Ω的纯电阻,电源的输出功率将变小D .由于小灯泡L 1的U -I 图线是一条曲线,所以灯泡发光过程中欧姆定律不适用 答案 B解析 由图象知,电源的内阻为r =⎪⎪⎪⎪ΔU ΔI =4-16 Ω=0.5 Ω,A 错误;因为灯L 1正常发光,故灯L 1的额定电压为3 V ,额定功率为P =UI =3×2 W =6 W ,B 正确;正常工作时,灯L 1的电阻为R 1=UI =1.5 Ω,换成R 2=1 Ω的纯电阻后,该电阻更接近电源内阻r ,故电源的输出功率将变大,C 错误;小灯泡是纯电阻,适用欧姆定律,其U -I 图线是一条曲线的原因是灯泡的电阻随温度的变化而发生变化.5.(多选)如图10所示,a 、b 分别表示一个电池组和一只电阻的伏安特性曲线.以下说法正确的是( )图10A .电池组的内阻是1 ΩB .电阻的阻值为0.33 ΩC .将该电阻接在该电池组两端,电池组的输出功率将是4 WD .改变外电阻的阻值时,该电池组的最大输出功率是4 W 答案 AD解析 a 图线斜率的绝对值的倒数等于电源的内阻,则电池组的内阻是r =⎪⎪⎪⎪ΔU ΔI =44 Ω=1 Ω,选项A 正确;b 图线的斜率的倒数等于电阻R ,则R =U I =31 Ω=3 Ω,选项B 错误;由a 图线可知,电源的电动势为E =4 V ,将该电阻接在该电池组两端,电池组的输出功率将是P =(E R +r )2R =(43+1)2×3 W =3 W ,选项C 错误;改变外电阻的阻值时,该电池组的最大输出功率为P m =E 24r =424×1W =4 W ,选项D 正确;故选A 、D.6.(多选)如图11所示,直线Ⅰ、Ⅱ分别是电源1与电源2的路端电压随输出电流变化的特性图线,曲线Ⅲ是一个小灯泡的伏安特性曲线,如果把该小灯泡分别与电源1、电源2单独连接,则下列说法正确的是( )图11A .电源1与电源2的内阻之比是11∶7B .电源1与电源2的电动势之比是1∶1C .在这两种连接状态下,小灯泡消耗的功率之比是1∶2D .在这两种连接状态下,小灯泡的电阻之比是1∶2 答案 ABC解析 根据电源的路端电压随输出电流变化的特性图线斜率的绝对值表示电源内阻可知,电源1与电源2的内阻之比是11∶7,选项A 正确;根据电源的路端电压随输出电流变化的特性图线在纵轴的截距表示电源电动势可知,电源1与电源2的电动势之比是1∶1,选项B 正确;根据曲线交点表示工作点,交点的纵、横坐标的乘积表示电源输出功率,在这两种连接状态下,小灯泡消耗的功率之比是1∶2,选项C 正确;根据曲线交点的纵、横坐标的比值表示小灯泡电阻,在这两种连接状态下,小灯泡的电阻之比是18∶25,选项D 错误. 命题点四 含电容器电路的分析1.确定电容器和哪个电阻并联,该电阻两端电压即为电容器两端电压.2.当电容器和某一电阻串联后接在某一电路两端时,此电路两端电压即为电容器两端电压. 3.当电容器与电源直接相连,则电容器两极板间电压即等于电源电动势.例4 阻值相等的四个电阻、电容器C 及电池E (内阻可忽略)连接成如图12所示电路.开关S 断开且电流稳定时,C 所带的电荷量为Q 1;闭合开关S ,电流再次稳定后,C 所带的电荷量为Q 2.Q 1与Q 2的比值为( )图12A.25B.12C.35D.23 答案 C解析 S 断开时等效电路图如图甲所示.甲电容器两端电压为U 1=E R +23R×23R ×12=15E ;S 闭合时等效电路图如图乙所示.乙电容器两端电压为U 2=E R +12R×12R =13E ,由Q =CU 得Q 1Q 2=U 1U 2=35,故选项C 正确.7.在如图13所示的电路中,R 1=11 Ω,r =1 Ω,R 2=R 3=6 Ω,当开关S 闭合且电路稳定时,电容器C 带电荷量为Q 1;当开关S 断开且电路稳定时,电容器C 带电荷量为Q 2,则( )图13A .Q 1∶Q 2=1∶3B .Q 1∶Q 2=3∶1C .Q 1∶Q 2=1∶5D .Q 1∶Q 2=5∶1 答案 A解析 当开关S 闭合时,电容器两端电压等于R 2两端的电压,U 2=ER 2R 1+R 2+r =E 3,Q 1=E3C ;当开关S 断开时,电容器两端电压等于电源电动势,U =E ,Q 2=EC ,所以Q 1∶Q 2=1∶3,选项A 正确.8.如图14所示,电路中R 1、R 2均为可变电阻,电源内阻不能忽略,平行板电容器C 的极板水平放置.闭合开关S ,电路达到稳定时,带电油滴悬浮在两板之间静止不动.如果仅改变下列某一个条件,油滴仍能静止不动的是()图14A .增大R 1的阻值B .增大R 2的阻值C .增大两板间的距离D .断开开关S答案 B解析 由闭合电路欧姆定律可知:增大R 1的阻值会使总电阻增大,总电流减小,R 1两端电压增大,则电容器两板间电压增大,板间电场强度增大,油滴受电场力增大,油滴将向上运动,选项A 错误;电路稳定时R 2中无电流,R 2阻值变化对电路无任何影响,则选项B 正确;只增大板间距离d ,会使板间电场强度减小,油滴将向下运动,选项C 错误;断开开关S ,电容器放电,油滴将向下运动,选项D 错误.含有非理想电表的电路分析典例1两个定值电阻R1、R2串联接在U稳定于12 V的直流电源上,有人把一个内阻不是远大于R1、R2的电压表接在R1的两端,如图15所示,电压表示数为8 V,如果把它改接在R2的两端,则电压表的示数将()图15A.小于4 V B.等于4 VC.大于4 V而小于8 V D.等于或大于8 V答案 A解析当电压表并联在R1两端时,ab间的电阻是R1与电压表内阻R V并联后的等效电阻R ab,R ab<R1,R ab两端电压为8 V,R2两端电压为4 V,则R ab=2R2,所以R1>2R2,由此可以推断,当不用电压表测量时,R2分得的电压小于4 V.当把电压表并在R2上时,bc间的电阻R bc为R2和R V的并联电阻,R bc<R2,因而bc间电压一定小于4 V.所以本题正确选项为A.典例2如图16甲所示电路中,电压表V1与V2内阻相同,V2与R1并联,V1的示数为U1=3 V,V2的示数为U2=2 V;现将V2改为与R2并联,如图乙所示,再接在原来的电源上,那么()图16A.V1的示数必增大,V2的示数必减小B.V1的示数必增大,V2的示数必增大C.V1的示数必减小,V2的示数必增大D .V 1的示数必减小,V 2的示数必减小 答案 A解析 题图甲中,由R 2两端的电压小于R 1两端的电压知,R 2<R 1R V R 1+R V <R 1,R 串=R 2+R 1R VR 1+R V ,在题图乙中,显然R 2R V R 2+R V <R 2,R 串′=R 1+R 2R V R 2+R V ;R 串-R 串′=R 2-R 1+R 1R V R 1+R V -R 2R VR 2+R V =(R 2-R 1)(R 1R 2+R 1R V +R 2R V )(R 1+R V )(R 2+R V ),因为R 2<R 1,所以R 串-R 串′<0,即R 串<R 串′,由闭合电路欧姆定律可知,电压表V 1的示数变大,电压表V 2的示数减小,A 正确.题组1 电路的动态分析1.如图1所示电路,电源内阻不可忽略.开关S 闭合后,在变阻器R 0的滑动端向下滑动的过程中( )图1A .电压表与电流表的示数都减小B .电压表与电流表的示数都增大C .电压表的示数增大,电流表的示数减小D .电压表的示数减小,电流表的示数增大 答案 A解析 由变阻器R 0的滑动端向下滑动可知,R 0连入电路的有效电阻减小,R 总减小,由I =ER 总+r 可知I 增大,由U 内=Ir 可知U 内增大,由E =U 内+U 外可知U 外减小,故电压表示数减小.由U 1=IR 1可知U 1增大,由U 外=U 1+U 2可知U 2减小,由I 2=U 2R 2可知电流表示数减小,故A正确.2.(多选)已知磁敏电阻在没有磁场时电阻很小,有磁场时电阻变大,并且磁场越强电阻值越大.为探测有无磁场,利用磁敏电阻作为传感器设计了如图2所示电路,电源的电动势E 和内阻r 不变,在没有磁场时调节变阻器R 使电灯L 正常发光.若探测装置从无磁场区进入强磁场区,则( )图2A .电灯L 变亮B .电灯L 变暗C .电流表的示数减小D .电流表的示数增大 答案 AC解析 探测装置从无磁场区进入强磁场区时,磁敏电阻阻值变大,则电路的总电阻变大,根据I =ER 总可知总电流变小,所以电流表的示数减小,根据U =E -Ir ,可知I 减小,U 增大,所以灯泡两端的电压增大,所以电灯L 变亮,故A 、C 正确,B 、D 错误.3.在如图3所示电路中,已知电表均为理想仪表,且小灯泡的电阻小于电源的内阻,电流表A 、电压表V 1、电压表V 2的读数分别为I 、U 1和U 2,P 为被细线悬挂在两平行金属板间的带电小球,细线与竖直方向间的夹角为θ,则当滑动变阻器的滑片向右滑动一小段距离的过程中,电流表A 、电压表V 1、电压表V 2读数变化量大小分别是ΔI 、ΔU 1和ΔU 2,下列说法中正确的是( )图3A .ΔU 2大于ΔU 1B .灯泡变亮、细线与竖直方向间的夹角θ变大C .电源的输出功率变大 D.U 2I 变大、ΔU 2ΔI 变大 答案 C解析 滑动变阻器电阻增大,总电流减小,R 1电压减小,R 2电压增大,而U 外又增大,明显R 2电压增大要超过R 1电压减小,则A 错误.U 外增大,即灯泡两端电压增大,灯泡变亮;R 1电压减小,即电容器两端电压变小,细线与竖直方向间的夹角θ变小,则B 错误.小灯泡的电阻小于电源的内阻,那么再并联R 1、R 2就更小了,因外电阻等于内电阻时,P 出最大,所以当外电阻小于内电阻时,外电阻增大,P 出增大,则C 正确.U 2I 为外电阻,变大,ΔU 2ΔI 为内电阻,不变,则D 错误.4.如图4所示的电路中,闭合开关S ,灯L 1、L 2正常发光.由于电路突然出现故障,发现灯L 1变亮,灯L 2变暗,电流表的读数变小,根据分析,发生的故障可能是( )图4A .R 1断路B .R 2断路C .R 3短路D .R 4短路答案 A解析 分析电路的连接方式可知,R 1与L 1并联;R 2与R 3先并联再与电流表、R 4串联,然后与L 2并联.发现灯L 1变亮,灯L 2变暗,说明L 1两端的电压变大,L 2两端的电压变小,可能是R 1断路,A 正确;如果R 2断路,则灯L 2变亮,灯L 1变暗,与现象不符,B 错误;若R 3短路或R 4短路,与电流表示数变小不符,C 、D 错误. 题组2 电路中的功率及效率问题5.(多选)如图5所示,已知电源的内电阻为r ,固定电阻R 0=r ,可变电阻R 的总阻值为2r ,若滑动变阻器的滑片P 由A 端向B 端滑动,则下列说法中正确的是( )图5A .电源的输出功率由小变大B .固定电阻R 0上消耗的电功率由小变大C .电源内部的电压即内电压由小变大D .滑动变阻器R 上消耗的电功率变小 答案 AB解析 由闭合电路欧姆定律推出电源的输出功率随外电阻变化的规律表达式P出=E 2(R 外-r )2R 外+4r ,根据上式作出P 出-R 外图象如图所示.当滑片P 由A 端向B 端滑动时,外电路电阻的变化范围是0~23r ,由图可知,当外电路电阻由0增加到23r 时,电源的输出功率一直变大,选项A 正确.R 0是纯电阻,所以其消耗的电功率PR 0=U 2R 0,因全电路的总电压即电源电动势E 一定,当滑动变阻器的滑片P 由A 端向B 端滑动时,外电阻增大,总电流减小,内电压减小,外电压升高,R 0上消耗的电功率也一直增大,选项B 正确,C 错误.讨论滑动变阻器R 上消耗的电功率的变化情况时,可以把定值电阻R 0当作电源内电阻的一部分,即电源的等效内电阻为r ′=rR 0r +R 0=r 2,这时滑动变阻器R 上消耗的电功率相当于外电路消耗的功率,即等效电源的输出功率.随着滑片P 由A 端向B 端滑动,在R 的阻值增大到r2之前,滑动变阻器R 上消耗的电功率是一直增大的;则根据闭合电路欧姆定律可知,当R =r2时,滑动变阻器R 上消耗的电功率达到最大值,滑片P 再继续向B 端滑动,则滑动变阻器R 上消耗的电功率就会逐渐减小,故选项D 错误.6.(多选)如图6所示,R 1为定值电阻,R 2为可变电阻,E 为电源电动势,r 为电源内电阻,以下说法中正确的是( )图6A .当R 2=R 1+r 时,R 2获得最大功率B .当R 1=R 2+r 时,R 1获得最大功率C .当R 2=0时,R 1获得最大功率D .当R 2=0时,电源的输出功率最大 答案 AC解析 在讨论R 2的电功率时,可将R 1视为电源内阻的一部分,即将原电路等效为外电阻R 2与电动势为E 、内阻为(R 1+r )的电源(等效电源)连成的闭合电路(如图甲所示),R 2的电功率是等效电源的输出功率.显然当R 2=R 1+r 时,R 2获得的电功率最大,A 项正确;讨论R 1的电功率时,由于R 1为定值,根据P =I 2R 知,电路中电流越大,R 1上的电功率就越大(P 1=I 2R 1),所以,当R 2=0时,等效电源内阻最小(等于r ,如图乙所示),R 1获得的电功率最大,故B 项错误,C 项正确;讨论电源的输出功率时,(R 1+R 2)为外电阻,内电阻r 恒定,由于题目没有给出R 1和r 的具体数值,所以当R 2=0时,电源输出功率不一定最大,故D 项错误.题组3 U -I 图象的理解和应用7.如图7所示,直线A 为某电源的U -I 图线,曲线B 为某小灯泡的U -I 图线,用该电源和小灯泡组成闭合电路时,电源的输出功率和电源的总功率分别是( )图7A .4 W,8 WB .2 W,4 WC .2 W,3 WD .4 W,6 W 答案 D解析 用该电源和小灯泡组成闭合电路时,电源的输出功率是UI =2×2 W =4 W ,电源的总功率是EI =3×2 W =6 W .选项D 正确.8.硅光电池是一种太阳能电池,具有低碳环保的优点.如图8所示,图线a 是该电池在某光照强度下路端电压U 和电流I 的关系图线(电池内阻不是常数),图线b 是某电阻R 的U -I 图线.在该光照强度下将它们组成闭合回路时,硅光电池的内阻为( )图8A .8.0 ΩB .10 ΩC .12 ΩD .12.5 Ω 答案 A解析 由闭合电路欧姆定律得U =E -Ir ,当I =0时,E =U ,由图线a 与纵轴的交点读出电动势为E =3.6 V .根据两图线交点处的状态可知,电阻两端的电压为2 V ,则内阻r =3.6-20.2Ω=8.0 Ω,故A 正确.9.(多选)在如图9所示的U -I 图线上,a 、b 、c 各点均表示该电路中有一个确定的工作状态,在b 点α=β,则下列说法中正确的是( )图9A .在b 点时电源有最大输出功率B .在b 点时电源的总功率最大C .从a →b ,β角增大,电源的总功率和输出功率可能都将增大D .从b →c ,β角增大,电源的总功率和输出功率可能都将减小 答案 AD解析 b 点对应内、外电路电阻相等,电源有最大输出功率,A 正确;电源的总功率P 总=IE ,当回路电流最大时电源总功率最大,即外电路短路时电源的总功率最大,B 错误;从a →b ,路端电压升高,回路电流减小,电源的总功率减小,C 错误;若U bI b =r (电源内阻),由路端电压和干路电流可判断从b →c 外电路电阻增大,电源的输出功率和总功率都减小,D 正确. 题组4 含电容器电路的分析10.(多选)如图10所示,C 1=6 μF ,C 2=3 μF ,R 1=3 Ω,R 2=6 Ω,电源电动势E =18 V ,内阻不计,下列说法正确的是( )图10A .开关S 断开时,a 、b 两点电势相等B .开关S 闭合后,a 、b 两点间的电流是2 AC .开关S 断开时C 1带的电荷量比开关S 闭合后C 1带的电荷量大D .不论开关S 断开还是闭合,C 1带的电荷量总比C 2带的电荷量大 答案 BC解析 S 断开时外电路处于断路状态,两电阻中均无电流通过,电阻两端电势相等,由题图知a 点电势与电源负极电势相等,而b 点电势与电源正极电势相等,A 错误.S 断开时两电容器两端电压都等于电源电动势,而C 1>C 2,由Q =CU 知此时Q 1>Q 2.当S 闭合时,稳定状态下C 1与R 1并联,C 2与R 2并联,电路中电流I =ER 1+R 2=2 A ,此时两电阻两端电压分别为U 1=IR 1=6 V 、U 2=IR 2=12 V ,则此时两电容器所带的电荷量分别为Q 1′=C 1U 1=3.6×10-5C 、Q 2′=C 2U 2=3.6×10-5 C ,对电容器C 1来说,S 闭合后其两端电压减小,所带的电荷量也减小,故B 、C 正确,D 错误.11.在如图11所示的电路中,电容器的电容C =2 μF ,电源电压为12 V 且恒定不变,R 1∶R 2∶R 3∶R 4=1∶2∶6∶3,则电容器极板a 所带电荷量为( )图11A .-8×10-6 CB .4×10-6 CC .-4×10-6 CD .8×10-6 C答案 D解析 设R 1、R 2、R 3、R 4的电阻分别为R 、2R 、6R 、3R .电路稳定后,电容器所在支路无电流,左右两个支路构成并联电路,其中R 1和R 2支路中电流I 1=E R 1+R 2=4R ,R 3和R 4支路中电流I 3=E R 3+R 4=43R ,令电源正极的电势φ=0,则φa =-I 1R 1=-4 V ,φb =-I 3R 3=-8 V ,得U ab =φa -φb =4 V ,即电容器极板a 带正电荷,电荷量Q =CU ab =8×10-6 C ,D 正确.12.(多选)如图12所示,D 是一只理想二极管,水平放置的平行板电容器AB 内部原有带电微粒P 处于静止状态.下列措施下,关于P 的运动情况说法正确的是( )图12A .保持S 闭合,增大A 、B 板间距离,P 仍静止 B .保持S 闭合,减小A 、B 板间距离,P 向上运动C .断开S 后,增大A 、B 板间距离,P 向下运动D .断开S 后,减小A 、B 板间距离,P 仍静止 答案 ABD解析 保持S 闭合,电源的路端电压不变,增大A 、B 板间距离,电容减小,由于二极管的单向导电性,电容器不能放电,其电量不变,由推论E =4πkQεr S 得到,板间场强不变,微粒所受电场力不变,仍处于静止状态,故A 正确.保持S 闭合,电源的路端电压不变,电容器的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年高考物理《步步高》(全国通用•含答案及详细解析)专题复习题(2套“微专题”题+1套章末综合练习题,共3套题)第十一章交变电流1.考点及要求:(1)交变电流、交变电流的图象(Ⅰ);(2)正弦交变电流的函数表达式、峰值和有效值(Ⅰ).2.方法与技巧:(1)线圈每经过中性面一次,电流方向改变一次;从中性面开始转动时,i-t图象为正弦函数图象;(2)交变电流的求解一般选择一个周期,利用电流的热效应来求解.1.(交变电流的产生)如图1甲所示,矩形线圈abcd在匀强磁场中逆时针匀速转动时,线圈中产生的交流电如图乙所示,设沿abcda方向为电流正方向,则()图1A.乙图中Oa时间段对应甲图中①至②图的过程B.乙图中c时刻对应甲图中的③图C.若乙图中d等于0.02 s,则1 s内电流的方向改变了50次D.若乙图中d等于0.02 s,则交流电的频率为25 Hz2.(交变电流的瞬时值表达式和图象)(多选)在匀强磁场中,一矩形金属线框绕与磁感线垂直的转动轴匀速转动,如图2甲所示.产生的交变电动势随时间变化的规律如图乙所示.则下列说法正确的是()图2A.t=0.01 s时穿过线框的磁通量最小B.该交变电动势的有效值为11 2 VC.该交变电动势的瞬时值表达式为e=222sin(100πt) VD.电动势瞬时值为22 V时,线框平面与中性面的夹角为45°图33.(交变电流的有效值)一台小型发电机产生的电动势随时间变化的正弦规律图象如图3所示,已知发电机线圈内阻为5 Ω,仅外接一只电阻为105 Ω的灯泡,则()A.线圈从垂直于中性面的位置开始转动B.电路中的电流方向每秒改变50次C.灯泡两端的电压为220 VD.发电机线圈内阻每秒产生的焦耳热为20 J图44.(交变电流的“四值”)如图4所示,矩形线圈abcd与可变电容器C、理想电流表组成闭合电路.线圈在有界匀强磁场中绕垂直于磁场的bc边匀速转动,转动的角速度ω=100π rad/s.线圈的匝数N=100,边长ab=0.2 m、ad=0.4 m,电阻不计.磁场只分布在bc边的左侧,磁感应强度大小B=216πT.电容器放电时间不计.下列说法正确的是() A.该线圈产生的交流电动势的峰值为50 VB.该线圈产生的交流电动势的有效值为25 2 VC.电容器的耐压值至少为50 VD.电容器的电容C变大时,电流表的示数变小5.如图所示,面积均为S的单匝线圈绕其对称轴或中心轴在匀强磁场B中以角速度ω匀速转动,能产生正弦交变电动势e=BSωsin ωt的图是()6.如图5所示,单匝闭合金属线框abcd在匀强磁场中绕垂直于磁场的轴OO′匀速转动,设穿过线框的最大磁通量为Φm,线框中的最大感应电动势为E m,从线框平面与磁场平行时刻开始计时,下面说法不正确的是()图5A.当穿过线框的磁通量为Φm2的时刻,线框中的感应电动势为E m2B.线框中的电流强度随时间按余弦规律变化C.线框转动的角速度为E mΦmD.线框在垂直于磁场方向平面内的投影面积随时间按正弦规律变化7.如图6所示电路中,电源电压u=311sin (100πt) V,A、B间接有“220 V440 W”的电暖宝、“220 V 220 W”的抽油烟机、交流电压表及保险丝.下列说法正确的是()图6A.交流电压表的示数为311 VB.电路要正常工作,保险丝的额定电流不能小于3 2 AC .电暖宝发热功率是抽油烟机发热功率的2倍D .1 min 内抽油烟机消耗的电能为1.32×104 J8.(多选)交流发电机电枢中产生的交变电动势为e =E m sin ωt ,如果要将交变电动势的有效值提高一倍,而交变电流的周期不变,可采取的方法是( )A .将电枢线圈转速提高一倍,其他条件不变B .将磁感应强度增加一倍,其他条件不变C .将线圈的面积增加一倍,其他条件不变D .将磁感应强度增加一倍,线圈的面积缩小一半,其他条件不变9.调光灯、调速电风扇以前是用变压器来实现的,该技术的缺点是成本高、体积大、效率低,且不能任意调节灯的亮度或电风扇的转速.现在的调光灯、调速电风扇是用可控硅电子元件来实现的.如图7为经过一个双向可控硅调节后加在电灯上的电压.那么现在电灯上的电压为( )图7A .U m B.2U m 2 C.U m 2 D.U m 410.(多选)如图8所示,面积为S 、匝数为N 、电阻为r 的线圈与阻值为R 的电阻构成闭合回路,理想交流电压表并联在电阻R 的两端.线圈在磁感应强度为B 的匀强磁场中,绕垂直于磁场的转动轴以角速度ω匀速转动.设线圈转动到图示位置的时刻为t =0.则( )图8A .在t =0时刻,线圈处于中性面,流过电阻R 的电流为0,此时电压表的读数也为0B .1秒内流过电阻R 的电流方向改变ωπ次 C .若线圈角速度ω增大,则电压表示数变大D .在电阻R 的两端再并联一个电容器后,电压表的读数不变11.(多选)如图9所示,在匀强磁场中匀速转动的圆形线圈周期为T ,匝数为10匝,转轴O 1O 2垂直于磁场方向,线圈电阻为2 Ω,从线圈平面与磁场方向垂直时开始计时,线圈转过30°时的电流为1 A ,下列说法中正确的是( )图9A .线圈中电流的最大值为 2 AB .线圈消耗的电功率为4 WC .任意时刻线圈中的感应电流为i =2sin (2πTt ) A D .任意时刻穿过线圈的磁通量为Φ=2T πcos (2πTt ) Wb 12.(多选)图10甲为一台小型发电机构造示意图,内阻r =5.0 Ω,外电路电阻R =95 Ω,电路中其余电阻不计.发电机内的矩形线圈在匀强磁场中以恒定的角速度ω绕垂直于磁场方向的固定轴转动,线圈匝数N =100.转动过程中穿过每匝线圈的磁通量Φ随时间t 按正弦规律变化,如图乙所示,则( )图10A .t =3.14×10-2 s 时,该小型发电机的电动势为零 B .该小型发电机的电动势的最大值为200 VC .电路中电流最大值为2 AD .串联在外电路中的交流电流表的读数为2 A答案解析1.A [甲图中的①、③两图中线圈所在的平面为中性面,线圈在中性面时电流为零,经过14个周期电流达到最大值,再由楞次定律判断出电流的方向,可知图甲中①至②图的过程电流为正且从零逐渐增大到最大值,选项A 正确;甲图中的③图对应的电流为零,选项B 错误;一个周期以内电流方向改变两次,若已知d 等于0.02 s ,则周期T =0.02 s ,故频率为50 Hz,1 s 内电流的方向将改变100次,选项C 、D 错误.]2.CD [t =0.01 s 时,感应电动势为零,则穿过线框的磁通量最大,故选项A 错误;该交变电动势的有效值E =E m 2=2222V =22 V ,故选项B 错误;由题图乙知该交变电动势的瞬时值表达式为e =222sin(100πt )V ,故选项C 正确.电动势瞬时值为22 V 时,代入瞬时值表达式,得sin ωt =22,故表明线框平面与中性面的夹角为45°,故选项D 正确.] 3.D [由题图知t =0时刻发电机产生的电动势为0,此位置应在中性面,A 错误;正弦交变电流在一个周期内电流方向改变两次,电流周期为0.02 s ,故每秒应改变100次,B 错误;电动势有效值为220 V ,由内、外电路的电阻值可知灯泡两端电压为210 V ,故C 错误.发电机线圈内阻的热功率为P r =(E R +r)2r =20 W ,每秒产生的焦耳热Q =P r t =20 J ,故D 正确.] 4.B [峰值E m =NBSω=100×216π×0.2×0.4×100π V =50 2 V ,故A 错.因为在一个周期内,线圈只在半个周期内产生感应电动势,设有效值为E ,则有:E 2R T =E 2m 2R ×T 2,解得:E =25 2 V ,故B 正确.电容器的耐压值至少为50 2 V ,故C 错.C 变大时容抗减小,电流表的示数应变大,故D 错.]5.A [线圈在匀强磁场中绕垂直于磁场方向的轴(轴在线圈所在平面内)匀速转动,产生的正弦交变电动势为e =BSωsin ωt ,由这一原理可判断,A 图中感应电动势为e =BSωsin ωt ;B 图中的转动轴不在线圈所在平面内;C 、D 图中的转动轴与磁场方向平行,而不是垂直.]6.A [设线框转动的角速度为ω,根据题意,线框中的感应电动势的瞬时值表达式为e =E m cos ωt ,其中E m =Φm ω,所以ω=E m Φm ,选项B 、C 正确;当穿过线框的磁通量为Φm 2的时刻,ωt =45°,所以线框中的感应电动势为e =E m cos 45°=2E m 2,选项A 错误;计时开始时刻,线框在垂直于磁场方向平面内的投影面积为零,所以以后该面积随时间按正弦规律变化,选项D 正确.]7.D [交流电压表的示数为有效值为220 V ,故选项A 错误;由公式P =UI 知电路要正常工作,干路中电流有效值为3 A ,所以保险丝的额定电流不能小于3 A ,故选项B 错误;电暖宝是纯电阻用电器,P 热=P 电,而抽油烟机是非纯电阻用电器,P 热<P 电,故选项C 错误;1 min 内抽油烟机消耗的电能为W =Pt =1.32×104 J ,故选项D 正确.]8.BC [交变电动势的最大值E m =NBSω,有效值U =E m /2=NBSω/2,只要线圈转速不变,交变电流的周期就不变,可仅将磁感应强度增加一倍,其他条件不变;或仅将线圈的面积增加一倍,其他条件不变,就可将交变电动势的有效值提高一倍,选项B 、C 正确,A 、D 错误.]9.C [电灯上的电压值,如没有特殊说明一般指电压的有效值,设加在电灯上电压的有效值为U ,取一个周期,由电流的热效应得U 2R T =(U m 2)2R ·T 4+(U m 2)2R ·T 4,所以可得U =U m 2,故选项C 正确.]10.BC [回路中电流的瞬时值表达式为i =NBSωR +rsin ωt ,t =0时,i =0,但电压表读数为有效值,不为零,故A 错.一个周期内电流的方向改变两次,故1秒内流过电阻R 的电流方向改变的次数为2×n =ωπ,B 正确.ω增大时,感应电动势最大值增大,则电压表示数也变大,故C 正确.因为电容器通交流,所以在R 两端并联电容器后,电压表的读数将改变,故D 错.]11.BC [从线圈平面与磁场方向垂直时开始计时,感应电动势的表达式为e =E m sin ωt ,则感应电流i =e R =E m R sin ωt ,由题给条件有:1 A =E m 2 Ω×12,解得E m =4 V ,则I m =2 A ,I 有效= 2 A ,线圈消耗的电功率P =I 2有效R =4 W ,选项A 错误,选项B 正确;i =I m sin ωt =2sin (2πT t ) A ,故选项C 正确;由E m =NBSω=Φm N 2πT 得Φm =T 5π(Wb),故任意时刻穿过线圈的磁通量Φ=Φm cos ωt =T 5πcos (2πTt ) Wb ,可见D 错.] 12.BC [t =3.14×10-2 s 时,磁通量Φ的变化率最大,该小型发电机的电动势有最大值,选项A 错误;从Φ-t 图线可以看出,Φmax =1.0×10-2 Wb ,T =3.14×10-2 s ,ω=2πT ,感应电动势的最大值E max =NωΦmax =200 V ,选项B 正确;电路中电流最大值I max =E max R +r=2 A ,选项C 正确;交流电流表读数是交变电流的有效值,即I =I max 2=1.4 A ,选项D 错误.]1.考点及要求:(1)理想变压器(Ⅰ);(2)远距离输电(Ⅰ).2.方法与技巧:(1)理想变压器中各量的制约关系:①副线圈电压U 2由原线圈电压U 1和匝数比决定.②原线圈的输入功率P 1由副线圈的输出功率P 2决定.③原线圈电流I 1由副线圈电流I 2和匝数比决定;(2)输电线上损耗的功率:P 损=I 线ΔU =I 2线R 线=(P 2U 2)2R 线.1.(变压器的原理)(多选)如图1,将额定电压为60 V 的用电器通过一理想变压器接在正弦交变电源上.闭合开关S 后,用电器正常工作,交流电压表和交流电流表(均为理想电表)的示数分别为220 V 和2.2 A .以下判断正确的是( )图1A .变压器输入功率为484 WB .通过原线圈的电流的有效值为0.6 AC .输出端交变电流的频率小于输入端D .变压器原、副线圈匝数比n 1∶n 2=11∶32.(变压器电路的动态分析)如图2所示,理想变压器原线圈接一交流电源,副线圈回路中有一定值电阻R 和两个小灯泡L 1、L 2,最初开关S 是断开的,现闭合开关S ,则( )图2A .副线圈两端电压变大B .灯泡L 1变亮C .电流表A 1示数变大D .电阻R 中的电流变小3.(远距离输电)如图3甲所示为远距离输电示意图,升压变压器原、副线圈匝数比为1∶10,降压变压器副线圈接有负载电路,升压变压器和降压变压器之间的长距离输电线路的电阻不能忽略,变压器视为理想变压器,升压变压器左侧输入端输入如图乙所示交变电压,下列说法中正确的有()图3A.升压变压器副线圈输出电压的频率为500 HzB.升压变压器副线圈输出电压的有效值为31 VC.滑片P向右移动时,整个输电系统的效率降低D.滑片P向右移动时,降压变压器的输出电压不变4.如图4所示为一理想变压器,原线圈有一可滑动的触头P,副线圈接一理想电流表和一滑动变阻器,原线圈的输入电压是周期为T的交变电压.下列叙述正确的是()图4A.若输入电压增大,则变压器的输出功率增大B.若交变电压的周期增大,则变压器的输出功率减小C.若滑动变阻器的触头向下移动,则电流表的示数减小D.若原线圈的触头向上滑动,则电流表的示数增大5.(多选)一理想变压器原、副线圈匝数比为n1∶n2=10∶1.原线圈输入正弦交变电压如图5所示,副线圈接入一阻值为22 Ω的电阻.下列说法正确的是()图5A.电阻中交变电流的方向每秒改变100次B.原线圈中电流的有效值是0.14 AC.与电阻并联的交流电压表示数是22 VD.1 min内电阻产生的热量是2.64×103 J6.某小型水电站的电能输送示意图如图6所示,发电机通过升压变压器T1和降压变压器T2向R0=11 Ω的纯电阻用电器供电.已知输电线的总电阻R=10 Ω,T2的原、副线圈匝数比为4∶1,用电器两端的电压为u=2202sin 100πt(V),将T1、T2均视为理想变压器.下列说法正确的是()图6A.降压变压器的输入功率为4 400 WB.升压变压器中电流的频率为100 HzC.输电线消耗的功率为500 WD.当用电器的电阻减小时,输电线消耗的功率减小7.(多选)如图7为发电厂向远处用户输电的电路示意图,升压变压器和降压变压器均为理想变压器,发电厂的输出电压和输电线的电阻均不变.若输送功率增大,下列说法中正确的有()图7A.升压变压器的输出电压增大B.降压变压器的输出电压增大C.输电线上损耗的功率增大D.输电线上损耗的功率占总功率的比例增大8.(多选)如图8甲所示,理想变压器原、副线圈的匝数比为4∶1,电压表和电流表均为理想交流电表,原线圈接如图乙所示的正弦交流电,图中R t为NTC型热敏电阻(阻值随温度的升高而减小),R1为定值电阻,下列说法正确的是()图8A.交流电压的表达式u=362sin (100πt) VB.R t处温度升高时,电流表A的示数变大,电压表V2示数减小C.变压器原、副线圈中的电流之比随R t处温度的变化而变化D.R t处温度升高时,变压器原线圈的输入功率变大9.如图9所示的电路中,理想变压器原、副线圈的匝数比n1∶n2=22∶5,电阻R1=R2=25 Ω,D为理想二极管,原线圈接u=2202sin (100πt) V的交流电,则()图9A.交流电的频率为100 HzB.通过R2的电流为1 AC.通过R2的电流为 2 AD.变压器的输入功率为200 W10.如图10所示,T为理想变压器,副线圈回路中的输电线ab和cd的电阻不可忽略,其余输电线电阻可不计,则当开关S闭合时()图10A.交流电压表V1和V2的示数一定都变小B.交流电压表只有V2的示数变小C.交流电流表A1、A2和A3的示数都变大D.交流电流表A1、A2和A3的示数都变小11.图11为远距离输电的示意图,T1为升压变压器,原、副线圈匝数分别为n1、n2,T2为降压变压器,原、副线圈匝数分别为n3、n4,输电线的等效电阻为R.若发电机的输出电压不变,则下列叙述正确的是()图11A.只增大T1的原线圈匝数n1,可减小R消耗的功率B .若n 1n 2=n 3n 4,则电压表V 1和V 2的示数相等 C .当用户总电阻减小时,R 消耗的功率增大D .当用户总电阻减小时,电压表V 1和V 2的示数都变小答案解析1.BD [用电器正常工作,所以理想变压器的输出电压的有效值为60 V ,根据理想变压器的电压与匝数成正比,可得n 1∶n 2=U 1∶U 2=11∶3,选项D 正确.理想变压器的输入功率等于输出功率,P 入=P 出=U 2I 2=60×2.2 W =132 W ,选项A 错误.根据理想变压器的电流与匝数成反比,即I 1∶I 2=n 2∶n 1,可得通过原线圈的电流的有效值为I 1=n 2n 1I 2=0.6 A ,选项B 正确.输入端和输出端交变电流频率相等,选项C 错误.]2.C3.C [根据题图乙知,交变电流的周期为0.02 s ,则频率f =1T=50 Hz ,经过变压器,交流电的频率不变,故选项A 错误;升压变压器的输入电压的有效值U 1=3102V ,根据U 1U 2=n 1n 2,得U 2=3 1002V ,故选项B 错误;滑片P 向右移动时,总电阻减小,则降压变压器副线圈的电流I 2增大,输电线上的电流增大,根据η=P -P 损P =U 2I 2-I 22R U 2I 2=U 2-I 2R U 2知,电流增大,则输电效率降低,故选项C 正确;滑片P 向右移动时,输电线上的电流增大,则输电线上的电压损失增大,因为降压变压器的输入电压等于升压变压器的输出电压和电压损失之差,可知降压变压器的输入电压减小,则输出电压减小,故选项D 错误.]4.A [输入电压增大时,副线圈的输出电压增大,则变压器的输出功率增大,A 正确;交变电压的周期增大时,输入电压和输出电压不变,输出功率不变,B 错误;若滑动变阻器的触头向下移动,负载电阻的阻值减小,副线圈电压不变,电流表的示数增大,故C 错误;若原线圈的触头向上滑动,则原线圈匝数增加,变压器的输出电压减小,电流表的示数减小,D 错误.]5.AC [由题图可知,交变电流的周期为T =0.02 s ,所以其频率f =50 Hz ,而交变电流的方向在每个周期内改变两次,因理想变压器不改变交流电的频率,故A 项正确;由题图可知,原线圈中正弦交变电流电压最大值为220 2 V ,所以有效值为220 V ,由理想变压器变压规律可知,副线圈两端电压有效值U 2=n 2n 1U 1=22 V ,所以电压表示数为22 V ,故C 项正确;由欧姆定律可知,通过电阻的电流I 2=U 2R =1 A .由理想变压器的变流规律可知,I 1=n 2I 2n 1=0.1 A ,故B 项错;由焦耳定律可知,电阻在1 min 内产生的热量Q =I 22Rt =1.32×103 J ,故D 项错.]6.A [由题可知,用电器两端电压有效值为220 V ,交流电频率f =ω2π=100π2πHz =50 Hz ,降压变压器输出功率P =U 2R 0=4 400 W .理想变压器输入功率与输出功率相等,故A 项正确;理想变压器不改变交变电流的频率,B 项错;由变压规律U 1U 2=n 1n 2可知,降压变压器输入电压为880 V ,由电功率定义式P =UI 可知,降压变压器输入电流为I =5 A ,由焦耳定律可知,输电线电阻消耗的功率P =I 2R =250 W ,C 项错;当用电器的电阻减小时,输出功率增大,故降压变压器输入功率增大,从而输入电流增大,再由P =I 2R 可知,输电线消耗的功率增大,D 项错.]7.CD [已知发电厂的输出电压不变,升压变压器的原、副线圈匝数比不变,升压变压器的输出电压不变,A 错;若输送功率增大,升压变压器的输出电压不变,则输电线上电流增大,又输电线上电阻不变,故输电线上损失的电压增大,降压变压器的输入电压减小,则降压变压器输出电压减小,B 错;因输电电流增大,则输电线上损失的电压增大,由P 损P =(P U )2R P=PR U,C 、D 对.] 8.ABD [原线圈接题图乙所示的正弦交流电,由图知最大电压为36 2 V ,周期为0.02 s ,故角速度是ω=100π rad/s ,则u =362sin (100πt ) V ,故A 正确;原线圈两端电压不变,匝数比不变,副线圈两端电压不变,R t 处温度升高时,阻值减小,电流增大,电流表的示数变大,由于R 1两端的电压增大,电压表V 2示数减小,故B 正确;由于线圈匝数不变,故电流之比不会随温度的变化而变化,故C 错误;R t 处温度升高时,副线圈中电流增大,而副线圈两端的电压不变,变压器的输出功率变大,因输入功率等于输出功率,故输入功率也变大,故D 正确.]9.C [由原线圈交流电瞬时值表达式可知,交变电流的频率f =1T =ω2π=50 Hz ,A 项错;由理想变压器变压规律U 1U 2=n 1n 2可知,输出电压U 2=50 V ,由理想二极管单向导电性可知,交变电流每个周期只有一半时间有电流通过R 2,由交变电流的热效应可知,U 22R ·T 2=U 2R·T ⇒U =22U 2=25 2 V ,由欧姆定律可知,通过R 2的电流为 2 A ,B 项错,C 项正确;电阻R 2的功率P 2=UI =50 W ,而电阻R 1的电功率P 1=U 22R 1=100 W ,由理想变压器输入功率等于输出功率可知,变压器的输入功率为P =P 1+P 2=150 W ,D 项错.]10.B [副线圈的电压由原线圈的电压及匝数比决定,故当S 闭合时,电压表V 1的示数不变,A 错误;当S 闭合时,负载增加一个并联支路,负载的总电阻减小,副线圈电流增大,即电流表A 2的示数增大,由I 1I 2=n 2n 1知A 1示数增大,由于输电线两端的电压增大,故电压表V 2的示数减小,根据欧姆定律可得R 1的电流减小,即A 3示数减小,所以B 正确,C 、D 错误.]11.C [只增大T 1的原线圈匝数n 1,则升压变压器的输出电压减小,根据P =UI 知,输电线上的电流增大,则输电线上消耗的功率增大,故选项A 错误;因为升压变压器的输出电压等于输电线上损失的电压与降压变压器的输入电压之和,即升压变压器的输出电压大于降压变压器的输入电压,故n 1n 2=n 3n 4时,升压变压器的输入电压与降压变压器的输出电压不等,故选项B 错误;用户总电阻减小,则电流增大,可知输电线上的电流增大,根据P 损=I 2R 知,输电线上消耗的功率增大,故选项C 正确;当用户总电阻减小时,电流增大,输电线上的电流也增大,输电线上电压损失增大,升压变压器的输入电压和输出电压不变,则降压变压器的输入电压和输出电压减小.则电压表V 1的示数不变,V 2的示数减小,故选项D 错误.]一、单项选择题1.我国的市电标准为“220 V50 Hz”,它是由发电站的发电机发出,通过分级升压或降压变压器变换电压,跨越较远距离输送到用户所在地的.下列说法正确的是() A.220 V指的是交流电压的峰值B.发电机转子的转速为3 000 r/minC.变压器可以变换交流电的电压、功率和频率D.采用远距离高压输电可减小输电线的电阻及输电线上的电流2.一理想变压器原、副线圈匝数比n1∶n2=11∶5,原线圈与正弦交变电源连接,输入电压u随时间t的变化规律如图1所示,副线圈仅接入一个10 Ω的电阻,则()图1A.流过电阻的最大电流是20 AB.与电阻并联的电压表的示数是141 VC.变压器的输入功率是2.2×103 WD.在交变电流变化的一个周期内,电阻产生的焦耳热是20 J3.在图2甲所示的电路中,理想变压器原线圈两端的正弦交变电压变化规律如图乙所示.已知变压器原、副线圈的匝数比n1∶n2=10∶1,串联在原线圈电路中的电流表A1的示数为1 A,下列说法正确的是()图2A.电压表V的示数为200 2 VB.变压器的输出功率为200 WC.变压器输出端交变电流的频率为100 HzD.电流表A2的示数为0.1 A图34.普通的交流电流表不能直接接在高压输电线路上测量电流,通常要通过电流互感器来连接,图3中电流互感器ab一侧线圈的匝数较少,工作时电流为I ab,cd一侧线圈的匝数较多,工作时电流为I cd,为了使电流表能正常工作,则()A.ab接MN、cd接PQ,I ab<I cdB.ab接MN、cd接PQ,I ab>I cdC.ab接PQ、cd接MN,I ab<I cdD.ab接PQ、cd接MN,I ab>I cd图45.如图4所示,理想变压器原、副线圈的匝数比是100∶1,电容器C和电阻R并联在副线圈两端,电流表为理想交流电流表,电阻R=10 Ω.当原线圈输入交变电压u=1 0002sin (50πt) V时,下列说法正确的是()A.电阻R消耗的电功率为20 WB.电容器的耐压值至少是10 2 V才能不被损坏C.该交流电的频率为50 HzD.电流表的示数为零6.如图5所示为某住宅区的应急供电系统,由交流发电机和副线圈匝数可调的理想降压变压器组成.发电机中矩形线圈所围的面积为S,匝数为N,电阻不计,它可绕水平轴OO′在磁感应强度为B的水平匀强磁场中以角速度ω匀速转动.矩形线圈通过滑环连接降压变压器,滑动触头P上下移动时可改变输出电压,R0表示输电线的等效电阻.以线圈平面与磁场平行时为计时起点,下列判断正确的是()图5A.若发电机线圈某时刻处于图示位置,变压器原线圈的电流瞬时值为零B.发电机线圈感应电动势的瞬时值表达式为e=NBSωsin ωtC.当用电量增加时,为使用户电压保持不变,滑动触头P应向上滑动D.当滑动触头P向下移动时,变压器原线圈两端的电压将升高二、多项选择题7.今年春节前后,我国西南部分省市的供电系统由于气候原因遭到严重破坏.为此,某小区启动了临时供电系统,它由备用发电机和副线圈匝数可调的变压器组成,如图6所示,图中R0表示输电线的等效电阻.滑动触头P置于a处时,用户的用电器恰好正常工作,在下列情况下,要保证用电器仍能正常工作,则()图6A.当发电机输出的电压发生波动使V1示数小于正常值,用电器不变时,应使滑动触头P 向上滑动B.当发电机输出的电压发生波动使V1示数小于正常值,用电器不变时,应使滑动触头P 向下滑动C.如果V1示数保持正常值不变,那么当用电器增加时,滑动触头P应向上滑动D.如果V1示数保持正常值不变,那么当用电器增加时,滑动触头P应向下滑动8.如图7甲所示,理想变压器原、副线圈的匝数比为5∶1,原线圈接交流电源和交流电压表,副线圈接有“220 V440 W”的热水器、“220 V220 W”的抽油烟机.如果副线圈电压按图乙所示规律变化,则下列说法正确的是()图7A.副线圈两端电压的瞬时值表达式为u=2202sin(100πt) VB.交流电压表的示数为1 100 2 VC.1 min内变压器输出的电能为3.96×104 JD.热水器的发热功率是抽油烟机发热功率的2倍9.现在用一台该型号的柴油发电机(说明书部分内容如表所示)给灾民临时安置区供电,如图8所示,发电机到安置区的距离是400 m,输电线路中的火线和零线单位长度的电阻为2.5×10-4Ω/m.安置区家用电器的总功率为44 kW,当这些家用电器都正常工作时(正常工作电压为220 V),下列说法中正确的是()。

相关文档
最新文档